• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 18
  • 1
  • Tagged with
  • 244
  • 158
  • 127
  • 70
  • 49
  • 42
  • 38
  • 37
  • 34
  • 32
  • 31
  • 31
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

[pt] ENSAIOS SOBRE PREVISÃO DE INFLAÇÃO: DESAGREGAÇÃO, COMBINAÇÃO DE PREVISÕES E DADOS NÃO ESTRUTURADOS / [en] ESSAYS CONCERNING INFLATION FORECASTING: DISAGGREGATION, COMBINATION OF FORECASTS, AND UNSTRUCTURED DATA

GILBERTO OLIVEIRA BOARETTO 07 August 2023 (has links)
[pt] Esta tese consiste em três ensaios sobre previsão de inflação, com foco na inflação brasileira. No primeiro ensaio, examinamos a eficácia de vários métodos de previsão para prever a inflação, com foco na agregação de previsões desagregadas. Consideramos diferentes níveis de desagregação para a inflação e empregamos uma variedade de técnicas tradicionais de séries temporais, bem como modelos lineares e não lineares de aprendizado de máquina que lidam com um número grande de preditores. Para muitos horizontes de previsão, a agregação de previsões desagregadas performa tão bem quanto expectativas baseadas em coleta e modelos que geram previsões a partir do agregado. No geral, os métodos de aprendizado de máquina superam os modelos de séries temporais tradicionais em precisão preditiva, com excelente desempenho para os desagregados da inflação. Em nosso segundo ensaio, investigamos os potenciais benefícios de combinar previsões de inflação individuais ao propor uma correção para viés variável no tempo da média de previsões. Nossa análise inclui estimações empregando janelas rolantes e modelos em espaço de estados que usam a recursividade do filtro de Kalman. Obtivemos um bom desempenho de previsão para modelos baseados em janelas rolantes pequenas em horizontes de previsão curtos e intermediários, enquanto um modelo em espaço de estados obtem um desempenho um pouco pior do que os procedimentos baseados em janelas rolantes. No terceiro ensaio, usamos aprendizado supervisionado para gerar índices prospectivos baseados em tweets e notícias para inflação acumulada e investigamos se esses índices podem melhorar o desempenho da previsão de inflação. Nossos resultados indicam que os índices baseados em notícias fornecem ganhos preditivos significativos, principalmente para os horizontes de 3 e 12 meses à frente. Esses achados sugerem que a incorporação de mais fontes de informação do que apenas expectativas baseadas em opiniões de especialistas pode levar a previsões mais precisas. / [en] This dissertation consists of three essays concerning inflation forecasting, taking the Brazilian case as an application. In the first essay, we examine the effectiveness of several forecasting methods for predicting inflation, focusing on aggregating disaggregated forecasts. We consider different disaggregation levels for inflation and employ a range of traditional time series techniques, as well as linear and nonlinear machine learning (ML) models that deal with a larger number of predictors. For many forecast horizons, aggregation of disaggregated forecasts performs just as well as survey-based expectations and models generating forecasts directly from the aggregate. Overall, ML methods outperform traditional time series models in predictive accuracy, with outstanding performance in forecasting disaggregates. In our second essay, we investigate the potential benefits of combining individual inflation forecasts by proposing a time-varying bias correction for the average forecast. Our analysis includes estimations using both rolling windows and state-space models that use the recursiveness of the Kalman filter. We achieve good forecast performance for models based on small rolling windows for shorter and intermediate forecast horizons, while a state-space model performs slightly worse than procedures based on rolling windows. In the third essay, we use supervised learning to generate forward-looking indexes based on tweets and news articles for accumulated inflation and investigate whether these indexes can improve inflation forecasting performance. Our results indicate that news-based indexes provide significant predictive gains, particularly for 3- and 12-month-ahead horizons. These findings suggest that incorporating more information sources than just expectations based on experts opinions can lead to more accurate forecasts.
202

[en] ON THE MISSING DISINFLATION PUZZLE: A DATA-DRIVEN APPROACH / [pt] SOBRE O MISSING DISINFLATION PUZZLE: UMA ABORDAGEM COM APRENDIZADO DE MÁQUINA

