• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 7
  • 2
  • Tagged with
  • 35
  • 35
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Macroscopic theory of sound propagation in rigid-framed porous materials allowing for spatial dispersion : principle and validation / Théorie macroscopique de la propagation du son dans les matériaux poreux incluant les phénomènes de dispersion spatiale : principe et validation

Nemati, Navid 11 December 2012 (has links)
Ce travail présente et valide une théorie nonlocale nouvelle et généralisée, de la propagation acoustique dans les milieux poreux à structure rigide, saturés par un fluide viscothermique. Cette théorie linéaire permet de dépasser les limites de la théorie classique basée sur la théorie de l’homogénéisation. Elle prend en compte non seulement les phénomènes de dispersion temporelle, mais aussi ceux de dispersion spatiale. Dans le cadre de la nouvelle approche, une nouvelle procédure d’homogénéisation est proposée, qui permet de trouver les propriétés acoustiques à l’échelle macroscopique, en résolvant deux problèmes d’action-réponse indépendants, posés à l’échelle microscopique de Navier-Stokes-Fourier. Contrairement à la méthode classique d’homogénéisation, aucune contrainte de séparation d’échelle n’est introduite. En l’absence de structure solide, la procédure redonne l’équation de dispersion de Kirchhoff-Langevin, qui décrit la propagation des ondes longitudinales dans les fluides viscothermiques. La nouvelle théorie et procédure d’homogénéisation nonlocale sont validées dans trois cas, portant sur des microgéométries significativement différentes. Dans le cas simple d’un tube circulaire rempli par un fluide viscothermique, on montre que les nombres d’ondes et les impédances prédits par la théorie nonlocale, coïncident avec ceux de la solution exacte de Kirchhoff, connue depuis longtemps. Au contraire, les résultats issus de la théorie locale (celle de Zwikker et Kosten, découlant de la théorie classique d’homogénéisation) ne donnent que le mode le plus attenué, et encore, seulement avec le petit désaccord existant entre la solution simplifiée de Zwikker et Kosten et celle exacte de Kirchhoff. Dans le cas où le milieu poreux est constitué d’un réseau carré de cylindres rigides parallèles, plongés dans le fluide, la propagation étant regardée dans une direction transverse, la vitesse de phase du mode le plus atténué peut être calculée en fonction de la fréquence en suivant les approches locale et nonlocale, résolues au moyen de simulations numériques par la méthode des Eléments Finis. Elle peut être calculée d’autre part par une méthode complètement différente et quasi-exacte, de diffusion multiple prenant en compte les effets viscothermiques. Ce dernier résultat quasi-exact montre un accord remarquable avec celui obtenu par la théorie nonlocale, sans restriction de longueur d’onde. Avec celui de la théorie locale, l’accord ne se produit que tant que la longueur d’onde reste assez grande. Enfin, dans le cas où la microgéométrie, formée de portions de conduits droits, est celle de résonateurs de Helmholtz placés en dérivation sur un guide principal, on peut, en appliquant la nouvelle procédure d’homogénéisation de la théorie nonlocale, et en modélisant les champs par des ondes planes aller retour dans chacune des portions droites, calculer les deux fonctions de densité et compressibilité effectives du milieu dans l’espace de Fourier. Sans faire d’erreur appréciable les ondes planes aller-retour en question peuvent être décrites par les formules Zwikker et Kosten. Disposant ainsi des fonctions densité et compressibilité effectives, le nombre d’onde du mode le plus atténué peut être calculé en résolvant une équation de dispersion établie via la théorie nonlocale. Ce nombre d’onde peut être indépendamment calculé d’une manière plus classique pour les ondes de Bloch, sans passer par la théorie nonlocale, mais en faisant les mêmes simplifications consistant à introduire dans les différentes portions, des ondes planes décrites par les formules Zwikker et Kosten. On observe alors, encore, un accord remarquable entre le nombre d’onde calculé classiquement, et le nombre d’onde calculé via la procédure nonlocale : le comportement résonnant exact est reproduit par la théorie nonlocale. Il s’interprète comme un simple effet de la dispersion spatiale, montrant la puissance de la nouvelle approche. / This work is dedicated to present and validate a new and generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid. This theory allows to go beyond the limits of the classical local theory and within the limits of linear theory, to take not only temporal dispersion, but also spatial dispersion into account. In the framework of the new approach, a homogenization procedure is proposed to upscale the dynamics of sound propagation from Navier-Stokes-Fourier scale to the volume-average scale, through solving two independent microscopic action-response problems. Contrary to the classical method of homogenization, there is no length-constraint to be considered alongside of the development of the new method, thus, there is no frequency limit for the medium effective properties to be valid. In absence of solid matrix, this procedure leads to Kirchhoff-Langevin’s dispersion equation for sound propagation in viscothermal fluids. The new theory and upscaling procedure are validated in three cases corresponding to three different periodic microgeometries of the porous structure. Employing a semi-analytical method in the simple case of cylindrical circular tubes filled with a viscothermal fluid, it is found that the wavenumbers and impedances predicted by nonlocal theory match with those of the long-known Kirchhoff’s exact solution, while the results by local theory (Zwikker and Kosten’s) yield only the wavenumber of the least attenuated mode, in addition, with a small discrepancy compared to Kirchhoff’s. In the case where the porous medium is made of a 2D square network of cylindrical solid inclusions, the frequency-dependent phase velocities of the least attenuated mode are computed based on the local and nonlocal approaches, by using direct Finite Element numerical simulations. The phase velocity of the least attenuated Bloch wave computed through a completely different quasi-exact multiple scattering method taking into account the viscothermal effects, shows a remarkable agreement with those obtained by the nonlocal theory in a wide frequency range. When the microgeometry is in the form of daisy chained Helmholtz resonators, using the upscaling procedure in nonlocal theory and a plane wave modelling lead to two effective density and bulk modulus functions in Fourier space. In the framework of the new upscaling procedure, Zwikker and Kosten’s equations governing the pressure and velocity fields’ dynamics averaged over the crosssections of the different parts of Helmholtz resonators, are employed in order to coarse-grain them to the scale of a periodic cell containing one resonator. The least attenuated wavenumber of the medium is obtained through a dispersion equation established via nonlocal theory, while an analytical modelling is performed, independently, to obtain the least attenuated Bloch mode propagating in the medium, in a frequency range where the resonance phenomena can be observed. The results corresponding to these two different methods show that not only the Bloch wave modelling, but also, especially, the modelling based on the new theory can describe the resonance phenomena originating from the spatial dispersion effects present in the macroscopic dynamics of the matarial.
12

