• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 10
  • 10
  • 10
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 54
  • 24
  • 24
  • 24
  • 19
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Massive MIMO, une approche angulaire pour les futurs systèmes multi-utilisateurs aux longueurs d’onde millimétriques / Massive MIMO, an angular approach for future multi-user systems at millimetric wavelenghts

Rozé, Antoine 17 October 2016 (has links)
La densification des réseaux allant de pair avec le déploiement de petites cellules, les systèmes Massive MIMO disposent de caractéristiques prometteuses pour accroître la capacité des réseaux au travers des techniques de formation de faisceau, appelées beamforming. Les transmissions aux longueurs d’onde millimétriques (mmWave) sont, quant à elle, très convoitées car, non seulement les bandes passantes exploitables sont extrêmement larges, mais le canal de propagation est principalement Line-of-Sight (LOS), ce qui correspond à la visibilité directe entre le terminal et la station de base. L’attrait que peut avoir un système multi-utilisateurs Massive MIMO à de telles fréquences provient, en partie, du faible encombrement du réseau d’antennes, mais aussi du fort gain de beamforming dont il permet de bénéficier afin de contrecarrer les fortes pertes en espace libre que subissent les signaux à de telles longueurs d’onde. Dans un premier temps nous montrons comment l’augmentation de la fréquence porteuse impacte les performances de deux précodeurs connus. Au travers d’une modélisation déterministe et géométrique du canal, on simule un scénario Outdoor à faible mobilité et à forte densité de population en mettant en avant l’influence du trajet direct et des trajets réfléchis sur les performances. Plus précisément on prouve qu’en configuration purement LOS, le précodeur Zero-Forcing est beaucoup plus sensible à la structure du réseau d’antennes, et à la position des utilisateurs, que le Conjugate Beamforming (aussi connu sous le nom de retournement temporel). On introduit alors un précodeur basé uniquement sur la position angulaire des utilisateurs dans la cellule en référence à la station de base, puis l’on compare ses performances à celles des deux autres. La robustesse d’une telle implémentation à une erreur d’estimation d’angles est illustrée pour un scénario spécifique afin de souligner la pertinence des solutions angulaires, une direction étant plus facile à estimer et son évolution dans le temps plus prévisible.On décrit dans un second temps comment la connaissance des positions angulaires des utilisateurs permet d’accroître la capacité de la cellule par le biais d’un procédé d’allocation de puissance reposant sur une évaluation de l’interférence que chaque faisceau génère sur les autres. On prouve à l’aide de simulations que l’obtention de cette interférence, même exprimée sous une forme très simplifiée, permet d’améliorer très nettement la capacité totale de la cellule. Enfin, nous introduisons les systèmes Hybrides Numériques et Analogiques ayant récemment été proposés afin de permettre à une station de base de conserver un large nombre d’antennes, nécessaire à l’obtention d’un fort gain de beamforming, tout en réduisant le nombre de chaînes Radiofréquences (RF). On commence par décrire une solution permettant à un terminal de former un faisceau dont la direction s’adapte à sa propre inclinaison, en temps réel, pour toujours viser la station de base. On compare ensuite les performances de tels récepteurs, associés à des stations de base Massive MIMO, avec celles d’une solution hybride connue, le nombre de chaînes RF des deux systèmes étant identiques. Principalement, la flexibilité et la capacité d’évolution de ces systèmes est mise en avant, ces deux atouts étant particulièrement pertinents pour de nombreux environnements à forte densité de population. / As wireless communication networks are driven toward densification with small cell deployments, massive MIMO technology shows great promises to boost capacity through beamforming techniques. It is also well known that millimeter-Wave systems are going to be an important part of future dense network solutions because, not only do they offer high bandwidth, but channel is mostly Line-of-Sight (LOS). The attractiveness of using a multi-user Massive MIMO system at these frequencies comes partly from the reduced size of a many antenna base station, but also from the high beamforming gains they provide, which is highly suited to combat the high path losses experienced at such small wavelengths. First we show how raising the carrier frequency impacts the performance of some linear precoders widely used in Massive MIMO systems. By means of a geometrical deterministic channel model, we simulate a dense outdoor scenario and highlight the influence of the direct and multi-paths components. More importantly we prove that, in a Line-of-Sight (LOS) configuration, the discriminating skill of the well-known Zero Forcing precoder is much more sensitive to the antenna array structure and the user location than the Conjugate Beamforming precoder, also known as Time-Reversal. A precoder based on the knowledge of the angular position of all users is then introduced and compared to the other precoders based on channel response knowledge. Its robustness against angle estimation error is illustrated for a specific scenario and serves to back up the importance such a solution represents for future dense 5G networks, angular information being easier to estimate, and more so to keep track of.After that, we show how the knowledge of Directions of Arrival can be used to increase the sum capacity of a multi-user transmission through leakage based power allocation. This allocation uses an estimation of inter-user interference, referred to as Leakage, and we show through simulations how this factor, even under its most simplified form, improves realistic transmissions. Moreover this solution is not iterative and is extremely easy to implement which makes it particularly well suited for high deployment scenarios.Finally we introduce the Hybrid Analog and Digital Beamforming systems that have recently emerged to retain a high number of antennas without as many Radio Frequency (RF) chains, in order to keep high beamforming gains while lowering the complexity of conceiving many antenna base stations. We first describe a user equipment solution allowing the system to form a beam that adapts to its own movement so that it always focuses its energy toward the base station, using an on-board analog array and an Inertial Measurement Unit. Then we compare the performance of a known Hybrid solution with a fully digital Massive MIMO system, having as many RF chains as the Hybrid system, but serving user equipments with beamforming abilities. Mostly we emphasize how such a system allows for great flexibility and evolution, both traits being invaluable features in many future networks.
52

Coordination inside centralized radio access networks with limited fronthaul capacity / Coordination dans les réseaux d'accès radio centralidés avec liaisons de transport à débit limité