23 September 2021 (has links)
[pt] O presente trabalho investiga as potenciais explicações para o fenômeno do Missing Disinflation Puzzle. Nós montamos uma base de dados contendo apenas variáveis associadas com o fenômeno, e utilizamos métodos de Machine Learning para calcular estimativas para a inflação do Consumer Price Index durante o período de interesse. Esses métodos podem lidar com bases de dados extensas, e realizar seleção de variáveis. Um exercício de seleção de melhores modelos utilizando a técnica de Model Confidence Set sobre previsões pseudo out-of-sample é proposto. Nós analisamos o padrão de seleção de variáveis entre os melhores modelos selecionados e encontramos evidência a favor das explicações associadas ao uso de diferentes métricas de expectativas de inflação - em especial aquelas ligadas a pesquisas feitas com consumidores. / [en] This paper examines the potential explanations for the Missing Disinflation Puzzle (MDP). We construct a data set containing only variables associated with the puzzle, and use of Machine Learning (ML) methods to compute estimates for U.S. Consumer Price Index inflation over the period of interest. These methods can handle large data sets, and perform variable selection. A model selection exercise using Model Confidence Set over pseudo-out-of-sample forecasts is proposed to assess forecasting performance and to analyze the variable selection pattern of these models. We analyze the variable selection performed by the best models and find evidence for explanations associated with different metrics for inflation expectations - in particular those linked to consumers surveys.
203

[pt] MODELO VARIABLE STEP-SIZE EVOLVING PARTICIPATORY LEARNING WITH KERNEL RECURSIVE LEAST SQUARES APLICADO À PREVISÃO DE PREÇOS DO ÓLEO DIESEL NO BRASIL / [en] VARIABLE STEP-SIZE EVOLVING PARTICIPATORY LEARNING WITH KERNEL RECURSIVE LEAST SQUARES MODEL APPLIED TO GAS PRICES FORECASTING IN BRAZIL

EDUARDO RAVAGLIA CAMPOS QUEIROZ 30 April 2021 (has links)
[pt] Um modelo de previsão é uma ferramenta indispensável nos negócios, ajudando na tomada de decisões, seja a curto, médio ou longo prazo. Neste contexto, a implementação de técnicas de aprendizagem de máquina em modelos de previsão de séries temporais assume notória relevância, visto que o processamento da informação e a extração de conhecimento são cada vez mais exigidos de forma eficiente e dinâmica. Este trabalho desenvolve um modelo denominado Variable Step-Size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, aplicado à previsão de preços do óleo diesel S500 e S10. O modelo apresentado demonstra uma melhor acurácia em comparação com os modelos análogos na literatura, sem perda de desempenho computacional para todas as séries temporais analisadas. / [en] A prediction model is an indispensable tool in business, helping to make decisions, whether in the short, medium, or long term. In this context, the implementation of machine learning techniques in time series forecasting models has a notorious relevance, as information processing and efficient and dynamic knowledge uncovering are increasingly demanded. This work develops a model called Variable Step-Size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, applied to the forecast of weekly prices for S500 and S10 diesel oil, at the Brazilian level, for biweekly and monthly horizons. The presented model demonstrates a better accuracy compared with analogous models in the literature, without loss of computational performance for all time series analyzed.
204

[en] EXCHANGE RATE FORECAST AND PURCHASING POWER PARITY IN EMERGING COUNTRIES / [pt] PREVISÃO CAMBIAL E PARIDADE DO PODER DE COMPRA EM PAÍSES EMERGENTES

PEDRO PAULO SANTORO WEISSENBERG 24 September 2021 (has links)
[pt] Modelos de previsão cambial são frequentemente preteridos em relação a passeios aleatórios, porém o trabalho mostra que em certos casos, principalmente à médio e longo prazo, modelos simples de previsão cambial podem ser melhores do que passeio aleatório em países emergentes com câmbio livre. O trabalho também mostra que não há uma reversão do câmbio real à sua média de longo prazo e que seu movimento após um choque é feito quase todo pelo câmbio nominal. / [en] Foward looking exchange models are frequently deprecated when comparing to a random walk. This work notes that under certain cenarios, mostly at medium and long run, simple models can be more accurated than random walk for emerging countries with free floating exchange rates, though. This work also notes that there is no real exchange rate s mean-reverting at long run and that most of it s path, after a shock, is done via nominal exchange rate.
205

[en] E-AUTOMFIS: INTERPRETABLE MODEL FOR TIME SERIES FORECASTING USING ENSEMBLE LEARNING OF FUZZY INFERENCE SYSTEM / [pt] E-AUTOMFIS: MODELO INTERPRETÁVEL PARA PREVISÃO DE SÉRIES MULTIVARIADAS USANDO COMITÊS DE SISTEMAS DE INFERÊNCIA FUZZY