Modeling of sound propagation in forests using the transmission line matrix method : study of multiple scattering and ground effects related to forests / Simulation de la propagation du son en forêt par la méthode des lignes de transmission : Étude de la diffusion multiple et des effets au sol liés à la forêt

Chobeau, Pierre 06 November 2014 (has links)
Les trois principaux phénomènes acoustiques propres au milieu forestier nécessitant d'être pris en compte sont (1) l'absorption due à la présence d'un sol multi-couche, (2) la diffusion multiple due à la présence d'obstacles tels que les troncs, (3) les effets micro-météorologiques rattachés aux variations des gradients de vitesse de vent et de température. Parmi les méthodes numériques de référence, la méthode des lignes de transmission (TLM), semble particulièrement adaptée pour la modélisation de la propagation acoustique en présence de forêt, à condition de procéder à de nouveaux développements. La première nécessité pour l'adaptation de la méthode TLM aux simulations acoustiques sur de grandes distances est la définition de couches absorbantes, permettant de tronquer efficacement le domaine d'étude, sans introduire de réflexions parasites. La formulation ainsi développée dans le cadre de la thèse est rigoureusement équivalente à l'équation de propagation des ondes amorties, et se traduit dans la méthode TLM par l'introduction et l'optimisation d'un terme de dissipation. L'étape suivante a consisté à vérifier la capacité de la méthode TLM à modéliser les phénomènes de diffusion par des cylindres. L’une des originalités introduites dans cette thèse réside dans le placement des éléments diffuseurs, à partir de lois de distribution aléatoire et de Gibbs, permettant ainsi de définir des répartitions proches de celles rencontrées en forêt. À titre d'application de la méthode développée dans le cadre de la thèse, une étude paramétrique a été réalisée afin de définir les conditions pour lesquelles une forêt peut également être considérée comme un dispositif de protection. / The prediction of sound propagation in presence of forest remains a major challenge for the outdoor sound propagation community. Reference numerical models such as the Transmission Line Matrix (TLM) method can be developed in order to accurately predict each acoustical phenomenon that takes place inside forest. The first need for the TLM method is an efficient theory-based absorbing layer formulation that enables the truncation of the numerical domain. The two proposed absorbing layer formulations are based on the approximation of the perfectly matched layer theory. The most efficient proposed formulation is shown to be equivalent to wave propagation in a lossy media, which, in the TLM method formulation, is introduced using an additional dissipation term. Then, the ability of the TLM method for the simulation of scattering is studied comparing the numerical results to both analytical solutions and measurements on scale models. Lastly, the attenuation of acoustic levels by a simplified forest is numerically studied using several arrangements of cylinders placed normal to either reflecting or absorbing ground. It is observed that randomly spaced arrangements are more inclined to attenuate acoustic waves than periodic arrangements. Moreover, the sensitivity to the density, the length of the array and the ground absorption is tested. The main trend shows that the density and the distribution are two important parameters for the attenuation. In future work, it can be interesting to look at the sensitivity of each parameter. This study could then be used to relate the morphology (i.e. distribution, density, length) of a forest to the acoustical properties of the forest.
13

