81 |
Weighted Branching Automata: Combining Concurrency and WeightsMeinecke, Ingmar 14 December 2004 (has links)
Eine der stärksten Erweiterungen der klassischen Theorie formaler Sprachen und Automaten ist die Einbeziehung von Gewichten oder Vielfachheiten aus einem Halbring. Diese Dissertation untersucht gewichtete Automaten über Strukturen mit Nebenläufigkeit. Wir erweitern die Arbeit von Lodaya und Weil und erhalten so ein Modell gewichteter verzweigender Automaten, in dem die Berechnung des Gewichts einer parallelen Komposition anders als die einer sequentiellen Komposition gehandhabt wird. Die von Lodaya und Weil eingeführten Automaten modellieren Nebenläufigkeit durch Verzweigen. Ein verzweigender Automat ist ein endlicher Automat mit drei verschiedenen Typen von Transitionen. Sequentielle Transitionen überführen durch Ausführen eines Ereignisses einen Zustand in einen anderen. Dagegen sind Gabel- und Binde-Transitionen für das Verzweigen verantwortlich. Läufe dieser Automaten werden beschrieben durch sequentiell-parallele posets, kurz sp-posets. Alle Transitionen des Automaten werden in unserem Modell mit Gewichten versehen. Neben dem Nichtdeterminismus und der sequentiellen Komposition wollen wir nun auch die parallele Komposition quantitativ behandeln. Dafür benötigen wir eine Gewichtsstruktur mit einer Addition, einer sequentiellen und einer parallelen Multiplikation. Solch eine Struktur, genannt Bihalbring, besteht damit de facto aus zwei Halbringen mit derselben additiven Struktur. Weiterhin muss die parallele Multiplikation kommutativ sein. Das Verhalten eines gewichteten verzweigenden Automaten ist dann eine Funktion, die jeder sp-poset ein Element eines Bihalbrings zuordnet. Das Hauptresultat charakterisiert das Verhalten dieser Automaten im Sinne von Kleenes und Schützenbergers Sätzen über das Zusammenfallen der Klassen der erkennbaren und der rationalen Sprachen bzw. formalen Potenzreihen. Darüber hinaus untersuchen wir den Abschluss dieser Verhalten unter allen rationalen Operationen und unter dem Hadamard-Produkt. Letztlich diskutieren wir Zusammenhänge zwischen Reihen und Sprachen im Rahmen verzweigender Automaten. / One of the most powerful extensions of classical formal language and automata theory is the consideration of weights or multiplicities from a semiring. This thesis investigates weighted automata over structures incorporating concurrency. Extending work by Lodaya and Weil, we propose a model of weighted branching automata in which the calculation of the weight of a parallel composition is handled differently from the calculation of the weight of a sequential composition. The automata as proposed by Lodaya and Weil model concurrency by branching. A branching automaton is a finite-state device with three different types of transitions. Sequential transitions transform a state into another one by executing an action. In contrast, fork and join transitions are responsible for branching. Executions of such systems can be described by sequential-parallel posets, or sp-posets for short. In the model considered here all kinds of transitions are equipped with weights. Beside non-determinism and sequential composition we would like to deal with the parallel composition in a quantitative way. Therefore, we are in need of a weight structure equipped with addition, a sequential, and, moreover, a parallel multiplication. Such a structure, called a bisemiring, is actually composed of two semirings with the same additive structure. Moreover, the parallel multiplication has to be commutative. Now, the behavior of a weighted branching automaton is a function that associates with every sp-poset an element from the bisemiring. The main result characterizes the behavior of these automata in the spirit of Kleene's and Schützenberger's theorems about the coincidence of recognizable and rational languages, and formal power series, respectively. Moreover, we investigate the closure of behaviors under all rational operations and under Hadamard-product. Finally, we discuss connections between series and languages within our setting.
|
82 |
Applications of Generating FunctionsTseng, Chieh-Mei 26 June 2007 (has links)
Generating functions express a sequence as coefficients arising from a power series in variables. They have many applications in combinatorics and probability. In this paper, we will investigate the important properties of four kinds of generating functions in one variables: ordinary generating unction, exponential generating function, probability generating function and moment generating function. Many examples with applications in combinatorics and probability, will be discussed. Finally, some
well-known contest problems related to generating functions will be addressed.
