• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 12
  • 2
  • 1
  • Tagged with
  • 85
  • 85
  • 82
  • 47
  • 31
  • 27
  • 22
  • 21
  • 20
  • 19
  • 19
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Representing video game style with procedurally generated content : How wave function collapse can be used to represent style in video games

Hedman, Filip, Håkansson, Martin January 2023 (has links)
As the video gaming industry continues to grow, developers face increasing pressure to produce innovative content swiftly and cost-effectively. Procedural Content Generation (PCG), the use of algorithms to automate content creation, offers a solution to this problem. This paper explores the PCG algorithm wave function collapse’s (WFC) potential for replicating the stylistic design in video games. We provide an exploration of how the WFC algorithm works and discuss the methodology used to evaluate the generator’s ability to generate content that mimics a video game style. The study evaluates the algorithm’s efficacy by generating levels in the style of the iconic game Super Mario Bros, highlighting its ability to produce original content while maintaining the game’s stylistic features. Additionally, we do an examination of the research surrounding PCG and Machine Learning in Super Mario Bros, drawing comparisons with our methodology. The paper concludes with an assessment of WFC’s capabilities to replicate style with its generated content with the help of earlier established evaluation metrics. / Med den växande videospelsindustrin så möter utvecklare ett ökande tryck att producera innovativt innehåll snabbt och kostnadseffektivt. Procedural Content Generation (PCG), användningen av algoritmer för att automatisera skapandet av sådant innehåll, erbjuder en lösning på detta problem. Denna artikeln utforskar PCG-algoritmen wave function collapses (WFC) potentiella användning för att replikera design i datorspel. Vi ger en förklaring hur WFC-algoritmen fungerar och diskuterar metodiken som används för att utvärdera generatorns förmåga att generera innehåll som efterliknar ett visst datorspel stil. Studien utvärderar algoritmens effektivitet genom att generera nivåer i samma stil som i det ikoniska spelet Super Mario Bros, vilket betonar algoritmens förmåga att producera originellt innehåll samtidigt som den bevarar spelets stilistiska egenskaper. Dessutom undersöker forskningen kring PCG och maskininlärning i Super Mario Bros, och gör jämförelser med vår egna metodik. Uppsatsen avslutas med en bedömning av WFC:s förmåga att replikera stil med dess genererade innehåll med hjälp av tidigare etablerade utvärderingsmått.
82

A Study on Controllability for Automatic Terrain Generators

Arnoldsson, Anton January 2017 (has links)
Procedural Content Generators (PCG) typically excel at generating a large amount of content in a short period of time. Whilst this is making PCG very applicable for the game industry, simplistic implementations of PCG lack in Usability whereas complex implementations of PCG lack in Controllability. The purpose of this study is therefore to deepen our understanding on the correlation between Controllability and Usability in algorithmic generators that utilizes a generic and constructive approach to generate terrain in games.Furthermore the findings in this study can be used in the field of procedural terrain generators to study deterministic generators that utilize Automatic generation, from a Usability or Controllability perspective.
83

Deep Synthesis of Distortion-free 3D Omnidirectional Imagery from 2D Images

Christopher K May (18422640) 22 April 2024 (has links)
<p dir="ltr">Omnidirectional images are a way to visualize an environment in all directions. They have a spherical topology and require careful attention when represented by a computer. Namely, mapping the sphere to a plane introduces stretching of the spherical image content, and requires at least one seam in the image to be able to unwrap the sphere. Generative neural networks have shown impressive ability to synthesize images, but generating spherical images is still challenging. Without specific handling of the spherical topology, the generated images often exhibit distorted contents and discontinuities across the seams. We describe strategies for mitigating such distortions during image generation, as well as ensuring the image remains continuous across all boundaries. Our solutions can be applied to a variety of spherical image representations, including cube-maps and equirectangular projections.</p><p dir="ltr">A closely related problem in generative networks is 3D-aware scene generation, wherein the task involves the creation of an environment in which the viewpoint can be directly controlled. Many NeRF-based solutions have been proposed, but they generally focus on generation of single objects or faces. Full 3D environments are more difficult to synthesize and are less studied. We approach this problem by leveraging omnidirectional image synthesis, using the initial features of the network as a transformable foundation upon which to build the scene. By translating within the initial feature space, we correspondingly translate in the output omnidirectional image, preserving the scene characteristics. We additionally develop a regularizing loss based on epipolar geometry to encourage geometric consistency between viewpoints. We demonstrate the effectiveness of our method with a structure-from-motion-based reconstruction metric, along with comparisons to related works.</p>
84