Duan, Jialong 27 November 2017 (has links)
Le réseau d'accès radio centralisé (C-RAN) peut fortement augmenter la capacité des réseaux mobiles. Cependant, la faisabilité de C-RAN est limitée par le débit considérable engendré sur les liaisons de transport, appelées également fronthaul. L'objectif de cette thèse est d'améliorer les performances de C-RAN tout en considérant les limitations du débit sur le frontaul, l'allocation de ressources et l'ordonnancement des utilisateurs.Nous étudions d'abord les séparations fonctionnelles possibles entre les têtes radios distantes (RRH) et les unités de traitement en bande de base (BBU) sur la liaison montante pour réduire le débit de transmission sur le fronthaul : certaines fonctions de couche basse sont déplacées du BBU vers les RRH. Nous fournissons une analyse quantitative des améliorations de performances ainsi obtenues.Nous nous concentrons ensuite sur la transmission coordonnée Multi-point (CoMP) sur le lien descendant. CoMP peut améliorer l'efficacité spectrale mais nécessite une coordination inter-cellule, ce qui est possible uniquement si une capacité fronthaul élevée est disponible. Nous comparons des stratégies de transmission avec et sans coordination inter-cellule. Les résultats de simulation montrent que CoMP doit être préféré pour les utilisateurs situés en bordure de cellule et lorsque la capacité du fronthaul est élevée. Nous en déduisons une stratégie hybride pour laquelle Les utilisateurs sont divisés en deux sous-ensembles en fonction de la puissance du signal. Les utilisateurs situés dans les zones centrales sont servis par un seul RRH avec une coordination simple et ceux en bordure de cellule sont servis en mode CoMP. Cette stratégie hybride constitue un bon compromis entre les débits offerts aux utilisateurs et les débits sur le fronthaul. / Centralized/Cloud Radio Access Network (C-RAN) is a promising mobile network architecture, which can potentially increase the capacity of mobile networks while reducing operators¿ cost and energy consumption. However, the feasibility of C-RAN is limited by the large bit rate requirement in the fronthaul. The objective of this thesis is to improve C-RAN performance while considering fronthaul throughput reduction, fronthaul capacity allocation and users scheduling.We first investigate new functional split architectures between Remote Radio Heads (RRHs) and Baseband Units (BBU) on the uplink to reduce the transmission throughput in fronthaul. Some low layer functions are moved from the BBU to RRHs and a quantitative analysis is provided to illustrate the performance gains. We then focus on Coordinated Multi-point (CoMP) transmissions on the downlink. CoMP can improve spectral efficiency but needs tight coordination between different cells, which is facilitated by C-RAN only if high fronthaul capacity is available. We compare different transmission strategies without and with multi-cell coordination. Simulation results show that CoMP should be preferred for users located in cell edge areas and when fronthaul capacity is high. We propose a hybrid transmission strategy where users are divided into two parts based on statistical Channel State Informations (CSIs). The users located in cell center areas are served by one transmission point with simple coordinated scheduling and those located in cell edge areas are served with CoMP joint transmission. This proposed hybrid transmission strategy offers a good trade-off between users¿ transmission rates and fronthaul capacity cost.
53

Evaluation of precoding and feedback quantization schemes for multiuser communications systems