THIAGO MEDEIROS CARVALHO 17 June 2021 (has links)
[pt] Por definição, a série temporal representa o comportamento de uma variável em função do tempo. Para o processo de previsão de séries, o modelo deve ser capaz de aprender a dinâmica temporal das variáveis para obter valores futuros. Contudo, prever séries temporais com exatidão é uma tarefa que vai além de escolher o modelo mais complexo, e portanto a etapa de análise é um processo fundamental para orientar o ajuste do modelo. Especificamente em problemas multivariados, o AutoMFIS é um modelo baseado na lógica fuzzy, desenvolvido para introduzir uma explicabilidade dos resultados através de regras semanticamente compreensíveis. Mesmo com características promissoras e positivas, este sistema possui limitações que tornam sua utilização impraticável em problemas com bases de dados com alta dimensionalidade. E com a presença cada vez maior de bases de dados mais volumosas, é necessário que a síntese automática de sistemas fuzzy seja adaptada para abranger essa nova classe de problemas de previsão. Por conta desta necessidade, a presente dissertação propõe a extensão do modelo AutoMFIS para a previsão de séries temporais com alta dimensionalidade, chamado de e-AutoMFIS. Apresentase uma nova metodologia, baseada em comitê de previsores, para o aprendizado distribuído de geração de regras fuzzy. Neste trabalho, são descritas as características importantes do modelo proposto, salientando as modificações realizadas para aprimorar tanto a previsão quanto a interpretabilidade do sistema. Além disso, também é avaliado o seu desempenho em problemas reais, comparando-se a acurácia dos resultados com as de outras técnicas descritas na literatura. Por fim, em cada problema selecionado também é considerado o aspecto da interpretabilidade, discutindo-se os critérios utilizados para a análise de explicabilidade. / [en] By definition, the time series represents the behavior of a variable as a time function. For the series forecasting process, the model must be able to learn the temporal dynamics of the variables in order to obtain consistent future values. However, an accurate time series prediction is a task that goes beyond choosing the most complex (or promising) model that is applicable to the type of problem, and therefore the analysis step is a fundamental procedure to guide the adaptation of a model. Specifically, in multivariate problems, AutoMFIS is a model based on fuzzy logic, developed not only to give accurate forecasts but also to introduce the explainability of results through semantically understandable rules. Even with such promising characteristics, this system has shown practical limitations in problems that involve datasets of high dimensionality. With the increasing demand formethods to deal with large datasets, it should be great that approaches for the automatic synthesis of fuzzy systems could be adapted to cover a new class of forecasting problems. This dissertation proposes an extension of the base model AutoMFIS modeling method for time series forecasting with high dimensionality data, named as e-AutoMFIS. Based on the Ensemble learning theory, this new methodology applies distributed learning to generate fuzzy rules. The main characteristics of the proposed model are described, highlighting the changes in order to improve both the accuracy and the interpretability of the system. The proposed model is also evaluated in different case studies, in which the results are compared in terms of accuracy against the results produced by other methods in the literature. In addition, in each selected problem, the aspect of interpretability is also assessed, which is essential for explainability evaluation.
206

[en] ELECTRIC LOAD FORECASTING MODEL CONSIDERING THE INFLUENCE OF DISTRIBUTED GENERATION ON THE LOAD CURVE PROFILE / [pt] MODELO DE PREVISÃO DE CARGA ELÉTRICA CONSIDERANDO A INFLUÊNCIA DA MINI E MICROGERAÇÃO DISTRIBUÍDA NO PERFIL DA CURVA DE CARGA