Uma abordagem evolutiva para geração procedural de níveis em jogos de quebra-cabeças baseados em física / An evolutionary approach for procedural generation of levels in physics-based puzzle games

Ferreira, Lucas Nascimento 15 July 2015 (has links)
Na última década diversos algoritmos baseados em busca foram desenvolvidos para a geração de níveis em diferentes tipos de jogos. O espaço de busca para geração de níveis geralmente possui restrições, uma vez que a mecânica de um jogo define regras de factibilidade para os níveis. Em alguns métodos, a avaliação de factibilidade requer uma simulação com um agente inteligente que controla o jogo. Esse processo de avaliação geralmente possui ruído, causado por componentes aleatórios no simulador ou na estratégia do agente. Diversos trabalhos têm utilizado simulação como forma de avaliação de conteúdo, no entanto, nenhum deles discutiu profundamente a presença de ruído neste tipo de abordagem. Assim, esse trabalho apresenta um algoritmo genético capaz de gerar níveis factíveis que são avaliados por um agente inteligente em uma simulação ruidosa. O algoritmo foi aplicado a jogos de quebra-cabeças baseados em física com a mecânica do Angry Birds. Uma representação dos níveis em forma de indivíduos é introduzida, a qual permite que o algoritmo genético os evolua com características diferenciadas. O ruído na função de aptidão é tratado por uma nova abordagem, baseada em uma sistema de cache, que auxilia o algoritmo genético a encontrar boas soluções candidatas. Três conjuntos de experimentos foram realizados para avaliar o algoritmo. O primeiro compara o método de cache proposto com outros métodos de redução de ruído da literatura. O segundo mede a expressividade do algoritmo genético considerando as características estruturais dos níveis gerados. O último avalia os níveis gerados considerando aspectos de design (como dificuldade, imersão e diversão), os quais são medidos por meio de questionários respondidos por jogadores humanos via Internet. Os resultados mostraram que o algoritmo genético foi capaz de gerar níveis distintos que são tão imersíveis quanto níveis produzidos manualmente. Além disso, a abordagem de cache lidou apropriadamente com o ruído nos cálculos de aptidão, permitindo uma correta evolução elitista. / In the last decade several search-based algorithms have been developed for generating levels in different types of games. The search space for level generation is typically constrained once the game mechanics define feasibility rules for the levels. In some methods, evaluating level feasibility requires a simulation with an intelligent agent which plays the game. This evaluation process usually has noise, caused by random components in the simulator or in the agent strategy. Several works have used a simulation for content evaluation, however, none of them have deeply discussed the presence of noise in this kind of approach. Thus, this paper presents a genetic algorithm capable of generating feasible levels that are evaluated by an intelligent agent in a noisy simulation. The algorithm was applied to physics-based puzzle games with the Angry Birds mechanics. A level representation in the form of individuals is introduced, which allows the genetic algorithm to evolve them with distinct characteristics. The fitness function noise is handled by a new approach, based on a cache system, which helps the genetic algorithm finding good candidate solutions. Three sets of experiments were conducted to evaluate the algorithm. The first one compares the proposed cache approach with other noise reduction methods of the literature. The second one measures the expressivity of the genetic algorithm considering the structural characteristics of the levels. The last one evaluates design aspects (such as difficulty, immersion and fun) of the generated levels using questionnaires answered by human players via Internet. Results showed the genetic algorithm was capable of generating distinct levels that are as immersive as levels manually designed. Moreover, the cache approach handled properly the noise in the fitness calculations, allowing a correct elitist evolution.
85