Domene Oltra, Fernando 13 February 2015 (has links)
Los sistemas de comunicaciones con múltiples antenas o sistemas MIMO (multiple-input multiple-output) se presentan como una de las tecnologías más prometedoras en el campo de las comunicaciones inalámbricas, ya que permiten aprovechar la dimensión espacial además de las dimensiones de frecuencia y tiempo. De esta forma, se pueden obtener tasas de transmisión más elevadas usando el mismo ancho de banda, que es un recurso escaso, y manteniendo una potencia de transmisión baja, lo cual es crucial para dispositivos alimentados por baterías. Por estas razones, la tecnología MIMO ha sido adoptada en muchos estándares como Long-Term Evolution (LTE), LTE Advanced y Worldwide Interoperability for Microwave Access (WiMAX). Las técnicas MIMO también pueden se pueden emplear en un escenario multiusuario, donde varios usuarios comparten la dimensión espacial provocando una interferencia multiusuario. A través de la precodificación y del uso de múltiples antenas en el transmisor, la señal de los diferentes usuarios puede ser multiplexada espacialmente de forma que se mitigue la interferencia multiusuario incluso con usuarios de una sola antena. Estos sistemas, conocidos como sistemas MU-MISO (multiuser multiple-input single-output), han atraído mucho la atención en los últimos años ya que permiten el desarrollo de terminales pequeños y baratos, manteniendo así el equipamiento más caro en el transmisor. Sin embargo, estos beneficios conllevan un sistema más complejo. Por una parte, el multiplexado espacial requiere una carga de procesado considerable, que depende del tamaño del sistema: número de antenas transmisoras, número de receptores y ancho de banda. Por otra parte, las técnicas MIMO requieren un conocimiento del canal en transmisión o CSIT (channel state information at the transmitter) preciso. En sistemas con duplexación por división en frecuencia o FDD (frequency-division duplex), la información de canal o CSI (channel state information) debe ser estimada en el receptor y proporcionada al transmisor a través del enlace de realimentación, reduciendo así la eficiencia del sistema. Por lo tanto, esta tesis se centra en la mejora de la eficiencia de las implementaciones de precodificación y en el rendimiento de los esquemas de realimentación de canal en sistemas MU-MISO. El problema de la precodificación se aborda en primer lugar. Se ha llevado a cabo un análisis de algunas de las técnicas de precodificación más usadas, prestando especial atención a su rendimiento y a su complejidad. Este análisis revela que aquellas técnicas que hacen uso de lattice reduction (LR) obtienen un mejor rendimiento. Sin embargo, la complejidad computacional de la técnica LR dificulta su implementación en la práctica. El análisis también revela que las técnicas zero-forcing (ZF), Tomlinson-Harashima precoding (THP) y LR-THP son las técnicas más adecuadas para cubrir todo el rango de rendimiento y complejidad computacional. Asimismo, se ha llevado a cabo un análisis de estas técnicas bajo CSIT imperfecto. Dicho análisis ha demostrado que LR es una técnica muy importante también para el caso de CSIT imperfecto. A continuación, se han presentado implementaciones paralelas de técnicas de precodificación sobre unidades de procesamiento gráfico o GPUs (graphic processing unit), comparándose con implementaciones en unidades de procesamiento central o CPU (central processing unit). Dado que las implementaciones de THP y LR-THP han demostrado ser las que mejor se adaptan a la arquitectura de la GPU y ya que tienen muchas operaciones comunes, se ha propuesto una implementación sobre GPU de un esquema THP reconfigurable combinado con LR. La reconfigurabilidad de las GPUs permite desactivar la etapa de LR cuando los requisitos de los usuarios están garantizados por el esquema THP, combinando complejidad computacional con rendimiento. Aunque esta implementación consigue una mejora significativa respecto a la implementación sobre CPU, su paralelismo viene limitado por la naturaleza secuencial del problema LR. Por ello, se han propuesto varias estrategias para la paralelización del problema LR que han sido evaluadas en distintas plataformas: CPU multi-núcleo, GPU y plataforma heterogénea que consiste en CPU+GPU. Los resultados revelan que la arquitectura GPU permite reducir considerablemente el tiempo de computación del problema LR, especialmente en la plataforma heterogénea. La segunda parte de la tesis trata el problema de la realimentación de canal en sistemas FDD. En estos sistemas, los receptores normalmente proporcionan una versión cuantificada del canal a través del canal de realimentación. Con el objetivo de mantener una eficiencia alta, el canal debe ser cuantificado con los mínimos bits posibles. En primer lugar, se explora el uso de la correlación en frecuencia para reducir el volumen de información de realimentación. Se han presentado dos esquemas diferentes basados en cuantificación vectorial o VQ (vector quantization) y en la transformación Karhunen-Loève, respectivamente, y se han comparado con esquemas existentes en términos de rendimiento y complejidad computacional. Los resultados muestran que ambas técnicas son capaces de reducir significativamente el volumen de información de realimentación aprovechando la correlación en frecuencia. Finalmente, la correlación espacial también se aprovecha para reducir la información de realimentación. Se ha presentado una caracterización espacial estadística del modelo de canal SCM (spatial channel model) del 3GPP (3rd Generation Partnership Project) para un entorno de alta correlación. Basado en esta caracterización, se propone un esquema de cuantificación de canal para entornos de alta correlación. Con el objetivo de obtener una caracterización para alta y baja correlación, se considera un modelo de correlación más sencillo como el modelo de Kronecker. Basado en esta caracterización, se proponen dos esquemas de cuantificación y se evalúan con un modelo de canal realista como el SCM. Los resultados muestran que ambos esquemas son capaces de reducir la información de realimentación en ambientes con correlación alta y moderada. / Multiple-input multiple-output (MIMO) communication systems have emerged as one of the most promising technologies in the field of wireless communications, allowing to exploit the spatial dimension as well as the time and frequency dimensions. Thus, higher rates can be obtained by using the same bandwidth, which is a scarce resource, and keeping a low transmit power, which is crucial in battery-operated devices. For these reasons, MIMO technologies have been adopted by many standards such as Long-Term Evolution (LTE), LTE advanced (LTE-A) and Worldwide Interoperability for Microwave Access (WiMAX). MIMO techniques can also be used in a multiuser scenario, where several usersshare the spatial dimension causing multiuser interference. By means of precoding and the use of multiple antennas at the transmitter, the signal of the different users can be spatially multiplexed so that multiuser interference is mitigated even for single-antenna users. These systems, known as multiuser multiple-input singular-output (MU-MISO) systems, have attracted much attention in recent years since they allow the development of small and inexpensive terminals, keeping the most expensive hardware at the transmitter. However, these benefits come at the cost of having a more complex system. On the one hand, spatial multiplexing requires a considerable processing load that depends on the size of the system: number of transmit antennas, number of receivers and bandwidth. On the other hand, MIMO techniques require accurate channel state information at the transmitter (CSIT). In frequency-division duplex (FDD) systems, channel state information (CSI) has to be estimated at the receiver and provided to the transmitter through the feedback link, hence reducing the efficiency of the system. Therefore, this thesis is primarily focused on improving the efficiency of precoding implementations and the performance of feedback schemes in MU-MISO systems. First, the problem of precoding is addressed. An analysis of some of the most utilized precoding techniques is conducted, paying special attention to their performance and computational complexity. The analysis reveals that those techniques that make use of lattice reduction (LR) achieve the best performance. However, the computational complexity of LR makes its implementation difficult for practical systems. The analysis reveals that zero-forcing (ZF), Tomlinson-Harashima precoding (THP) and lattice reduction Tomlinson-Harashima precoding (LR-THP) are the most suitable techniques for covering the entire range of performance and computational complexity. An analysis of these techniques with imperfect CSIT has also been performed. In this analysis, LR has proven to be a key technique also when imperfect CSIT is available. Next, parallel implementations of the precoding techniques on a graphic processing unit (GPU) are presented and compared to implementations that use a central processing unit (CPU). Since the implementations of THP and LR-THP have shown to best fit the GPU architecture and since they also share many operations, a GPU implementation of a reconfigurable THP scheme combined with LR has been proposed. The reconfigurable nature of GPUs allows gating the LR stage off when the user requirements are sufficiently guaranteed by the THP scheme, trading computational cost and performance. Although this implementation achieves a significant speed-up compared to its CPU implementation, its parallelism is limited by the sequential nature of LR. Therefore, several strategies for the parallelization of the LR problem are proposed and evaluated on different platforms: multicore CPU, GPU and a heterogeneous platform consisting of CPU+GPU. Results reveal that a GPU architecture allows a considerable reduction of the computational time of the LR problem, especially in the heterogeneous platform. The second part of this thesis addresses the problem of feedback in FDD systems. In these systems, a quantized version of the channel is usually provided by the receivers through the feedback link. In order to keep a high efficiency, the channel must be quantized using as few bits as possible. First, the use of the frequency correlation to reduce the feedback information is explored. Two different schemes based on vector quantization (VQ) and the Karhunen-Loève (KL) transform, respectively, are presented and compared with existing schemes in terms of performance and complexity. Results show that both techniques are able to significantly reduce the feedback overhead by taking advantage of the frequency correlation. Finally, the spatial correlation is leveraged to reduce the feedback information. A spatial statistical characterization of the spatial channel model (SCM) from the 3rd Generation Partnership Project (3GPP) for a highly correlated environment is presented. Based on this characterization, a channel quantization scheme for highly correlated environments is proposed. In order to obtain a statistical characterization for both high and low correlations, a simpler model such as the Kronecker correlation model is considered. Based on this characterization, two quantization schemes have been presented and evaluated using a realistic channel model such as the SCM. Results show that both schemes are able to reduce the feedback overhead in highly and moderately correlated scenarios. / Domene Oltra, F. (2015). Evaluation of precoding and feedback quantization schemes for multiuser communications systems [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/46971 / Alfresco
54