RAFAEL GAIA DUARTE 28 June 2021 (has links)
[pt] O Brasil vem registrando a cada ano um crescimento expressivo no número de conexões de geração distribuída na rede de distribuição devido à concessão de incentivos governamentais que permitiu a difusão do uso de placas solares fotovoltaicas, fonte de geração de energia mais usada na geração distribuída no Brasil. Em sistemas elétricos com alta penetração de fontes intermitentes a previsão do comportamento da curva de carga tende a representar um grande desafio para os operadores do sistema devido à imprevisibilidade associada à geração de energia, podendo impactar diretamente no planejamento e operação da rede elétrica. Para lidar com esse desafio, este trabalho propõe uma metodologia de previsão de carga usando redes neurais recorrentes com arquitetura LSTM, considerando o impacto da mini e microgeração distribuída solar fotovoltaica conectada à rede de distribuição brasileira. São feitas previsões de carga do Sistema Interligado Nacional brasileiro e dos subsistemas que o integram, levando em conta um horizonte de curto prazo, de 24 horas, em intervalos horários, e um horizonte de médio prazo, de 60 meses, em intervalos mensais. Os resultados indicam que a metodologia pode ser uma ferramenta eficiente para a obtenção de previsões de carga podendo ser utilizada também para horizontes de previsão distintos dos apresentados neste trabalho. O MAPE encontrado para as previsões de curto prazo não passam de 2 por cento e para as previsões de médio prazo não passam de 3,5 por cento. / [en] Every year, Brazil has been registering a significant growth in the number of distributed generation connections in the distribution grid due to the granting of government incentives that allowed the use of solar photovoltaic panels to spread, the most used source of energy in distributed generation in Brazil. In electrical systems with high penetration of intermittent sources, the prediction of the behavior of the load curve tends to represent a great challenge for system operators due to the unpredictability associated with power generation, which can directly impact the planning and operation of the electrical grid. To deal with this challenge, this work proposes a load forecasting methodology using recurrent neural networks with LSTM architecture, considering the impact of the distributed photovoltaic solar generation connected to the Brazilian distribution grid. Load forecasts are made for the Brazilian National Interconnected System and for the subsystems that integrate it, taking into account a short-term horizon, of 24 hours, in hourly intervals, and a medium-term horizon, of 60 months, in monthly intervals. The results indicate that the methodology can be an efficient tool for obtaining load forecasts and can also be used for different forecast horizons than those presented in this work. The MAPE found for short-term forecasts is no more than 2 percent and for medium-term forecasts, no more than 3.5 percent.
207

[pt] A PREVISIBILIDADE DAS TAXAS DE CRESCIMENTO DE EMPRESAS DE CAPITAL ABERTO LISTADAS NA BOVESPA NO PERÍODO 1994-2003 ATRAVÉS DE ÍNDICES DE VALOR / [en] THE PREDICABILITY OF GROWTH RATES OF COMPANIES LISTED AT BOVESPA IN THE PERIOD OF 1994-2003 USING VALUATION RATIOS

PATRICIA HELENA GOES SEIZE 22 November 2005 (has links)
[pt] A busca por modelos de avaliação cada vez mais precisos tem sido uma preocupação permanente no âmbito das finanças corporativas. No entanto, para que estes modelos gerem bons resultados, é preciso que estimativas do comportamento futuro de contas como receitas, custos, despesas e investimentos estejam bem avaliadas. Dentro deste contexto se insere a importância da previsão das taxas de crescimento. Elas dependem de diversos fatores, externos e internos à empresa e que são, muitas vezes, de extrema complexidade. Na tentativa de tornar esta estimativa mais objetiva, o presente trabalho procura avaliar a hipótese de que índices de mercado bastante utilizados pelos analistas financeiros, como preço de mercado da ação-lucro, preço de mercado da ação-valor patrimonial por ação e preço de mercado da ação - vendas, são capazes de fornecer indícios sobre o comportamento futuro das contas receita bruta, EBITDA e lucro operacional de empresas listadas na Bolsa de Valores de São Paulo (BOVESPA) durante o período 1994-2003. Através do teste estatístico não- paramétrico de Wilcoxon, o estudo fornece indícios de que a variável preço de mercado da ação - valor patrimonial por ação possui valores maiores para empresas de baixo crescimento e menores para empresas de médio e alto crescimento. Para as variáveis preço-lucro e preço-vendas não se observam diferenças significativas de valor entre os grupos de baixo, médio ou alto crescimento. / [en] The search for more accurate evaluation models has been a permanent activity within the field of corporative finances. A successful model must forecast, with a high degree of confidence and accuracy, the future behavior of incomes, costs, expenditures and investments. Companies´ growth rates are also important; they depend on several internal and external factors and their evaluation can be a very complex task. Our work evaluates critically some valuation ratios used by financial analysts like: price-to-earnings, market-to-book and price-to-sales ratios, in order to obtain useful information about the following itens future behavior: Gross Revenue, EBITDA and Operating Profit of companies listed at São Paulo Stock Exchange (BOVESPA) during the period 1994-2003. The Wilcoxon´s nonparametric test suggests: an inverse relationship between the market- to-book index to the registered companies growth rate and no noticeable relationship between price-to-earnings ratios and price-to-sales ratios to the same companies´ growth rate.
208

