• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanisme de croissance et dissolution de cristaux de KCl sous charge : Apport dans la connaissance des mécanismes d'altération des pierres par les sels

Desarnaud, Julie 23 November 2009 (has links) (PDF)
L'altération des pierres par les sels est un phénomène connu depuis l'antiquité. En revanche, le ou les mécanismes mis en jeu. Ce type d'altération est aujourd'hui considéré comme la principale cause de dégradation des monuments historiques. Actuellement, on attribue la dégradation à la capacité de ces phases minérales à développer une pression de cristallisation. Cette pression pourrait atteindre plusieurs mégapascals et dépasser la résistance mécanique des pierres. Ce concept de pression de cristallisation est né d'études expérimentales réalisées entre la fin de XIXème et le milieu du XXème siècle mais ces notions se concilient difficilement avec les principes de la croissance cristalline tels qu'ils sont connus actuellement. Cette étude a pour but de reproduire les expériences anciennes avec des monocristaux de KCl en contrôlant rigoureusement les paramètres environnementaux. Ce travail montre que, dans les conditions de sursaturation et de croissance, quelque soit la charge imposée, le cristal croit dans les directions non contraintes et adopte à la fin des expériences un faciès trapézoïdal à base tronquée. Ceci est dû à un gradient vertical de concentration et à une répartition non homogène de la contrainte au sein du cristal. Dans la direction de la contrainte le cristal se dissout plus ou moins selon la charge imposée. Cette dissolution n'est pas linéaire et présente deux régimes ; le premier, rapide et non linéaire est fonction de la surface de contact cristal/charge, le second plus lent et quasiment linéaire est fonction de la sursaturation de la solution. En aucun cas, le monocristal de KCl ne développe de pression de cristallisation. Il semble improbable qu'un cristal du type KCl puisse dégrader une pierre en exerçant par pression de cristallisation.
2

Expansion and stresses induced by crystallization in cement-based materials in presence of sulfates / Expansion et contrainte induites par la cristallisation dans les matériaux cimentaires en présence de sulfates