[en] PRECODING, COMBINING AND POWER ALLOCATION TECHNIQUES FOR RATE-SPLITTING-BASED MULTIUSER MIMO SYSTEMS / [pt] TÉCNICAS DE PRÉ-CODIFICAÇÃO, COMBINAÇÃO E ALOCAÇÃO DE POTÊNCIAS PARA SISTEMAS MIMO MULTIUSUÁRIO COM MÚLTIPLO ACESSO POR PARTIÇÃO DE TAXA

ANDRÉ ROBERT FLORES MANRIQUE 06 July 2021 (has links)
[pt] Os sistemas de múltiplas antenas empregam diferentes técnicas de processamento de sinais em ambos extremos do sistema de comunicações para se beneficiar das múltiplas dimensões espaciais e transmitir para diversos usuarios usando os mesmos recursos de tempo e frequência. Desta forma, uma alta eficiência espectral pode ser atingida sem precisar de largura de banda extra. No entanto, o desempenho depende de uma estimativa do canal altamente precisa do lado do transmissor, a qual é denominada channel state information at the transmitter (CSIT). Se o valor estimado do canal for perfeito, o sistema consegue suprimir a interferência multiusuário (MUI), que é a principal responsável pela degradação do desempenho do sistema. Porém, supor uma estimativa perfeita é bastante otimista pois sistemas reais introduzem incerteza devido ao processo de estimação, a erros de quantização e a retardos próprios dos sistemas. Nesse contexto, a técnica conhecida como divisão de taxas ou rate splitting (RS) surge como uma ferramenta promissora para lidar com as imperfeições na estimativa do canal. RS divide os dados em um fluxo comum e vários fluxos privados e então sobrepõe o fluxo comum no topo dos fluxos privados. Esta tese propõe várias técnicas de processamento que aumentam ainda mais os benefícios dos sistemas RS. Neste trabalho, consideramos o downlink (DL) de um sistema de comunicações sem fio onde o transmissor envia mensagens independentes para cada usuário. A métrica usada para avaliar o desempenho do sistema é a soma das taxas ergódica (ESR). Diferente dos trabalhos convencionais em RS, consideramos que os terminais dos usuários estão equipados com múltiplas antenas. Isso nos permite implementar na recepção combinadores de fluxos que aumentem a taxa do fluxo comum. Aumentar esta taxa é um dos grandes problemas dos sistemas RS, uma vez que a taxa comum é limitada pelo pior usuário o que pode degradar fortemente o desempenho do sistema. Assim, três combinadores de fluxos diferentes são propostos e as expressões analíticas para calcular a soma das taxas são apresentadas. Os combinadores são derivados empregando-se os critérios Min-Max, MRC e MMSE. O critério Min-Max seleciona para cada usuário a melhor antena para decodificar o símbolo comum. O MRC visa maximizar o SNR ao decodificar o símbolo comum. Finalmente, o critério MMSE minimiza o quadrado da diferença entre o símbolo comum e o sinal recebido. Até o momento, RS foi considerado com precodificadores lineares. Devido a isto, neste trabalho investigamos o desempenho do RS com precodificadores não lineares. Para este fim, usamos diferentes tipos de precodificador Tomlinson-Harashima (THP) baseados nos precodificadores lineares ZF e MMSE. Em seguida, propomos um algoritmo multi-branch (MB) adequado para o RS-THP proposto. Este algoritmo cria vários padrões de transmissão e seleciona o melhor padrão para efetuar a transmissão. Esta técnica de préprocessamento aumentam ainda mais a soma das taxas obtida, uma vez que o desempenho do THP depende da ordem dos símbolos, porém também aumenta a complexidade computacional. Expressões analíticas para calcular a soma das taxas das técnicas propostas são derivadas por meio de análises estatísticas dos principais parâmetros. Finalmente, propomos quatro técnicas adaptativas diferentes de alocação de potência, as quais se caracterizam por sua baixa complexidade computacional. Duas destas técnicas são projetadas para sistemas SDMA convencionais, enquanto as outras duas são projetadas para sistemas RS. Um dos principais objetivos dos algoritmos propostos é realizar uma alocação de potência robusta capaz de lidar com os efeitos prejudicias das imperfeições no CSIT. É importante mencionar que a alocação de potência em sistemas RS é uma das tarefas mais importantes e deve ser realizada com extremo cuidado. Se a potência não for alocada corretamente, o desempenho do sistema RS será bastante degradado e as arquiteturas convencionais, como SDMA e NOMA, poderão ter um desempenho melhor. No entanto, a alocação de potência em sistemas RS precisa da solução de problemas complexos de otimização, o que aumenta o tempo gasto no processamento do sinal. Os algoritmos adaptativos propostos reduzem a complexidade computacional e são uma solução atrativa para aplicações práticas em sistemas de grande porte. / [en] Multiple-antenna systems employ different signal processing techniques at both ends of the communication to exploit the spatial dimensions and serve multiple users simultaneously in the same time-frequency domain. In this way, high spectral efficiency can be reached without the need of extra bandwidth. However, such gain depends on a highly accurate channel state information at the transmitter (CSIT). Perfect CSIT allows the system to suppress the multi user interference (MUI), which is the main responsible of the performance degradation. Nonetheless, assuming perfect CSIT is rather optimistic since the estimation procedure, quantization errors and delays of real system lead to CSIT uncertainties. In this context, rate splitting (RS) has arisen as a promising technique to deal with CSIT imperfections. Basically, RS splits the data into a common stream and private streams and then superimposes the common stream on top of the private streams. This thesis proposes several processing techniques which further enhance the benefits of RS systems. We consider the downlink (DL) of a wireless communications system, where the transmitter sends independent messages to each receiver. The ergodic sum rate (ESR) is adopted as the main metric to evaluate the performance of the system. Different from conventional RS works, we consider that the users are equipped with multiple antennas. This allows us to implement stream combiners for the common stream at the receivers. The implementations of the stream combiners improves the common rate performance, which is a major problem of RS systems since the common rate is limited by the performance of the worst user and can be heavily degraded. In this work, three different stream combiners are proposed along with analytical expressions to compute their sum rate performance. Specifically, the combiners are derived employing the min-max, maximum ratio combining (MRC), and minimum mean square error (MMSE) criteria. The min-max criterion selects at each user the best receive antenna to decode the common symbol. The MRC criterion aims at maximizing the SNR when decoding the common symbol. Finally, the MMSE criterion minimizes the squared difference between the common symbol and the received signal. So far, RS has been predominantly considered with channel inversiontype linear precoders. Therefore, this motivates us to investigate the performance of RS with non-linear precoders. For this purpose, we employ different architectures of the Tomlinson-Harashima precoder (THP) which are based on the zero-forcing (ZF) and MMSE precoders. We then propose a multi-branch (MB) algorithm for the proposed RS-THP, which creates several transmit patterns and selects the best for transmission. This pre-processing techniques further enhance the sum rate obtained since the performance of THP is dependent on the symbol ordering but also increases the computational complexity. Analytical expressions to calculate the sum rate of the proposed techniques are derived through statistical evaluation of key parameters. Finally, we propose four different adaptive power allocation techniques, which are characterized by their low computational complexity. Two of them are designed for conventional SDMA systems whereas the other two are intended for RS systems. One major objective of the proposed algorithms is to perform robust power allocation capable of dealing with the detrimental effects of imperfect CSIT. It is important to mention that power allocation in RS systems is one of the critical tasks that should be carefully performed. If the power is not properly allocated the performance of RS systems is heavily degraded and conventional architectures such as SDMA and NOMA could perform better. However, RS rely on solving complex optimization problems to perform power allocation, increasing the time and effort dedicated to signal processing. The proposed adaptive power allocation algorithms reduce the computational complexity and are an attractive solution for practical applications with large-scale systems.
55