[pt] MODELAGEM DA DATA DE ENTRADA EM PRODUÇÃO DE POÇOS DE PETRÓLEO UTILIZANDO INFERÊNCIA FUZZY / [en] MODELING OIL WELL PRODUCTION START DATE USING FUZZY INFERENCE

GABRIEL ALCANTARA BOMFIM 11 May 2017 (has links)
[pt] A previsão de produção é uma das etapas mais críticas do planejamento de curto prazo das empresas de exploração e produção de petróleo. O volume de petróleo que será produzido, denominado meta de produção, influencia diretamente todas as ações das empresas e tem crítico impacto em relação ao mercado. Percebe-se, portanto, a importância da aplicação de modelos que permitam considerar incertezas e avaliar o risco destas previsões. Esta modelagem estocástica tem sido realizada através de um modelo de simulação que considera quatro dimensões de variáveis: Potencial Produtivo Instalado, Entrada de Novos Poços, Parada Programada para Manutenção e Eficiência Operacional. Dentre as dimensões do modelo, a Entrada de Novos Poços é uma das mais sensíveis ao resultado final da previsão por apresentar grande incerteza. Desse modo, este trabalho tem por objetivo desenvolver um sistema de inferência fuzzy para prever a data de entrada em produção de poços de petróleo. O sistema é concebido integrado ao modelo de simulação visando aumentar a sua precisão. Os resultados mostram que o sistema de inferência fuzzy é aplicável à previsão da entrada de novos poços e que o seu uso eleva a acurácia das previsões de produção. / [en] Production forecasting is one of the most critical stages in short-term planning in upstream oil companies. The oil volume that will be produced, called production target, directly influences all companies actions and impact critically their market image. Therefore, it is noticed the importance of using models to consider uncertainties to evaluate production forecasting risks. This stochastic approach has been done through a simulation model which consider four dimensions of variables: installed production potential, new wells entry, scheduled maintenance program, and operational efficiency. Among those dimensions, the new wells entry is one of the most sensitive to the simulation results, because of its high degree of uncertainty. Thus, this work aims to develop a fuzzy inference system to forecast the new wells production start date. The system is designed integrated to the simulation model in order to increase its accuracy. The results show that the fuzzy inference system can be used to forecast wells production start date and its use increases oil production forecasting accuracy.
209

[pt] AJUSTE ÓTIMO POR LEVENBERG-MARQUARDT DE MÉTODOS DE PREVISÃO PARA INICIAÇÃO DE TRINCA / [en] OPTIMAL FIT BY LEVENBERG-MARQUARDT OF PREDICTION METHODS FOR CRACK INITIATION

GABRIELA WEGMANN LIMA 01 November 2022 (has links)
[pt] A grande maioria das estruturas que trabalham sob cargas alternadas precisa ser dimensionada para evitar a iniciação de trincas por fadiga, o principal mecanismo de dano mecânico nesses casos. Os vários parâmetros dos modelos de previsão de dano à fadiga usados nesses projetos devem ser preferencialmente medidos a partir do ajuste otimizado de suas equações a dados experimentais medidos de forma adequada. Na realidade, a precisão das previsões baseadas nesses modelos depende diretamente da qualidade dos ajustes utilizados para obtenção desses parâmetros. Sendo assim, o objetivo principal deste trabalho é estudar a melhor maneira de se obter os parâmetros dos principais modelos de previsão da iniciação de trincas por fadiga através de ajustes de dados experimentais baseados no algoritmo de LevenbergMarquardt. Primeiro, foram realizados diversos ensaios εN em uma liga de alumínio 6351-T6 para averiguar o desempenho do ajuste proposto para asequações de Coffin-Manson e de Ramberg-Osgood. Em seguida, foram usados dados da literatura de outros oito materiais para ajustar modelos deformaçãovida clássicos, assim como com o expoente de Walker, para assim avaliar o efeito de cargas médias não-nulas em testes εN. Por fim, foi estudado o ajuste de um modelo SN com expoente de Walker que considera limites de fadiga e efeitos de carga média. Esse estudo também inclui considerações estatísticas para quantificar o fator de confiabilidade a partir de diferentes hipóteses de funções densidade de probabilidade, baseadas em dez conjuntos de dados da literatura. / [en] Most structures working under alternate loadings must be dimensioned to prevent fatigue crack initiation, the main mechanism of mechanical damage in these cases. The various parameters from the fatigue damage prediction models used in these projects should preferably be measured by optimally fitting their equations to well-measured experimental data. In fact, the accuracy of the predictions based on these models depends directly on the quality of the adjustments used to obtain these parameters. As a result, the main purpose of this work is to study the best way to obtain the parameters of the leading prediction models of fatigue crack initiation through experimental data fittings based on the Levenberg-Marquardt algorithm. First, several εN tests were performed on a 6351-T6 aluminum alloy to verify the performance of the proposed fit for the Coffin-Manson and Ramberg-Osgood equations. Then, data from the literature of eight other materials were used to fit classic strainlife models, as well as models based on the Walker exponent, to evaluate the effect of non-zero mean loads in εN tests. Finally, the fitting of an SN model including the Walker exponent was studied, which considers fatigue limits and mean load effects. This study includes as well statistical considerations to quantify the reliability factor from different probability density function assumptions, based on ten data sets from the literature.
210