Bui, Nam Nghia 28 January 2016 (has links)
La cristallisation du sel dans les pores peut conduire à l'expansion d'une variété de milieux poreux, y compris le béton, la pierre ou les sols. Par exemple, les attaques sulfatiques de matériaux cimentaires peuvent conduire à des cristallisations du gypse ou de l’ettringite, qui peuvent causer un endommagement et limiter la durabilité des structures en béton. Une meilleure compréhension de la façon dont la cristallisation induit la déformation des matériaux cimentaires est une condition préalable à la conception de moyens efficaces pour atténuer les effets néfastes de la cristallisation du sel. Dans cette thèse, nous cherchons à comprendre comment la cristallisation conduit à l'expansion, pour les matériaux à base de ciment dans le cas spécifique de la présence d'ions sulfatiques, qui est un cas pertinent pour la compréhension des attaques sulfatiques. La principale originalité de l'étude a été de réaliser des expériences avec des matériaux granulaires compactés dans des cellules œdométriques ou isochores. Les échantillons testés ont été fabriqués par broyage de pâtes de C3S, de pâtes de ciment Portland ordinaire, ou des mélanges des phases dont ces pâtes sont constituées (par exemple, monosulfoaluminate AFm), puis de les compacter dans des éprouvettes cylindriques sur une hauteur de 2 cm. Dans les cellules, les échantillons compactés sont très perméables et peuvent être saturés avec des solutions de sulfate de sodium en moins d’1 heure. Dans une cellule œdométrique, l'échantillon est empêché de se dilater radialement, mais est autorisé à se dilater axialement: nous avons mesuré comment des injections de solutions induisent une expansion axiale. Dans une cellule isochore, l'échantillon est empêché de se dilater à la fois radialement et axialement: nous avons mesuré comment des injections de solutions provoquent le développement de contraintes axiales et radiales. Un point notable des cellules isochores que nous avons développées est que toute solution s’évacue le long de l'échantillon et peut être récupérée: ainsi, à partir des mesures des concentrations et des volumes de solutions d'entrée et de sortie, la quantité de sulfates restant dans l'échantillon au cours des expériences pourrait être déterminée. En parallèle des mesures de déformation/contrainte, nous avons effectué des caractérisations minéralogiques et microstructurales des échantillons en utilisant une variété de techniques, notamment : la fluorescence X, l’analyse thermogravimétrique, la diffraction des rayons X, la résonance magnétique nucléaire d'aluminium et la microscopie électronique à balayage avec analyse aux rayons X. Les évolutions des concentrations de sortie et de la minéralogie au cours du processus d'injection ont pu être bien prédites avec le logiciel CHESS de modélisation géochimique. Les résultats expérimentaux de la campagne, en conjonction avec les résultats des caractérisations minéralogiques et microstructurales, ont permis de révéler quels sont les principaux paramètres qui régissent l'expansion. Grâce à ce protocole original que nous avons développé, l'expansion ou le développement de contraintes a commencé immédiatement après l'injection de la solution, s’est stabilisé au bout de quelques jours à quelques semaines, et la cristallisation a eu lieu de façon homogène sur toute la hauteur de l'échantillon. En outre, nous avons montré que la cristallisation du gypse contribue à l'expansion. Dans les tests isochores, nous montrons que les deux cristallisations d'ettringite et de gypse peuvent induire des contraintes, et que l'amplitude de ces contraintes dépend linéairement du volume de ces cristaux formés. Les conclusions tirées de cette étude expérimentale permettent de mieux comprendre les processus physiques par lesquels la cristallisation induit une expansion ou des contraintes dans des solides poreux, et permettent d’orienter la modélisation des attaques sulfatiques dans les matériaux cimentaires / In-pore crystallization can lead to expansion of a variety of porous media, including concrete, stone, or soils. For instance, sulfate attacks of cement-based materials can lead to crystallizations of gypsum or ettringite, which may cause damage and limit the durability of concrete structures. A better understanding of how crystallization induces deformation of cementitious materials is a prerequisite to designing efficient ways of mitigating the detrimental effects of salt crystallization. In this thesis, we aim at understanding how crystallization leads to expansion, for cement-based materials in the specific case of the presence of sulfate ions, which is relevant for sulfate attacks. The main originality of the study was to perform experiments with granular materials compacted into oedometric or isochoric cells. The tested samples were manufactured by grinding C3S pastes, regular Portland cement pastes, or mixtures of phases of which those pastes are made (e.g., monosulfoaluminate AFm), and then compacting them within the cell into 2-cm-high cylindrical specimens. In the cells, the highly permeable compacted samples could be flushed with sodium sulfate solutions in less than 1 hour. In an oedometric cell, the sample is prevented from expanding radially, but is allowed to expand axially: we measured how injections of solutions induced an axial expansion. In an isochoric cell, the sample is prevented from expanding both radially and axially: we measured how injections of solutions induced the development of axial and radial stresses. A salient feature of the isochoric cells we developed is that all solution flushed throughout the sample could be recovered: thus, from the measurements of concentrations and volumes of input and output solutions, the amount of sulfate remaining in the sample over the experiments could be determined. In parallel to the deformation/stress measurements, we also performed the mineralogical and microstructural characterizations of the samples before and after testing by using a variety of techniques, including X-ray fluorescence, thermogravimetric analysis, X-ray diffraction, aluminum nuclear magnetic resonance and scanning electron microscopy with X-ray analysis. The evolutions of the output concentrations and of the mineralogy over the injection process could be well predicted with the geochemical modeling software CHESS. Experimental results of the campaign, in conjunction with results from mineralogical and microstructural characterizations, made it possible to reveal what the main parameters are that govern expansion. Thanks to the original protocol we developed, expansion or development of stresses started immediately after the injection of solution, stabilized after a few days to a few dozen days, and crystallization occurred homogeneously throughout the height of the sample. One interesting conclusion is that, even when ettringite crystallizes in macropores, i.e., outside of the C-S-H gel porosity, ettringite can lead to an expansion. Also, we showed that gypsum crystallization contributes to expansion. In isochoric testing, we showed that both crystallization of ettringite and of gypsum can induce stresses, and that the magnitude of those stresses is linearly related to the volume of those crystals formed. The conclusions drawn from this experimental study make it possible to better understand the physical processes through which crystallization induces expansion or stresses in porous solids, and thus to orient the modeling of sulfate attacks in cement-based materials
3

Thermochemical-based poroelastic modelling of salt crystallization, and a new multiphase flow experiment : how to assess injectivity evolution in the context of CO2 storage in deep aquifers / Modélisation thermochimique et poroélastique de la cristallisation de sel, et nouveau dispositif expérimental d’écoulement multiphasique : comment prédire l’évolution de l’injectivité pour le stockage du CO2 en aquifère profond ?