Distributed Coordination in Multiantenna Cellular Networks

Brandt, Rasmus January 2016 (has links)
Wireless communications are important in our highly connected world. The amount of data being transferred in cellular networks is steadily growing, and consequently more capacity is needed. This thesis considers the problem of downlink capacity improvement from the perspective of multicell coordination. By employing multiple antennas at the transmitters and receivers of a multicell network, the inherent spatial selectivity of the users can be exploited in order to increase the capacity through linear precoding and receive filtering. For the coordination between cells, distributed algorithms are often sought due to their low implementation complexity and robustness. In this context, the thesis considers two problem domains: base station clustering and coordinated precoding. Base station clustering corresponds to grouping the cell base stations into disjoint clusters in order to reduce the coordination overhead. This is needed in intermediate-sized to large networks, where the overhead otherwise would be overwhelmingly high. Two solution methods for the clustering problem are proposed: an optimal centralized method, as well as a heuristic distributed method. The optimal method applies to a family of throughput models and exploits the structure of the model to find bounds that can be used to focus the search for the optimal clustering into promising territories. The distributed method instead uses notions from coalitional game theory, where the base stations are modelled as rational and intelligent players in a game. By letting the players make individual deviations that benefit them in the game, i.e.\@ switching clusters, a distributed coalition formation algorithm is obtained. Coordinated precoding is the act of finding the linear precoders and receive filters that maximize the network performance, given a base station clustering. Four specific challenges are studied in this problem domain. First, coordinated precoding under intercluster interference is considered. The channels of the intercluster links are not explicitly estimated due to overhead reasons, and these links thus lead to intercluster interference. By exploiting the known statistics of the intercluster channels, a robust and distributed coordinated precoding algorithm is developed. Second, coordinated precoding under imperfect channel state information is considered. Relying on the channel reciprocity under time-division duplex operation, a distributed estimation framework is proposed. Given the estimated channels, a robust and distributed coordinated precoding algorithm is then derived. Third, coordinated precoding under imperfect radio hardware is considered. By modelling the radio frequency distortion noises, a distributed coordinated precoding method that accounts for the imperfections is proposed. Fourth, joint coordinated precoding and discrete rate selection is considered. By bounding and linearizing an originally intractable optimization problem, a heuristic algorithm is derived which selects the transmit rate from a finite set and simultaneously forms the linear precoders and receive filters. / Trådlös kommunikation är ett viktigt verktyg i dagens ständigt uppkopplade värld. Datamängden som överförs i mobilnätverk ökar stadigt och därmed behovet av mer kapacitet. För att öka kapaciteten i nedlänken så utvecklar denna avhandling nya metoder för koordinering av multicellnätverk. Med flerantenniga sändare och mottagare så kan den spatiala selektiviteten hos mottagarna utnyttjas för att separera dem, vilket ger en ökad kapacitet. För denna koordinering är distribuerade algoritmer ofta att föredra eftersom de är robusta och har låg implementeringskomplexitet. I detta sammanhang undersöker denna avhandling två problemområden: basstationsgruppering och samordnad förkodning. Basstationsgruppering innebär att basstationerna delas in i disjunkta grupper, vilket minskar overheadkostnaden för samordningen. Detta är framför allt nödvändigt i medelstora till stora nätverk, eftersom overheadkostnaden för koordineringen av dessa annars skulle bli för stor. Två lösningar för basstationsgruppering presenteras: dels en optimal och centraliserad metod samt dels en heuristisk och distribuerad metod. Den optimala och centraliserade metoden kan hantera en familj av modeller för den totala datatakten och utnyttjar strukturen i modellen för att fokusera sökandet efter den optimala grupperingen mot lovande områden. Den heuristiska och distribuerade metoden bygger på spelteori för koalitioner och modellerar basstationerna som rationella och intelligenta spelare i ett spel. En distribuerad algoritm för koalitionsformering härleds genom att låta spelarna göra individuella förflyttningar, dvs. byta grupp, när det gynnar dem under spelets regler. Vid samordnad förkodning använder de flerantenniga sändarna och mottagarna linjära förkodare och mottagningsfilter för att maximera nätverkets prestanda. Inom detta problemområde undersöks fyra olika specifika problem. Först undersöks problemet när det finns störningar mellan basstationsgrupperna. För att hålla nere mängden overhead så skattas inte kanalerna mellan grupperna, vilket ger upphov till störningar hos mottagarna. Genom att utnyttja den kända statistiska informationen för dessa okända kanaler kan en robust och distribuerade samordningsmetod för förkodningen utvecklas. Därnäst undersöks problemet då kanalkännedomen är bristfällig i allmänhet. Reciprociteten som uppstår vid tidsdelningsduplexning utnyttjas och flera distribuerade skattningsmetoder härleds. Givet den skattade kanalkännedomen föreslås en robust metod för samordnad förkodning. Därnäst undersöks problemet med samordnad förkodning då radiohårdvaran är bristfällig. En modell för det distortionsbrus som skapas av den bristfälliga hårdvaran används för att föreslå en robust distribuerad metod för samordnad förkodning för detta scenario. Slutligen undersöks valet av diskret datatakt med simultan samordnad förkodning. En heuristisk algoritm utvecklas som löser ett begränsat optimeringsproblem. Algoritmen väljer sänddatatakten från en ändlig mängd och bestämmer simultant de linjära förkodarna och mottagningsfiltrena. / <p>QC 20160407</p>
56