|
83 |
Formalisations en Coq pour la décision de problèmes en géométrie algébrique réelle / Coq formalisations for deciding problems in real algebraic geometryDjalal, Boris 03 December 2018 (has links)
Un problème de géométrie algébrique réelle s'exprime sous forme d’un système d’équations et d’inéquations polynomiales, dont l’ensemble des solutions est un ensemble semi-algébrique. L'objectif de cette thèse est de montrer comment les algorithmes de ce domaine peuvent être décrits formellement dans le langage du système de preuve Coq.Un premier résultat est la définition formelle et la certification de l’algorithme de transformation de Newton présentée dans la thèse d'A. Bostan. Ce travail fait intervenir non seulement des polynômes, mais également des séries formelles tronquées. Un deuxième résultat est la description d'un type de donnée représentant les ensembles semi-algébriques. Un ensemble semialgébrique est représenté par une formule logique du premier ordre basée sur des comparaisons entre expressions polynomiales multivariées. Pour ce type de données, nous montrons comment obtenir les différentes opérations ensemblistes et allons jusqu'à décrire les fonctions semi-algébriques. Pour toutes ces étapes, nous fournissons des preuves formelles vérifiées à l'aide de Coq. Enfin, nous montrons également comment la continuité des fonctions semi-algébrique peut être décrite, mais sans en fournir une preuve formelle complète. / A real algebraic geometry problem is expressed as a system of polynomial equations and inequalities, and the set of solutions are semi-algebraic sets. The objective of this thesis is to show how the algorithms of this domain can be formally described in the language of the Coq proof system. A first result is the formal definition and certification of the Newton transformation algorithm presented in A. Bostan's thesis. This work involves not only polynomials, but also truncated formal series. A second result is the description of a data type representing semi-algebraic sets. A semi-algebraic set is represented by a first-order logical formula based on comparisons between multivariate polynomial expressions. For this type of data, we show how to obtain the different set operations all the way to describing semialgebraic functions. For all these steps, we provide formal proofs verified with Coq. Finally, we also show how the continuity of semi-algebraic functions can be described, but without providing a fully formalized proof.
|
84 |
Řízení dynamických systémů v reálném čase / Real Time Dynamic System ControlAdamík, Pavel January 2009 (has links)
This thesis focuses on the methodology of controlling dynamic systems in real time. It contents a review of the control theory basis and the elementary base of regulators construction. Then the list of matemathic formulaes follows as well as the math basis for the system simulations using a difeerential count and the problem of difeerential equations solving. Furthermore, there is a systematic approach to the design of general regulator enclosed, using modern simulation techniques. After the results confirmation in the Matlab system, the problematics of transport delay & quantization modelling follow.
|
85 |
Napjatostní aspekty kvazikřehkého lomu / Stress state aspects of quasi-brittle fractureSobek, Jakub January 2015 (has links)
The presented dissertation thesis is focused, as the title suggests, on the analysis of stress state aspects of quasi-brittle fracture. That means the fracture of composite materials with cement matrix (such as concrete, mortar, plaster, etc.), ceramics and other composites. Used methods are based on the theory of multi-parameter linear elastic fracture mechanics, which highlights the importance of considering of several initial terms of Williams power series, approximating the stress and displacement fields in a cracked body, within conducted fracture analyses. Determination of values of coefficients of terms of this series, recalculated into the shape functions serving in most of the conducted stress state analyses, is performed via the so called over-deterministic method. Another tool for the problem solving is nonlinear fracture mechanics, represented primarily by the cohesive crack model, namely the crack band model implemented in the used ATENA software. For the backward reconstruction of stress field in the cracked bodies the application ReFraPro is used. The analytical part deals with various aspects of wedge-splitting test – from the boundary conditions, though various possibilities of nodal selection (required as input variables for the over-deterministic method) up to the advanced (automated) analysis of numerical model. Special chapter includes atypical test specimens designed for adjusting of various levels of constraint of stress and deformation at the propagating crack tip. The study of this geometry and also the subsequent detail analysis reveals important information for real experiments. Backward reconstruction of stress field presents analysis on suitable possibilities of nodal selections as inputs into the procedure of approximation of the crack tip fields and answers the question of the necessity of application of the multi-parameter linear elastic fracture mechanics for certain fracture analyses of specimens from quasi-brittle materials. The th
|
Page generated in 0.0676 seconds