1 |
Alternative methods to prevent thermal cracking in concrete / Alternativa metoder för att förhindra termisk sprickbildning i betongBarchin, Alexander, Sedighi, Navid January 2019 (has links)
In the construction industry, concrete is the most common material, because of its good properties such as compressive strength and endurance. Concrete is a composition of several different materials where one of the main components is cement. When the hydration process starts, large amount of heat is generated. This leads to temperature rise within the structure. The heat development that takes place can become critical for massive structures such as dams and power plants, where natural cooling is not sufficient. This in combination with internal and external restraint resulting in tensions causing cracks in the structure. By controlling the temperature development, one can reduce the risk of cracking in massive structures. The controlling is divided into pre-cooling and post-cooling. Reduction of the risk for thermal cracking can be done in different ways. Parts of the cement in the concrete can be replaced by a pozzolan material such as silica fume, blast furnace slag or fly ash. Another method is to increase the size of the aggregates which makes it possible to reduce the cement content with remained strength. Cooling the aggregates or use of ice can also be used as a pre-cooling methods. The most common post-cooling method is the installation of cooling pipes. Pipes are installed between the reinforcement bars, in which one then pump through with cold water. This thesis aims at practicing the methods examined by Lagundžija & Thiam (2017). Focusing on those results that proved to be most effective, i.e. the combination of fly ash, ice and large aggregates. The results retrieved during the tests shows a significant increase in the compressive strength when using a combination of fly ash, ice and large aggregates. This gives us the opportunity to reduce the initial cement content. Reducing the cement content is the most effective factor regarding the heat development. When replacing amounts of the water with ice, it can be seen that the initial casting temperature was reduced. Further studies can be done to find the right amount of reduction of the cement that can be done while maintaining the required compressive strength. / Inom byggbranschen är betong det mest förekommande materialet, detta tack vare dess goda egenskaper, som till exempel tryckhållfasthet och uthållighet. Betongen utgörs av flera olika beståndsdelar där den centrala komponenten är cement. När cementets hydratationsprocess startar utvecklas en markant värmeutveckling. Detta leder till temperaturhöjningar inuti den nygjutna konstruktionen. Värmeutvecklingen kan bli kritisk för grövre konstruktioner, som till exempel dammar och kraftverk, där naturlig avkylning inte är tillräcklig. Detta i kombination med att inre och yttre tvång resulterar i dragspänningar som orsakar sprickor i konstruktionen. Genom att styra temperaturutvecklingen kan man minska risken för sprickbildning i massiva konstruktioner. Styrningen delas in i förberedande kylning och efterkylning. Reduktion av risken för termisk sprickbildning kan ske på olika sätt. Delar av cementen i betongen kan ersättas med ett puzzolant material som till exempel silikatstoft, masugnsslagg eller flygaska. En annan metod är att öka ballaststorleken vilket gör det möjligt att minska cementhalten med kvarvarande hållfasthet. Man kan även kyla ballasten alternativt blanda in is i mixen för att sänka den initiala temperaturen. Den mest förekommande efterkylningsmetoden är installation av kylrör. Det monteras in rör mellan armeringsjärnen, vilket man sedan pumpar kallt vatten igenom. Denna uppsats syftar på att praktiskt tillämpa de metoder som undersöktes av Lagundžija & Thiam (2017). Fokus på de resultat som visade sig vara mest effektiva, dvs kombinationen av flygaska, is och grov ballast. Resultaten som uppnåddes under de tester som utfördes visar en markant ökning i tryckhållfastheten vid användning av kombinationen med flygaska, is och grov ballast. Detta ger oss utrymmet att reducera den initiala cementhalten som används. Att minska cementinnehållet är den faktor som ger störst effekt gällande värmeutvecklingen. Fortsatta studier kan göras för att hitta rätt mängd reduktion av cementet som kan göras samtidigt som anvisad tryckhållfasthet bibehålls.