Optimisation d'un précodeur MIMO-OFDM dans le contexte de l'estimation aveugle et semi-aveugle du canal de communication / Optimization of a MIMO -OFDM precoder in the context of blind estimation and semi-blind of the communication channel

Chehade, Tarek 03 December 2015 (has links)
L’estimation de canal joue un rôle important dans les communications mobiles sans fil et en particulier dans les systèmes multi-antennes MIMO. Contrairement aux techniques classiques d’estimation de canal basées sur des séquences d’apprentissage ou des symboles pilotes, les techniques aveugles ne nécessitent aucune insertion de symboles d'apprentissage et permettent d'augmenter le débit utile. Les principales difficultés des techniques aveugles résident dans l’ambiguïté présente sur les estimées. Les techniques d’estimation semi-aveugles, basées sur les mêmes méthodes que l’estimation aveugle, sont plus robustes. Elles exploitent l’information aveugle ainsi que l’information provenant d’un nombre réduit de symboles d’apprentissage. Cette estimation du canal de communication est très utile dans les systèmes MIMO et permet de précoder le signal MIMO-OFDM en lui appliquant un pré-mélange permettant d'améliorer les performances. De nombreux types de précodeurs existent et leurs performances varient en fonction des critères d'optimisation retenus (Water-Filling, MMSE, Equal Error, max-SNR, max-d min …), mais aussi avec la qualité de l'estimation du canal de communication. Nous étudions dans cette thèse l’impact de l’utilisation de l’information du canal (CSI) provenant des méthodes d’estimation aveugle et semi-aveugle, dans l’application des précodeurs linéaires MIMO. Nous présentons également une étude statistique de l’erreur d’estimation provenant de ces méthodes. L’optimisation de ces précodeurs nous mène par la suite à exploiter un autre procédé permettant l’amélioration des performances : les codes correcteurs d’erreur. Nous nous intéressons particulièrement aux codes LDPC non-binaires et leur association avec les précodeurs linéaires MIMO. Nous montrons qu’une adaptation est possible et s’avère bénéfique dans certains cas. L’optimisation de cette association nous a permis de proposer un nouveau précodeur basé sur la maximisation de l’information mutuelle, robuste et plus performant. / Channel estimation plays an important role in wireless mobile communications, especially in MIMO systems. Unlike conventional channel estimation techniques based on training sequences or pilot symbols, blind techniques does not require the insertion of training symbols and allow higher throughput. The main problems of the blind lies in the ambiguity over the estimated channel. Based on the same methods as the blind estimation, the semi-blind estimation techniques are more robust. They exploit the blind information along with information provided by a small number of training symbols. The channel estimation is useful in MIMO systems and allows the precoding of the MIMO-OFDM signal by applying a pre-mixture in order to improve performance. Many types of precoders exist and their performance varies depending not only on the optimization criteria (Water-Filling, MMSE, Equal Error, max-SNR, max-d min ...), but also on the estimated channel. In this thesis we study the impact of using the channel information (CSI) from the blind and semi-blind estimation techniques to apply MIMO linear precoders. We also present a statistical study of the estimation error of these methods. The optimization of these precoders leads eventually to use another process allowing more performance improvement: the error correcting codes. We are particularly interested in non-binary LDPC codes and their association with linear MIMO precoders. We show that a matching is possible, and is beneficial in some cases. The optimization of this combination has allowed us to propose a new robust and more efficient precoder based on the maximization of mutual information.
57

