Spelling suggestions: "subject:"prévision""
41 |
Etudes sur le cycle économique. Une approche par les modèles à changements de régime / Studies in Business Cycles Using Markov-switching ModelsRabah-Romdhane, Zohra 12 December 2013 (has links)
L'ampleur de la Grande Récession a suscité un regain d'intérêt pour l'analyse conjoncturelle, plus particulièrement du cycle économique. Notre thèse participe de ce renouveau d'attention pour l'étude des fluctuations économiques.Après une présentation générale des modèles à changements de régime dans le chapitre 1, le chapitre suivant propose une chronologie du cycle des affaires de l'économie française sur la période 1970-2009. Trois méthodes de datation sont utilisées à cette fin : la règle des deux trimestres consécutifs de croissance négative, l'approche non paramétrique de Bry et Boschan (1971) et le modèle markovien à changements de régime de Hamilton (1989). Les résultats montrent que l'existence de ruptures structurelles peut empêcher ce dernier modèle d'identifier correctement les points de retournement cycliques. Cependant, quandces ruptures sont prises en considération, le calendrier des récessions françaises obtenu à l'aide du modèle d'Hamilton coïncide largement avec celui obtenu par les deux autres méthodes. Le chapitre 3 développe une analyse de la non-linéarité dans le modèle à changements de régime en utilisant un ensemble de tests non-standards. Une étude par simulation Monte Carlo révèle qu'un test récemment proposé par Carrasco, Hu et Ploberger (2013) présente une faible puissance pour des processus générateurs des données empiriquement pertinents et ce, lorsqu'on tient compte de l'autocorrélation sous l'hypothèse nulle. En revanche, untest "bootstrap" paramétrique basé sur le rapport des vraisemblances a, pour sa part une puissance plus élevée, ce qui traduit l'existence probable de non-linéarités significatives dans le PIB réel trimestriel de la France et des Etats-Unis. Quand il s'agit de tester un changement de régime en moyenne ou en constante, il est important de tenir compte de l'autocorrélation sous l'hypothèse nulle de linéarité. En effet, dans le cas contraire, un rejet de la linéarité pourrait simplement refléter une mauvaise spécification de la persistance des données, plutôt que d'une non-linéarité inhérente.Le chapitre 4 examine une question importante : la considération de ruptures structurelles dans les séries améliore-t-elle la performance prédictive du modèle markovien relativement à son homologue linéaire ? La démarche adoptée pour y répondre consiste à combiner les prévisions obtenues pour différentes périodes d'estimation. Voici le principal résultat dû à l'application de cette démarche : la prise en compte des données provenant des intervalles de temps précédant les ruptures structurelles et la "Grande Modération" améliore les prévisions basées sur des données tirées exclusivement de ces épisodes. De la sorte, les modèles à changements de régime s'avèrent capables de prédire la probabilité d'événements tels que la Grande Récession, avec plus de précision que ses homologues linéaires.Les conclusions générales synthétisent les principaux acquis de la thèse et évoqueplusieurs perspectives de recherche future. / The severity of the Great Recession has renewed interest in the analysis of business cycles. Our thesis pertains to this revival of attention for the study of cyclical fluctuations. After reviewing the regime-switching models in Chapter one, the following chapter suggests a chronology of the classical business cycle in French economy for the 1970-2009 period. To that end, three dating methodologies are used: the rule of thumb of two consecutive quarters of negative growth, the non-parametric approach of Bry and Boschan (1971), and the Markov-switching approach of Hamilton (1989). The results show that,omitted structural breaks may hinder the Markov-switching approach to capture business-cycle fluctuations. However, when such breaks are allowed for, the timing of the French recessions provided by the Markov-switching model closely matches those derived by the rule-based approaches.Chapter 3 performs a nonlinearity analysis inMarkov-switching modelling using a set of non-standard tests. Monte Carlo analysis reveals that a recently test proposed by Carrasco, Hu, and Ploberger (2013) for Markov switching has low power for empirically-relevant data generating processes when allowing for serial correlation under the null. By contrast, a parametric bootstrap likelihood ratio (LR) test of Markov switching has higher power in the same setting, providing stronger support for nonlinearity in quarterly French and U.S. real GDP. When testing for Markov switching in mean or intercept of an autoregressive process, it is important to allow for serial correlation under the null hypothesis of linearity.Otherwise, a rejection of linearity could merely reflect misspecification of the persistence properties of the data, rather than any inherent nonlinearity.Chapter 4 examines whether controlling for structural breaks improves the forecasting performance of the Markov-switching models, as compared to their linear counterparts.The approach considered to answer this issue is to combined forecasts across different estimation windows. The outcome of applying such an approach shows that, including data from periods preceding structural breaks and particularly the "Great Moderation" improves upon forecasts based on data drawn exclusively from these episodes. Accordingly, Markov-switching models forecast the probability of events such as the Great Recession more accurately than their linear counterparts.The general conclusions summarize the main results of the thesis and, suggest several directions for future research.