Osselin, Florian 20 December 2013 (has links)
Dans un contexte de réduction internationale des émissions de gaz à effet de serre, les techniques de Captage Transport et Stockage de ce{CO2} (CTSC) apparaissent comme une solution à moyen terme particulièrement efficace. En effet, les capacités de stockage géologique pourraient s'élever jusqu'à plusieurs millions de tonnes de ce{CO2} injectées par an, soit une réduction substantielle des émissions atmosphériques de ce gaz. Une des cibles privilégiées pour la mise en place de cette solution sont les aquifères salins profonds. Ces aquifères sont des formations géologiques contenant une saumure dont la salinité est souvent supérieure à celle de la mer la rendant impropre à la consommation. Cependant, cette technique fait face à de nombreux défis technologiques; en particulier la précipitation des sels, dissous dans l'eau présente initialement dans l'aquifère cible, suite à son évaporation par le ce{CO2} injecté. Les conséquences de cette précipitation sont multiples, mais la plus importante est une modification de l'injectivité, c'est-à-dire des capacités d'injection. La connaissance de l'influence de la précipitation sur l'injectivité est particulièrement importante tant au niveau de l'efficacité du stockage et de l'injection qu'au niveau de la sécurité et de la durabilité du stockage. Le but de ces travaux de thèse est de comparer l'importance relative des phénomènes négatif (colmatage) et positif (fracturation) consécutifs à l'injection de ce{CO2} et à la précipitation des sels. Au vu des nombreux résultats de simulations et de modélisation dans la littérature décrivant le colmatage de la porosité, il a été décidé de porter l'accent sur les effets mécaniques de la cristallisation des sels et la possible déformation de la roche mère. Une modélisation macroscopique et microscopique, tenant compte de deux modes possibles d'évaporation induits par la distribution spatiale de l'eau résiduelle a donc été développée afin de prédire le comportement mécanique d'un matériau poreux soumis à un assèchement par injection de ce{CO2}. Les résultats montrent que la pression de cristallisation consécutive à la croissance d'un cristal en milieu confiné peut atteindre des valeurs susceptibles localement de dépasser la résistance mécanique du matériau, soulignant ainsi l'importance de ces phénomènes dans le comportement mécanique global de l'aquifère. Sur le plan expérimental, les travaux ont porté sur l'utilisation d'un nouveau prototype de percolation réactive afin de reproduire le comportement d'une carotte de roche soumise à l'injection et ainsi obtenir l'évolution des perméabilités dans des conditions similaires à celle d'un aquifère / In a context of international reduction of greenhouse gases emissions, CCS (ce{CO2} Capture and Storage) appears as a particularly interesting midterm solution. Indeed, geological storage capacities may raise to several millions of tons of ce{CO2} injected per year, allowing to reduce substantially the atmospheric emissions of this gas. One of the most interesting targets for the development of this solution are the deep saline aquifers. These aquifers are geological formations containing brine whose salinity is often higher than sea water's, making it unsuitable for human consumption. However, this solution has to cope with numerous technical issues, and in particular, the precipitation of salt initially dissolved in the aquifer brine. Consequences of this precipitation are multiple, but the most important is the modification of the injectivity i.e. the injection capacity. Knowledge of the influence of the precipitation on the injectivity is particularly important for both the storage efficiency and the storage security and durability. The aim of this PhD work is to compare the relative importance of negative (clogging) and positive (fracturing) phenomena following ce{CO2} injection and salt precipitation. Because of the numerous simulations and modelling results in the literature describing the clogging of the porosity, it has been decided to focus on the mechanical effects of the salt crystallization and the possible deformation of the host rock. A macroscopic and microscopic modelling has then been developed, taking into account two possible modes of evaporation induced by the spatial distribution of residual water, in order to predict the behavior of a porous material subjected to the drying by carbon dioxide injection. Results show that crystallization pressure created by the growth of a crystal in a confined medium can reach values susceptible to locally exceed the mechanic resistance of the host rock, highlighting the importance of these phenomena in the global mechanical behavior of the aquifer. At the experimental level, the study of a rock core submitted to the injection of supercritical carbon dioxide has been proceeded on a new reactive percolation prototype in order to obtain the evolution of permeabilities in conditions similar to these of a deep saline aquifer
4

Couplage géochimie-géomécanique dans les milieux poreux insaturés : Tension capillaire – Pression de cristallisation / Chemical-mechanical coupling in unsaturated porous media : Capillary tension – Crystallization pressure