Estima e igualación ciega de canales MIMO con y sin redundancia espacial

Vía Rodríguez, Javier 02 July 2007 (has links)
La mayor parte de los sistemas de comunicaciones requieren el conocimiento previo del canal, el cual se suele estimar a partir de una secuencia de entrenamiento. Sin embargo, la transmisión de símbolos piloto se traduce en una reducción de la eficiencia espectral del sistema, lo que imposibilita que se alcancen los límites predichos por la Teoría de la Información. Este problema ha motivado el desarrollo de un gran número de técnicas para la estima e igualación ciega de canal, es decir, para la obtención del canal o la fuente sin necesidad de transmitir una señal de entrenamiento. Normalmente, estas técnicas se basan en el conocimiento previo de ciertas características de la señal, tales como su pertenencia a un alfabeto finito, o sus estadísticos de orden superior. Sin embargo, en el caso de sistemas de múltiples entradas y salidas (MIMO), se ha demostrado que los estadísticos de segundo orden de las observaciones proporcionan la información suficiente para resolver el problema ciego.El objetivo de esta Tesis consiste en la obtención de nuevas técnicas para la estima e igualación ciega de canales MIMO, tanto en sistemas con redundancia espacial, como en casos más generales en los que las fuentes no presentan ningún tipo particular de estructura. De manera general, los métodos propuestos se basan en los estadísticos de segundo orden de las observaciones. Sin embargo, las técnicas se presentan desde un punto de vista determinista, es decir, los algoritmos propuestos explotan directamente la estructura de las matrices de datos, lo que permite obtener resultados más precisos cuando se dispone de un número reducido de observaciones. Adicionalmente, la reformulación de los criterios propuestos como problemas clásicos del análisis estadístico de señales, ha permitido la obtención de algoritmos adaptativos eficientes para la estima e igualación de canales MIMO. En primer lugar se aborda el caso de sistemas sin redundancia. Más concretamente, se analiza el problema de igualación ciega de canales MIMO selectivos en frecuencia, el cual se reformula como un conjunto de problemas de análisis de correlaciones canónicas (CCA). La solución de los problemas CCA se puede obtener de manera directa mediante un problema de autovalores generalizado. Además, en esta Tesis se presenta un algoritmo adaptativo basado en la reformulación de CCA como un conjunto de problemas de regresión lineal acoplados. De esta manera, se obtienen nuevos algoritmos bloque y adaptativos para la igualación ciega de canales MIMO de una manera sencilla. Finalmente, el método propuesto se basa, como muchas otras técnicas ciegas, en el conocimiento a priori del orden del canal, lo que constituye un problema casi tan complicado como el de la estima o igualación ciega. Así, en el caso de canales de una entrada y varias salidas (SIMO), la combinación de la técnica propuesta con otros métodos para la estima ciega del canal permite obtener un nuevo criterio para extracción del orden de este tipo de canalesEn segundo lugar se considera el problema de estima ciega de canal en sistemas con algún tipo de redundancia o estructura espacial, con especial interés en el caso de sistemas con codificación espacio-temporal por bloques (STBC). Específicamente, se propone una nueva técnica para la estima ciega del canal, cuya complejidad se reduce a la extracción del autovector principal de una matriz de correlación modificada. El principal problema asociado a este tipo de sistemas viene dado por la existencia de ciertas ambigüedades a la hora de estimar el canal. En esta Tesis se plantea el problema de identificabilidad de una manera general, y en el caso de códigos ortogonales (OSTBCs) se presentan varios nuevos teoremas que aseguran la identificabilidad del canal en un gran número de casos. Adicionalmente, se proponen varias técnicas para la resolución de las ambigüedades, tanto en el caso OSTBC como para códigos más generales. En concreto, se introduce el concepto de diversidad de código, que consiste en la combinación de varios códigos STBC. Esta técnica permite resolver las indeterminaciones asociadas a un gran número de problemas, y en su versión más sencilla se reduce a una precodificación no redundante consistente en una simple rotación o permutación de las antenas transmisoras.En definitiva, en esta Tesis se abordan los problemas de estima e igualación ciega de canal en sistemas MIMO, y se presentan varias técnicas ciegas, cuyas prestaciones se evalúan mediante un gran número de ejemplos de simulación. / The majority of communication systems need the previous knowledge of the channel, which is usually estimated by means of a training sequence. However, the transmission of pilot symbols provokes a reduction in bandwidth efficiency, which precludes the system from reaching the limits predicted by the Information Theory. This problem has motivated the development of a large number of blind channel estimation and equalization techniques, which are able to obtain the channel or the source without the need of transmitting a training signal. Usually, these techniques are based on the previous knowledge of certain properties of the signal, such as its belonging to a finite alphabet, or its higher-order statistics. However, in the case of multiple-input multiple-output (MIMO) systems, it has been proven that the second order statistics of the observations provide the sufficient information for solving the blind problem.The aim of this Thesis is the development of new blind MIMO channel estimation and equalization techniques, both in systems with spatial redundancy, and in more general cases where the sources do not have any particular spatial structure. In general, the proposed methods are based on the second order statistics of the observations. However, the techniques are presented from a deterministic point of view, i.e., the proposed algorithms directly exploit the structure of the data matrices, which allows us to obtain more accurate results when only a reduced number of observations is available. Additionally, the reformulation of the proposed criteria as classical statistical signal processing problems is exploited to obtain efficient adaptive algorithms for MIMO channel estimation and equalization.Firstly, we consider the case of systems without spatial redundancy. Specifically, we analyze the problem of blind equalization of frequency selective MIMO channels, which is reformulated as a set of canonical correlation analysis (CCA) problems. The solution of the CCA problems can be obtained by means of a generalized eigenvalue problem. In this Thesis, we present a new adaptive algorithm based on the reformulation of CCA as a set of coupled linear regression problems. Therefore, new batch and adaptive algorithms for blind MIMO channel equalization are easily obtained. Finally, the proposed method, as well as many other blind techniques, is based on the previous knowledge of the channel order, which is a problem nearly as complicated as the blind channel estimation or equalization. Thus, in the case of single-input multiple-output (SIMO) channels, the combination of the proposed technique with other blind channel estimation methods provides a new criterion for the order extraction of this class of channels.Secondly, we consider the problem of blind channel estimation in systems with some kind of redundancy or spatial structure, with special interest in space-time block coded (STBC) systems. Specifically, a new blind channel estimation technique is proposed, whose computational complexity reduces to the extraction of the principal eigenvector of a modified correlation matrix. The main problem in these cases is due to the existence of certain ambiguities associated to the blind channel estimation problem. In this Thesis the general identifiability problem is formulated and, in the case of orthogonal codes (OSTBCs), we present several new theorems which ensure the channel identifiability in a large number of cases. Additionally, several techniques for the resolution of the ambiguities are proposed, both in the OSTBC case as well as for more general codes. In particular, we introduce the concept of code diversity, which consists in the combination of several STBCs. This technique avoids the ambiguities associated to a large number of problems, and in its simplest version it reduces to a non-redundant precoding consisting of a single rotation or permutation of the transmit antennas.In summary, in this Thesis the blind MIMO channel estimation and equalization problems are analyzed, and several blind techniques are presented, whose performance is evaluated by means of a large number of simulation examples.
58