|
42 |
Énergie et économie : analyse de la relation consommation d'électricité et production de richesse dans une perspective d'intelligence économique / Economy and Energy : analysis of the Relation between the Electricity Consumption and the Production of Wealth from the Perspective of Competitive IntelligenceSanoussi, Hamadou 16 January 2014 (has links)
L’objet de la thèse consiste à analyser la relation entre la consommation d’électricité et le produit intérieur brut dans une démarche d’intelligence économique. Plus précisément il s’agit d’analyser l’évolution de l’intensité électrique de l’activité économique sur la période de 2003 à 2012 dans les pays développés du G7 et estimer leurs demandes électriques entre 2013 et 2022.Une première partie cherche à explorer les aspects théoriques et pratiques de l’intelligence économique afin de la comprendre et l’appliquer. Une deuxième partie est consacrée à l’analyse empirique. Nous sommes parvenus aux résultats suivants :Premièrement, les courbes d’intensité électrique de deux pays : le Canada et le Etats – Unis dominent celles des autres pays développés, ainsi, les économies de ces deux pays de l’Amérique du nord sont plus énergivores que celles du Japon et des pays de l’Union européenne. Ensuite, l’évolution temporelle de la consommation d’électricité par unité de PIB sur dix années (2003 – 2012) a globalement diminué dans cinq pays: le Canada (-12%) ; le Royaume – Uni (-5, 3%) ; les Etats – Unis (-5%) ; la France (- 4%) ; l’Allemagne (-3%). Par contre, elle s’est détériorée au Japon (+5%) et en Italie (+6%). L’effet de « structure » est négatif dans tout l’échantillon, il traduit donc t une tertiarisation généralisée. Par contre l’effet « d’efficacité électrique » est contrasté. Il est négatif au Canada et aux Etats – Unis et positif dans le reste du groupe.Deuxièmement, les estimations indiquent une croissance généralisée de la demande électrique de 2013 - 2022 dans l’ensemble des pays du G7. Par ailleurs, les coefficients élasticité électricité /PIB sont inférieurs à l’unité dans tous les pays, excepté l’Italie. Cela signifie que la demande d’électricité moyen annuel de ces pays devrait croître moins vite que leurs PIB. Enfin, les principales perspectives de recherche qui apparaissent à l'issue de cette thèse concernent la transposition de notre modèle d’analyse (l’intelligence énergétique) aux autres formes d’énergie à savoir : le pétrole, le gaz, le charbon et les renouvelables .Finalement, ce modèle peut servir d’instrument de politique économique, énergétique et environnementale aux acteurs économiques et politiques (Etats, entreprises, ONG, OIG.). / The subject of this thesis consists of an analysis of the relationship between electricity consumption and Gross Domestic Product from the perspective of Competitive Intelligence. More specifically, it analyzes the evolution of the electrical intensity of economic activity from 2003 to 2012 in the developed countries of the G7, and then estimates their electricity needs from 2013 to 2022. Part one attempt to explore theoretical and practical aspects of Competitive Intelligence to understand and apply them, while part two is devoted to the empirical analysis itself.Concerning the latter, our results are as follows:First, the electrical intensity curves of two countries—Canada and the United States—dominate those of other developed countries; thus, the economies of these two North American countries are more energy-hungry than those of Japan and the countries of the European Union. The overall temporal evolution of electricity consumption per GDP unit over a ten-year period (2003-1012) has gone down in five countries: Canada (-12%), the United Kingdom (-5.3%), the United States (-5%), France (-4%), and Germany (-3%). On the other hand, this evolution has gone the other direction in Japan (+5%) and Italy (+6%). The effect of “structure” is negative across all analyzed data, suggesting general “tertiarisation”. However, the effect of “electricity efficiency” is mixed: it is negative in the United States and Canada, but positive for the rest of group.Second, estimations indicate an overall growth in electricity demand across all G7 countries from 2013 to 2022. Additionally, electrical elasticity coefficients/GDP units are down in all countries except Italy. This tells us that the average annual demand for electricity in these countries should increase at a slower rate than their respective GDPs.Lastly, the primary research perspectives that appear at the beginning of this thesis concern the transposition of our model of analysis (energetic intelligence) onto other forms of energy such as oil, natural gas, coal, and renewable energy sources. In the end, this model could be useful to economic and political authorities (governments, private companies, NGOs, IGOs, etc.) as an instrument of economic, energy, and environmental policy.