|
2 |
Hårdgörning av Asp / Densification of Aspen WoodJohansson, Martin January 2008 (has links)
Hårdgörning av trä syftar till att göra materialet hårdare. Detta går att åstadkomma genom komprimering, det komprimerade materialet tenderar dock att återgå mot sin ursprungsform då materialet utsätts för fukt om ingen låsning sker. Låsningen kan ske mekaniskt i en treskiktskonstruktion som motverkar träets fuktrörelser. Dessa skivor har dock visat sig vara instabila och tidigare försök har uppvisat deformationer i form av kupning. Denna undersökning syftar till att utreda förutsättningarna för att använda komprimerad asp samt att ta fram underlag för framtagning av en kommersiell produkt. Praktiska tester har genomförts för att studera hårdhet, återfjädring och densitet hos det komprimerade virket. Vidare har treskiktsskivor tagits fram för att testa om det går att få en stabil konstruktion genom att variera tjockleken på spärrskiktet. Även skillnader i acklimatiseringstid och fuktkvotens inverkan för virkets återfjädring har studerats. Resultaten visar på att aspens hårdhet efter komprimering blir i samma nivå som bok och ask, en låg fuktkkvot vid komprimering av materialet ger en låg återfjädring, komprimerat material har en längre acklimatiseringstid till jämviktsfuktkvot och materialet går att låsa tvärs fiberriktningen i en treskiktskonstruktion. / To make wood harder it can be densified. This can be achieved by compression, the compressed material tends to return to the original shape when it is exposed to moisture fluxations and if no form of fixation occurs. The fixation can be done mechanically in a three-layer panel construction which reduce movements in the timber. These panels have been found to be unstable and previous attempts have shown deformations in form of cupping. This study aims to evaluate the conditions for using compressed aspen wood, and to provide a basis for development of a commercial product. Practical tests have been conducted to study hardness, springback and density of the compressed wood. In addition, three-layer panels have been developed to test whether it is possible to have a stable construction by varying the thickness of the buttom layer. Differences in acclimatisation time and the moisture contents effect on the springback has aslo been studied. The results show that the hardness of aspen wood after compression is in equal levels with beech and ashes, a low moisture contet provides a low springback, compressed timber have a longer time for acclimatisation and it is possible to fixate the material in the direction across the grain in a three-layer panel construction.
|
3 |
Hårdgörning av Asp / Densification of Aspen WoodJohansson, Martin January 2008 (has links)
<p>Hårdgörning av trä syftar till att göra materialet hårdare. Detta går att åstadkomma genom komprimering, det komprimerade materialet tenderar dock att återgå mot sin ursprungsform då materialet utsätts för fukt om ingen låsning sker. Låsningen kan ske mekaniskt i en treskiktskonstruktion som motverkar träets fuktrörelser. Dessa skivor har dock visat sig vara instabila och tidigare försök har uppvisat deformationer i form av kupning. Denna undersökning syftar till att utreda förutsättningarna för att använda komprimerad asp samt att ta fram underlag för framtagning av en kommersiell produkt.</p><p>Praktiska tester har genomförts för att studera hårdhet, återfjädring och densitet hos det komprimerade virket. Vidare har treskiktsskivor tagits fram för att testa om det går att få en stabil konstruktion genom att variera tjockleken på spärrskiktet. Även skillnader i acklimatiseringstid och fuktkvotens inverkan för virkets återfjädring har studerats.</p><p>Resultaten visar på att aspens hårdhet efter komprimering blir i samma nivå som bok och ask, en låg fuktkkvot vid komprimering av materialet ger en låg återfjädring, komprimerat material har en längre acklimatiseringstid till jämviktsfuktkvot och materialet går att låsa tvärs fiberriktningen i en treskiktskonstruktion.</p> / <p>To make wood harder it can be densified. This can be achieved by compression, the compressed material tends to return to the original shape when it is exposed to moisture fluxations and if no form of fixation occurs. The fixation can be done mechanically in a three-layer panel construction which reduce movements in the timber. These panels have been found to be unstable and previous attempts have shown deformations in form of cupping. This study aims to evaluate the conditions for using compressed aspen wood, and to provide a basis for development of a commercial product.</p><p>Practical tests have been conducted to study hardness, springback and density of the compressed wood. In addition, three-layer panels have been developed to test whether it is possible to have a stable construction by varying the thickness of the buttom layer. Differences in acclimatisation time and the moisture contents effect on the springback has aslo been studied.</p><p>The results show that the hardness of aspen wood after compression is in equal levels with beech and ashes, a low moisture contet provides a low springback, compressed timber have a longer time for acclimatisation and it is possible to fixate the material in the direction across the grain in a three-layer panel construction.</p>
|
Page generated in 0.0577 seconds