Hulin, Claudie 08 December 2017 (has links)
Dans la zone insaturée, l’altération des roches poreuses en condition de séchage est attribuée principalement aux sels qui cristallisent dans la solution porale lors de son évaporation. Ils exercent une pression (pression de cristallisation) contre les parois du pore dont le moteur est la sursaturation de la solution. Dans le même contexte, l’eau porale qui est retenue par capillarité dans les pores nanométriques est amenée sous pression négative. L’eau sous tension capillaire exerce une traction mécanique contre les parois du pore, mais aussi modifie les équilibres chimiques. Ces deux mécanismes, pression de cristallisation et traction capillaire, qui sont de nature physique, ont pour origine le déséquilibre chimique entre l’eau porale et l’air sec.Des expériences de cristallisation de sels (Na2SO4, NaCl) permettent 1/ de mettre en évidence des conditions favorables à l’expression de la pression de cristallisation, qui apparait comme un phénomène brutal et transitoire provoqué par la relaxation d’un état de déséquilibre (sursaturation), et 2/ de montrer que la tension capillaire, générée par une interface nanométrique, peut être transmise à un macrovolume dans un système géométrique particulier construit par les sels. L’état de tension y est métastable (l’eau est surchauffée) mais dure suffisamment longtemps pour observer les effets mécaniques (traction) et chimiques (dissolution) attendus. La relaxation brutale de l’état de surchauffe permet une rapide sursaturation, qui est le moteur de la pression de cristallisation.Ainsi, les cycles climatiques sont à l’origine d’évènements brutaux et transitoires qui marquent la relaxation d’un état de déséquilibre (surchauffe et sursaturation), contrôlés par la tension capillaire et la cristallisation des sels qui coopèrent pour altérer la roche en conditions de séchage. / The alteration of porous media in drying conditions is generally attributed to the pressure exerted by growing salts from the poral evaporating solution against the pore wall (crystallization pressure). In drying conditions, the water retained by capillarity in nanometric pores is under absolute negative pressure. Water under capillary tension exerts a mechanical traction against the pore walls but also modifies the chemical equilibria and so rock-fluid interactions. Crystallization pressure and capillary tension, which are physical processes, are both induces by the disequilibrium between poral water and dry air.Salt crystallization experiments in microtubes (Na2SO4, NaCl) show some favorable conditions for crystallization pressure - in terms of supersaturation and geometry – which is transient and brutal. A second series of experiments shows that capillary tension, generated by a nanometric liquid air interface, can be transmitted to a macrovolume of aqueous solution in a particular geometric system built with salts. The tensile state is metastable (superheated), but long enough to modify significantly the chemical budget of the system and to see mechanical effects. The brutal relaxation of the superheating state by vapor nucleation induces a rapid salt supersaturation which is the driving force of the crystallization pressure.The salt growth (during evaporation) and capillarity cooperate in drying conditions to alter porous media.During climate cycles (especially humidity) they control and induce transient and brutal events which mark the end of metastable states (superheating and salt supersaturation).
5

Modélisation thermochimique et poroélastique de la cristallisation de sel, et nouveau dispositif expérimental d'écoulement multiphasique : comment prédire l'évolution de l'injectivité pour le stockage du CO2 en aquifère profond ?

Osselin, Florian 20 December 2013 (has links) (PDF)
Dans un contexte de réduction internationale des émissions de gaz à effet de serre, les techniques de Captage Transport et Stockage de CO2 (CTSC) apparaissent comme une solution à moyen terme particulièrement efficace. En effet, les capacités de stockage géologique pourraient s'élever jusqu'à plusieurs millions de tonnes de CO2 injectées par an, soit une réduction substantielle des émissions atmosphériques de ce gaz. Une des cibles privilégiées pour la mise en place de cette solution sont les aquifères salins profonds. Ces aquifères sont des formations géologiques contenant une saumure dont la salinité est souvent supérieure à celle de la mer la rendant impropre à la consommation. Cependant, cette technique fait face à de nombreux défis technologiques ; en particulier la précipitation des sels, dissous dans l'eau présente initialement dans l'aquifère cible, suite à son évaporation par le CO2 injecté. Les conséquences de cette précipitation sont multiples, mais la plus importante est une modification de l'injectivité, c'est-à-dire des capacités d'injection. La connaissance de l'influence de la précipitation sur l'injectivité est particulièrement importante tant au niveau de l'efficacité du stockage et de l'injection qu'au niveau de la sécurité et de la durabilité du stockage. Le but de ces travaux de thèse est de comparer l'importance relative des phénomènes négatif (colmatage) et positif (fracturation) consécutifs à l'injection de CO2 et à la précipitation des sels. Au vu des nombreux résultats de simulations et de modélisation dans la littérature décrivant le colmatage de la porosité, il a été décidé de porter l'accent sur les effets mécaniques de la cristallisation des sels et la possible déformation de la roche mère. Une modélisation macroscopique et microscopique, tenant compte de deux modes possibles d'évaporation induits par la distribution spatiale de l'eau résiduelle a donc été développée afin de prédire le comportement mécanique d'un matériau poreux soumis à un assèchement par injection de CO2. Les résultats montrent que la pression de cristallisation consécutive à la croissance d'un cristal en milieu confiné peut atteindre des valeurs susceptibles localement de dépasser la résistance mécanique du matériau, soulignant ainsi l'importance de ces phénomènes dans le comportement mécanique global de l'aquifère. Sur le plan expérimental, les travaux ont porté sur l'utilisation d'un nouveau prototype de percolation réactive afin de reproduire le comportement d'une carotte de roche soumise à l'injection et ainsi obtenir l'évolution des perméabilités dans des conditions similaires à celle d'un aquifère.

Page generated in 0.1468 seconds