|
43 |
Wind energy analysis and change point analysis / Analyse de l'énergie éolienne et analyse des points de changementHaouas, Nabiha 28 February 2015 (has links)
L’énergie éolienne, l’une des énergies renouvelables les plus compétitives, est considérée comme une solution qui remédie aux inconvénients de l’énergie fossile. Pour une meilleure gestion et exploitation de cette énergie, des prévisions de sa production s’avèrent nécessaires. Les méthodes de prévisions utilisées dans la littérature permettent uniquement une prévision de la moyenne annuelle de cette production. Certains travaux récents proposent l’utilisation du Théorème Central Limite (TCL), sous des hypothèses non classiques, pour l’estimation de la production annuelle moyenne de l’énergie éolienne ainsi que sa variance pour une seule turbine. Nous proposons dans cette thèse une extension de ces travaux à un parc éolien par relaxation de l’hypothèse de stationnarité la vitesse du vent et la production d’énergie, en supposant que ces dernières sont saisonnières. Sous cette hypothèse la qualité de la prévision annuelle s’améliore considérablement. Nous proposons aussi de prévoir la production d’énergie éolienne au cours des quatre saisons de l’année. L’utilisation du modèle fractal, nous permet de trouver une division ”naturelle” de la série de la vitesse du vent afin d’affiner l’estimation de la production éolienne en détectant les points de ruptures. Dans les deux derniers chapitres, nous donnons des outils statistiques de la détection des points de ruptures et d’estimation des modèles fractals. / The wind energy, one of the most competitive renewable energies, is considered as a solution which remedies the inconveniences of the fossil energy. For a better management and an exploitation of this energy, forecasts of its production turn out to be necessary. The methods of forecasts used in the literature allow only a forecast of the annual mean of this production. Certain recent works propose the use of the Central Limit Theorem (CLT), under not classic hypotheses, for the estimation of the mean annual production of the wind energy as well as its variance for a single turbine. We propose in this thesis, an extension of these works in a wind farm by relaxation of the hypothesis of stationarity the wind speed and the power production, supposing that the latter are seasonal. Under this hypothesis the quality of the annual forecast improves considerably. We also suggest planning the wind power production during four seasons of the year. The use of the fractal model, allows us to find a "natural" division of the series of the wind speed to refine the estimation of the wind production by detecting abrupt change points. Statistical tools of the change points detection and the estimation of fractal models are presented in the last two chapters.
|
44 |
Trois essais en macroéconomie internationale : le phénomène de préférence pour les titres nationaux et l'énigme de la quantité revisitésCoën, Alain 19 December 2008 (has links) (PDF)
Le premier chapitre étudie les implications d'un modèle à générations imbriquées avec coûts de transaction sur la diversification internationale des portefeuilles. Nos résultats montrent que l'introduction de très petits coûts de transaction permet de reproduire le phénomène de préférence pour les titres financiers nationaux. Le second chapitre est consacré à l'analyse des relations entre le phénomène de préférence pour les titres nationaux, les prévisions des analystes financiers et l'opacité des bénéfices. En utilisant des données de haute qualité sur la composition des portefeuilles et en introduisant un estimateur de moments d'ordre supérieur, nous confirmons, améliorons et généralisons les résultats obtenus récemment par Ahearne et al. (2004). Premièrement, nous montrons que la précision des prévisions des analystes financiers peut contribuer à expliquer le manque de diversification observé dans la composition des portefeuilles américains. Deuxièmement, nous mettons en évidence la relation entre les mesures d'opacité et le phénomène de préférence pour les titres nationaux. Dans le troisième chapitre, nous revisitons l'énigme de la quantité en développant un modèle international de cycles avec management délégué. Dans chaque pays les actionnaires embauchent des managers et leur délèguent les décisions d'embauche et d'investissement. Nous montrons que les managers prennent des décisions intertemporelles dans leur propre intérêt et notamment des décisions d'investissement, qui ont des conséquences importantes sur l'énigme de la quantité. Le modèle permet de répliquer les principaux faits stylisés des fluctuations internationales.