[en] GETTING THE MOST OUT OF THE WISDOM OF THE CROWDS: IMPROVING FORECASTING PERFORMANCE THROUGH ENSEMBLE METHODS AND VARIABLE SELECTION TECHNIQUES / [pt] TIRANDO O MÁXIMO PROVEITO DA SABEDORIA DAS MASSAS: APRIMORANDO PREVISÕES POR MEIO DE MÉTODOS DE ENSEMBLE E TÉCNICAS DE SELEÇÃO DE VARIÁVEIS

ERICK MEIRA DE OLIVEIRA 03 June 2020 (has links)
[pt] A presente pesquisa tem como foco o desenvolvimento de abordagens híbridas que combinam algoritmos de aprendizado de máquina baseados em conjuntos (ensembles) e técnicas de modelagem e previsão de séries temporais. A pesquisa também inclui o desenvolvimento de heurísticas inteligentes de seleção, isto é, procedimentos capazes de selecionar, dentre o pool de preditores originados por meio dos métodos de conjunto, aqueles com os maiores potenciais de originar previsões agregadas mais acuradas. A agregação de funcionalidades de diferentes métodos visa à obtenção de previsões mais acuradas sobre o comportamento de uma vasta gama de eventos/séries temporais. A tese está dividida em uma sequência de ensaios. Como primeiro esforço, propôsse um método alternativo de geração de conjunto de previsões, o que resultou em previsões satisfatórias para certos tipos de séries temporais de consumo de energia elétrica. A segunda iniciativa consistiu na proposição de uma nova abordagem de previsão combinando algoritmos de Bootstrap Aggregation (Bagging) e técnicas de regularização para se obter previsões acuradas de consumo de gás natural e de abastecimento de energia em diferentes países. Uma nova variante de Bagging, na qual a construção do conjunto de classificadores é feita por meio de uma reamostragem de máxima entropia, também foi proposta. A terceira contribuição trouxe uma série de inovações na maneira pela qual são conduzidas as rotinas de seleção e combinação de modelos de previsão. Os ganhos em acurácia oriundos dos procedimentos propostos são demonstrados por meio de um experimento extensivo utilizando séries das Competições M1, M3 e M4. / [en] This research focuses on the development of hybrid approaches that combine ensemble-based supervised machine learning techniques and time series methods to obtain accurate forecasts for a wide range of variables and processes. It also includes the development of smart selection heuristics, i.e., procedures that can select, among the pool of forecasts originated via ensemble methods, those with the greatest potential of delivering accurate forecasts after aggregation. Such combinatorial approaches allow the forecasting practitioner to deal with different stylized facts that may be present in time series, such as nonlinearities, stochastic components, heteroscedasticity, structural breaks, among others, and deliver satisfactory forecasting results, outperforming benchmarks on many occasions. The thesis is divided into a series of essays. The first endeavor proposed an alternative method to generate ensemble forecasts which delivered satisfactory forecasting results for certain types of electricity consumption time series. In a second effort, a novel forecasting approach combining Bootstrap aggregating (Bagging) algorithms, time series methods and regularization techniques was introduced to obtain accurate forecasts of natural gas consumption and energy supplied series across different countries. A new variant of Bagging, in which the set of classifiers is built by means of a Maximum Entropy Bootstrap routine, was also put forth. The third contribution brought a series of innovations to model selection and model combination in forecasting routines. Gains in accuracy for both point forecasts and prediction intervals were demonstrated by means of an extensive empirical experiment conducted on a wide range of series from the M- Competitions.

Page generated in 0.0469 seconds