Uma abordagem evolutiva para geração procedural de níveis em jogos de quebra-cabeças baseados em física / An evolutionary approach for procedural generation of levels in physics-based puzzle games

Lucas Nascimento Ferreira 15 July 2015 (has links)
Na última década diversos algoritmos baseados em busca foram desenvolvidos para a geração de níveis em diferentes tipos de jogos. O espaço de busca para geração de níveis geralmente possui restrições, uma vez que a mecânica de um jogo define regras de factibilidade para os níveis. Em alguns métodos, a avaliação de factibilidade requer uma simulação com um agente inteligente que controla o jogo. Esse processo de avaliação geralmente possui ruído, causado por componentes aleatórios no simulador ou na estratégia do agente. Diversos trabalhos têm utilizado simulação como forma de avaliação de conteúdo, no entanto, nenhum deles discutiu profundamente a presença de ruído neste tipo de abordagem. Assim, esse trabalho apresenta um algoritmo genético capaz de gerar níveis factíveis que são avaliados por um agente inteligente em uma simulação ruidosa. O algoritmo foi aplicado a jogos de quebra-cabeças baseados em física com a mecânica do Angry Birds. Uma representação dos níveis em forma de indivíduos é introduzida, a qual permite que o algoritmo genético os evolua com características diferenciadas. O ruído na função de aptidão é tratado por uma nova abordagem, baseada em uma sistema de cache, que auxilia o algoritmo genético a encontrar boas soluções candidatas. Três conjuntos de experimentos foram realizados para avaliar o algoritmo. O primeiro compara o método de cache proposto com outros métodos de redução de ruído da literatura. O segundo mede a expressividade do algoritmo genético considerando as características estruturais dos níveis gerados. O último avalia os níveis gerados considerando aspectos de design (como dificuldade, imersão e diversão), os quais são medidos por meio de questionários respondidos por jogadores humanos via Internet. Os resultados mostraram que o algoritmo genético foi capaz de gerar níveis distintos que são tão imersíveis quanto níveis produzidos manualmente. Além disso, a abordagem de cache lidou apropriadamente com o ruído nos cálculos de aptidão, permitindo uma correta evolução elitista. / In the last decade several search-based algorithms have been developed for generating levels in different types of games. The search space for level generation is typically constrained once the game mechanics define feasibility rules for the levels. In some methods, evaluating level feasibility requires a simulation with an intelligent agent which plays the game. This evaluation process usually has noise, caused by random components in the simulator or in the agent strategy. Several works have used a simulation for content evaluation, however, none of them have deeply discussed the presence of noise in this kind of approach. Thus, this paper presents a genetic algorithm capable of generating feasible levels that are evaluated by an intelligent agent in a noisy simulation. The algorithm was applied to physics-based puzzle games with the Angry Birds mechanics. A level representation in the form of individuals is introduced, which allows the genetic algorithm to evolve them with distinct characteristics. The fitness function noise is handled by a new approach, based on a cache system, which helps the genetic algorithm finding good candidate solutions. Three sets of experiments were conducted to evaluate the algorithm. The first one compares the proposed cache approach with other noise reduction methods of the literature. The second one measures the expressivity of the genetic algorithm considering the structural characteristics of the levels. The last one evaluates design aspects (such as difficulty, immersion and fun) of the generated levels using questionnaires answered by human players via Internet. Results showed the genetic algorithm was capable of generating distinct levels that are as immersive as levels manually designed. Moreover, the cache approach handled properly the noise in the fitness calculations, allowing a correct elitist evolution.

Page generated in 0.0883 seconds