Lattice-Based Precoding And Decoding in MIMO Fading Systems

Taherzadeh, Mahmoud January 2008 (has links)
In this thesis, different aspects of lattice-based precoding and decoding for the transmission of digital and analog data over MIMO fading channels are investigated: 1) Lattice-based precoding in MIMO broadcast systems: A new viewpoint for adopting the lattice reduction in communication over MIMO broadcast channels is introduced. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. The new viewpoint helps us to generalize the idea of lattice-reduction-aided precoding for the case of unequal-rate transmission, and obtain analytic results for the asymptotic behavior of the symbol-error-rate for the lattice-reduction-aided precoding and the perturbation technique. Also, the outage probability for both cases of fixed-rate users and fixed sum-rate is analyzed. It is shown that the lattice-reduction-aided method, using LLL algorithm, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). 2) Lattice-based decoding in MIMO multiaccess systems and MIMO point-to-point systems: Diversity order and diversity-multiplexing tradeoff are two important measures for the performance of communication systems over MIMO fading channels. For the case of MIMO multiaccess systems (with single-antenna transmitters) or MIMO point-to-point systems with V-BLAST transmission scheme, it is proved that lattice-reduction-aided decoding achieves the maximum receive diversity (which is equal to the number of receive antennas). Also, it is proved that the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum diversity in V-BLAST systems. On the other hand, the inherent drawbacks of the naive lattice decoding for general MIMO fading systems is investigated. It is shown that using the naive lattice decoding for MIMO systems has considerable deficiencies in terms of the diversity-multiplexing tradeoff. Unlike the case of maximum-likelihood decoding, in this case, even the perfect lattice space-time codes which have the non-vanishing determinant property can not achieve the optimal diversity-multiplexing tradeoff. 3) Lattice-based analog transmission over MIMO fading channels: The problem of finding a delay-limited schemes for sending an analog source over MIMO fading channels is investigated in this part. First, the problem of robust joint source-channel coding over an additive white Gaussian noise channel is investigated. A new scheme is proposed which achieves the optimal slope for the signal-to-distortion-ratio (SDR) curve (unlike the previous known coding schemes). Then, this idea is extended to MIMO channels to construct lattice-based codes for joint source-channel coding over MIMO channels. Also, similar to the diversity-multiplexing tradeoff, the asymptotic performance of MIMO joint source-channel coding schemes is characterized, and a concept called diversity-fidelity tradeoff is introduced in this thesis.
59

Polynomial Matrix Decompositions : Evaluation of Algorithms with an Application to Wideband MIMO Communications

Brandt, Rasmus January 2010 (has links)
The interest in wireless communications among consumers has exploded since the introduction of the "3G" cell phone standards. One reason for their success is the increasingly higher data rates achievable through the networks. A further increase in data rates is possible through the use of multiple antennas at either or both sides of the wireless links. Precoding and receive filtering using matrices obtained from a singular value decomposition (SVD) of the channel matrix is a transmission strategy for achieving the channel capacity of a deterministic narrowband multiple-input multiple-output (MIMO) communications channel. When signalling over wideband channels using orthogonal frequency-division multiplexing (OFDM), an SVD must be performed for every sub-carrier. As the number of sub-carriers of this traditional approach grow large, so does the computational load. It is therefore interesting to study alternate means for obtaining the decomposition. A wideband MIMO channel can be modeled as a matrix filter with a finite impulse response, represented by a polynomial matrix. This thesis is concerned with investigating algorithms which decompose the polynomial channel matrix directly. The resulting decomposition factors can then be used to obtain the sub-carrier based precoding and receive filtering matrices. Existing approximative polynomial matrix QR and singular value decomposition algorithms were modified, and studied in terms of decomposition quality and computational complexity. The decomposition algorithms were shown to give decompositions of good quality, but if the goal is to obtain precoding and receive filtering matrices, the computational load is prohibitive for channels with long impulse responses. Two algorithms for performing exact rational decompositions (QRD/SVD) of polynomial matrices were proposed and analyzed. Although they for simple cases resulted in excellent decompositions, issues with numerical stability of a spectral factorization step renders the algorithms in their current form purposeless. For a MIMO channel with exponentially decaying power-delay profile, the sum rates achieved by employing the filters given from the approximative polynomial SVD algorithm were compared to the channel capacity. It was shown that if the symbol streams were decoded independently, as done in the traditional approach, the sum rates were sensitive to errors in the decomposition. A receiver with a spatially joint detector achieved sum rates close to the channel capacity, but with such a receiver the low complexity detector set-up of the traditional approach is lost. Summarizing, this thesis has shown that a wideband MIMO channel can be diagonalized in space and frequency using OFDM in conjunction with an approximative polynomial SVD algorithm. In order to reach sum rates close to the capacity of a simple channel, the computational load becomes restraining compared to the traditional approach, for channels with long impulse responses.
60

Lattice-Based Precoding And Decoding in MIMO Fading Systems

Taherzadeh, Mahmoud January 2008 (has links)
In this thesis, different aspects of lattice-based precoding and decoding for the transmission of digital and analog data over MIMO fading channels are investigated: 1) Lattice-based precoding in MIMO broadcast systems: A new viewpoint for adopting the lattice reduction in communication over MIMO broadcast channels is introduced. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. The new viewpoint helps us to generalize the idea of lattice-reduction-aided precoding for the case of unequal-rate transmission, and obtain analytic results for the asymptotic behavior of the symbol-error-rate for the lattice-reduction-aided precoding and the perturbation technique. Also, the outage probability for both cases of fixed-rate users and fixed sum-rate is analyzed. It is shown that the lattice-reduction-aided method, using LLL algorithm, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). 2) Lattice-based decoding in MIMO multiaccess systems and MIMO point-to-point systems: Diversity order and diversity-multiplexing tradeoff are two important measures for the performance of communication systems over MIMO fading channels. For the case of MIMO multiaccess systems (with single-antenna transmitters) or MIMO point-to-point systems with V-BLAST transmission scheme, it is proved that lattice-reduction-aided decoding achieves the maximum receive diversity (which is equal to the number of receive antennas). Also, it is proved that the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum diversity in V-BLAST systems. On the other hand, the inherent drawbacks of the naive lattice decoding for general MIMO fading systems is investigated. It is shown that using the naive lattice decoding for MIMO systems has considerable deficiencies in terms of the diversity-multiplexing tradeoff. Unlike the case of maximum-likelihood decoding, in this case, even the perfect lattice space-time codes which have the non-vanishing determinant property can not achieve the optimal diversity-multiplexing tradeoff. 3) Lattice-based analog transmission over MIMO fading channels: The problem of finding a delay-limited schemes for sending an analog source over MIMO fading channels is investigated in this part. First, the problem of robust joint source-channel coding over an additive white Gaussian noise channel is investigated. A new scheme is proposed which achieves the optimal slope for the signal-to-distortion-ratio (SDR) curve (unlike the previous known coding schemes). Then, this idea is extended to MIMO channels to construct lattice-based codes for joint source-channel coding over MIMO channels. Also, similar to the diversity-multiplexing tradeoff, the asymptotic performance of MIMO joint source-channel coding schemes is characterized, and a concept called diversity-fidelity tradeoff is introduced in this thesis.

Page generated in 0.0712 seconds