|
45 |
PREVISION HYDROLOGIQUE D'ENSEMBLE ADAPTEE AUX BASSINS A CRUE RAPIDE. Elaboration de prévisions probabilistes de précipitations à 12 et 24 h. Désagrégation horaire conditionnelle pour la modélisation hydrologique. Application à des bassins de la région Cévennes Vivarais.Marty, Renaud 22 January 2010 (has links) (PDF)
Les bassins de la région Cévennes-Vivarais subissent des crues récurrentes, générées par des épisodes de précipitations intenses, généralement en automne. La prévision de ces crues est une préoccupation majeure, nécessitant l'anticipation maximale pour le déclenchement de l'alerte, ainsi que la meilleure estimation possible des débits futurs. Après avoir dressé un panorama des éléments nécessaires à l'élaboration de prévisions hydrologiques, avec leurs incertitudes associées, nous proposons une approche simple et modulaire, adaptée aux bassins versants à réponse rapide (temps au pic de quelques heures). Compte tenu de l'anticipation souhaitée (24-48h), les prévisions quantitatives de précipitations constituent un élément clé de la démarche. Nous décrivons et évaluons deux sources de prévisions disponibles, i.e. la prévision d'ensemble EPS du CEPMMT et la prévision élaborée par adaptation statistique (analogie) au LTHE, puis nous proposons une correction de la seconde qui améliore encore sa fiabilité. Ces prévisions sont ensuite désagrégées des pas 12 ou 24h au pas horaire, via un désagrégateur flexible, générant des scénarios qui respectent les prévisions de précipitations et la structure climatologique horaire des averses. Ces scénarios forcent un modèle hydrologique, simple et robuste, pour élaborer une prévision hydrologique ensembliste. Il ressort alors que les prévisions hydrologiques sont sensiblement améliorées lorsqu'elles intègrent une information sur la répartition infra-journalière des cumuls de précipitations prévus, issue soit des EPS à 6 ou 12h, soit de la méthode des analogues appliquée au pas de 12h, soit d'une combinaison des deux approches.
|
46 |
Prévisibilité des ressources en eau à l'échelle saisonnière en FranceStéphanie, Singla 13 November 2012 (has links) (PDF)
Bien que la prévision saisonnière soit opérationnelle depuis quelques années, son application à l'hydrologie reste encore aujourd'hui moins développée. La prévision saisonnière hydrologique peut pourtant se révéler être un outil utile pour prévoir quelques mois à l'avance les caractéristiques hydrologiques, comme les conditions d'humidité des sols ou les débits des rivières. L'objectif de cette thèse est d'évaluer le potentiel de la chaîne hydrométéorologique Hydro-SF pour prévoir les débits et l'humidité des sols à l'échelle de la saison en France métropolitaine pour la gestion des ressources en eau, et plus particulièrement l'anticipation des sécheresses et des basses eaux. Pour cela, dans un premier temps, les différentes sources de prévisibilité du système hydrologique, ainsi que l'apport de la prévision saisonnière par rapport à une prévision climatologique, sont évaluées sur la période de 1960 à 2005 au printemps (trimestre Mars-Avril-Mai). Ces résultats, qui font l'objet d'un article publié, montrent alors qu'une part importante de la prévisibilité du système hydrologique provient : de la neige pour les bassins de montagne, de la nappe souterraine modélisée dans le bassin de la Seine, et du forçage atmosphérique pour les plaines en France. De plus, plusieurs forçages du modèle de climat ARPEGE sont comparés, et l'apport de la prévision saisonnière par rapport à la climatologie est constaté sur le Nord-Est de la France. Ensuite, compte-tenu de l'importance des forçages tmosphériques dans les résultats obtenus précédemment en zone de plaine, un travail spécifique sur la descente d'échelle des prévisions saisonnières météorologiques est réalisé. Les températures et les précipitations issues des prévisions saisonnières sont désagrégées grâce à une méthode statistique complexe : la classification par type de temps et analogues avec DSCLIM. Cette désagrégation est ainsi comparée à la méthode implémentée jusqu'à présent, basée sur une simple interpolation spatiale et des calculs d'anomalies standardisées. Ce travail sur la descente d'échelle s'effectue toujours sur la période du printemps, et permet ainsi de constater que son apport par rapport à la descente d'échelle simple auparavant utilisée reste mitigé autant pour les paramètres de surface du forçage atmosphérique que pour les variables hydrologiques. Quelques pistes d'études plus poussées sur la descente d'échelle des prévisions saisonnières sont ainsi proposées pour l'avenir. Enfin, des prévisions saisonnières hydrologiques sont réalisées pour la saison de l'été (Juin-Juillet-Août), période où ont lieu les plus fortes tensions sur les différents usages de l'eau du fait des faibles débits et des sécheresses. Ce thème est alors documenté à l'aide de quatre expériences de prévisions avec des dates d'initialisations différentes (de Février à Mai) pour évaluer la chaîne Hydro-SF sur la période de débits estivaux en France, mais aussi pour connaître la date optimale d'initialisation des prévisions et permettre la meilleure anticipation d'éventuelles sécheresses. Les résultats sont intéressants puisqu'ils montrent des scores significatifs à partir des prévisions initialisées au mois d'Avril, surtout pour les bassins en aval des montagnes dont la prévisibilité dépend de la couverture neigeuse, et le bassin de la Seine où l'influence de la nappe modélisée sur les débits des rivières augmente par rapport au printemps. Comme pour le printemps, l'apport de la prévision saisonnière pour le système hydrologique est évalué et montre une valeur ajoutée sur le Sud de la France.