Modélisation numérique pour l'acoustique environnementale : simulation de champs météorologiques et intégration dans un modèle de propagation

Aumond, Pierre, Berengier, Michel, Gauvreau, Benoit, Lac, Christine, Masson, Valery 13 December 2011 (has links) (PDF)
Il existe aujourd'hui un enjeu sociétal majeur à s'intéresser à la propagation du son en milieu extérieur et notamment, dans notre contexte, à diminuer l'incertitude sur l'estimation des niveaux sonores et améliorer ainsi la précision des diverses analyses, du bureau d'étude à l'institut de recherche. Dans le cadre de l'acoustique environnementale, l'influence des conditions météorologiques sur la propagation acoustique en milieu extérieur peut être importante. Il est donc nécessaire d'appréhender et de quantifier les phénomènes météorologiques de micro-échelles que l'on observe dans la couche limite atmosphérique. Dans ce but, le modèle météorologique de recherche de Météo-France (Meso-NH) a été utilisé. Après avoir comparé les résultats de ce modèle à très fine résolution (de l'ordre du mètre) à l'aide des bases de données de deux campagnes expérimentales (Lannemezan 2005 et la Station de Long Terme), il s'est avéré nécessaire de développer cet outil en intégrant la prise en compte de la force de traînée des arbres. Dès lors, les résultats issus de Meso-NH sur les champs de vent, de température et d'énergie cinétique turbulente aparraissent satisfaisants. Ces informations sont par la suite utilisées en données d'entrée du modèle de propagation acoustique. Le modèle acoustique temporel utilisé est basé sur la méthode Transmission Line Matrix (TLM). Son développement a été effectué dans le but d'être appliqué à la propagation acoustique en milieu extérieur : prise en compte du relief, de différents types de sol, des conditions atmosphériques, etc. La validation numérique de la méthode TLM, par comparaison avec d'autres modèles (analytique et numérique de type Equation Parabolique), a permis de montrer la pertinence de son utilisation dans le cadre de l'acoustique environnementale. Enfin, à l'aide de ces modèles, des niveaux sonores simulés sous différentes conditions de propagation (favorables, défavorables, homogènes) ont été comparés aux mesures in-situ réalisées lors de la campagne expérimentale de Lannemezan 2005. Les résultats se sont avérés très satisfaisants au regard de la variabilité des phénomènes observés. Cependant, l'utilisation des champs issus d'un modèle micrométéorologique de type Meso-NH reste délicate du fait de la forte sensibilité du niveau sonore aux profils verticaux de célérité du son. L'étude de faisabilité sur une expérience plus complexe (la Station de Long Terme) est encourageante et, à condition de disposer d'importants moyens de calculs, elle permet de considérer la TLM comme une nouvelle méthode de référence et ainsi, d'envisager d'élargir son domaine d'utilisation à d'autres applications.
14

Modélisation numérique pour l'acoustique environnementale : simulation de champs météorologiques et intégration dans un modèle de propagation / Numerical modelling for environnemental acoustics : meteorological fields simulation and integration in an outdoor sound propagation model