|
47 |
Predicting stock market trends using time-series classification with dynamic neural networksMocanu, Remus 09 1900 (has links)
L’objectif de cette recherche était d’évaluer l’efficacité du paramètre de classification pour prédire suivre les tendances boursières. Les méthodes traditionnelles basées sur la prévision, qui ciblent l’immédiat pas de temps suivant, rencontrent souvent des défis dus à des données non stationnaires, compromettant le modèle précision et stabilité. En revanche, notre approche de classification prédit une évolution plus large du cours des actions avec des mouvements sur plusieurs pas de temps, visant à réduire la non-stationnarité des données. Notre ensemble de données, dérivé de diverses actions du NASDAQ-100 et éclairé par plusieurs indicateurs techniques, a utilisé un mélange d'experts composé d'un mécanisme de déclenchement souple et d'une architecture basée sur les transformateurs. Bien que la méthode principale de cette expérience ne se soit pas révélée être aussi réussie que nous l'avions espéré et vu initialement, la méthodologie avait la capacité de dépasser toutes les lignes de base en termes de performance dans certains cas à quelques époques, en démontrant le niveau le plus bas taux de fausses découvertes tout en ayant un taux de rappel acceptable qui n'est pas zéro. Compte tenu de ces résultats, notre approche encourage non seulement la poursuite des recherches dans cette direction, dans lesquelles un ajustement plus précis du modèle peut être mis en œuvre, mais offre également aux personnes qui investissent avec l'aide de l'apprenstissage automatique un outil différent pour prédire les tendances boursières, en utilisant un cadre de classification et un problème défini différemment de la norme. Il est toutefois important de noter que notre étude est basée sur les données du NASDAQ-100, ce qui limite notre l’applicabilité immédiate du modèle à d’autres marchés boursiers ou à des conditions économiques variables. Les recherches futures pourraient améliorer la performance en intégrant les fondamentaux des entreprises et effectuer une analyse du sentiment sur l'actualité liée aux actions, car notre travail actuel considère uniquement indicateurs techniques et caractéristiques numériques spécifiques aux actions. / The objective of this research was to evaluate the classification setting's efficacy in predicting stock market trends. Traditional forecasting-based methods, which target the immediate next time step, often encounter challenges due to non-stationary data, compromising model accuracy and stability. In contrast, our classification approach predicts broader stock price movements over multiple time steps, aiming to reduce data non-stationarity. Our dataset, derived from various NASDAQ-100 stocks and informed by multiple technical indicators, utilized a Mixture of Experts composed of a soft gating mechanism and a transformer-based architecture. Although the main method of this experiment did not prove to be as successful as we had hoped and seen initially, the methodology had the capability in surpassing all baselines in certain instances at a few epochs, demonstrating the lowest false discovery rate while still having an acceptable recall rate. Given these results, our approach not only encourages further research in this direction, in which further fine-tuning of the model can be implemented, but also offers traders a different tool for predicting stock market trends, using a classification setting and a differently defined problem. It's important to note, however, that our study is based on NASDAQ-100 data, limiting our model's immediate applicability to other stock markets or varying economic conditions. Future research could enhance performance by integrating company fundamentals and conducting sentiment analysis on stock-related news, as our current work solely considers technical indicators and stock-specific numerical features.
|
Page generated in 0.0892 seconds