Aumond, Pierre 13 December 2011 (has links)
Il existe aujourd'hui un enjeu sociétal majeur à s'intéresser à la propagation du son en milieu extérieur etnotamment, dans notre contexte, à diminuer l'incertitude sur l'estimation des niveaux sonores et améliorer ainsi laprécision des diverses analyses, du bureau d'étude à l'institut de recherche. Dans le cadre de l'acoustiqueenvironnementale, l'influence des conditions météorologiques sur la propagation acoustique en milieu extérieurpeut être importante. Il est donc nécessaire d'appréhender et de quantifier les phénomènes météorologiques demicro-échelles que l'on observe dans la couche limite atmosphérique.Dans ce but, le modèle météorologique de recherche de Météo-France (Meso-NH) a été utilisé. Après avoircomparé les résultats de ce modèle à très fine résolution (de l'ordre du mètre) à l'aide des bases de données de deuxcampagnes expérimentales (Lannemezan 2005 et la Station de Long Terme), il s'est avéré nécessaire de développercet outil en intégrant la prise en compte de la force de traînée des arbres. Dès lors, les résultats issus de Meso-NH surles champs de vent, de température et d'énergie cinétique turbulente aparraissent satisfaisants. Ces informationssont par la suite utilisées en données d'entrée du modèle de propagation acoustique.Le modèle acoustique temporel utilisé est basé sur la méthode Transmission Line Matrix (TLM). Sondéveloppement a été effectué dans le but d'être appliqué à la propagation acoustique en milieu extérieur : prise encompte du relief, de différents types de sol, des conditions atmosphériques, etc. La validation numérique de laméthode TLM, par comparaison avec d'autres modèles (analytique et numérique de type Equation Parabolique), apermis de montrer la pertinence de son utilisation dans le cadre de l'acoustique environnementale.Enfin, à l'aide de ces modèles, des niveaux sonores simulés sous différentes conditions de propagation(favorables, défavorables, homogènes) ont été comparés aux mesures in-situ réalisées lors de la campagneexpérimentale de Lannemezan 2005. Les résultats se sont avérés très satisfaisants au regard de la variabilité desphénomènes observés. Cependant, l'utilisation des champs issus d'un modèle micro-météorologique de type Meso-NH reste délicate du fait de la forte sensibilité du niveau sonore aux profils verticaux de célérité du son. L'étude defaisabilité sur une expérience plus complexe (la Station de Long Terme) est encourageante et, à condition de disposerd'importants moyens de calculs, elle permet de considérer la TLM comme une nouvelle méthode de référence etainsi, d'envisager d'élargir son domaine d'utilisation à d'autres applications. / Actually, it exists a major societal issue to be interested in outdoor sound propagation and specially, in our context, toreduce the uncertainty in noise levels estimation and thus to improve the analyses accuracy, from engineers toresearch institutes. The influence of meteorology on outdoor sound propagation is significant. It is thereforenecessary to understand and quantify the micro scales phenomena into the atmospheric boundary layer.In this way, the French research meteorological model (Meso-NH) has been used. After comparing resultsof this model at very fine resolution (~1 meter) to measurements issued from the databases of two experimentalcampaigns (Lannemezan 2005 and Long Term Monitoring Station: LTMS), it appeared necessary to develop this toolin order to take into account the drag force of the trees. Finally, the Meso-NH results for the wind, temperature andturbulent kinetic energy fields are satisfactory. Then, theses informations can be used as input data for acousticmodels.Our time domain acoustic model is based on Transmission Line Matrix method (TLM). Its development wasdone in order to be applied to outdoor sound propagation: taking into account topography, soil types, meteorologicalconditions, etc. The numerical validation of the TLM method, by comparison with other models (analytical andnumerical: Parabolic Equation), has shown the relevance of its use in the context of environmental acoustics.Finally, thanks to these models, simulated noise levels in different propagation conditions (downward,upward and homogeneous refraction conditions) were compared to in situ measurements carried out during theLannemezan 2005 experimental campaign. Satisfying results were obtained regarding the observed phenomenavariability. However, using the micro-meteorological model Meso-NH is difficult because of the strong acousticsensitivity to the vertical celerity profiles. A feasibility study on a more complex experience (LTMS) is encouragingand, provided having substantial computing resources, it permits to consider the TLM as an accurate method in thecontext of environmental acoustics.
15

Développement d’un modèle numérique de propagation acoustique dans un local délimité par des parois à relief géométrique / Development of a numerical model of acoustic propagation in a room bounded by relief walls

Rabisse, Kévin 10 October 2017 (has links)
L’étude de la propagation sonore dans un milieu confiné nécessite une connaissance précise des caractéristiques acoustiques et géométriques des parois qui le délimitent. En effet, le relief géométrique des parois d’un local engendre des phénomènes acoustiques complexes pouvant impacter significativement la propagation sonore : diffusion, diffraction ou encore résonance si le relief présente une géométrie particulière. L’objectif de cette étude est de développer un modèle numérique simulant la propagation sonore dans un espace confiné délimité par des parois à relief géométrique. Dans un premier temps, la méthode de décomposition rectangulaire adaptative (ARD) est utilisée pour simuler la propagation en milieu confiné. Cette méthode est ensuite couplée à la méthode de différences finies dans le domaine temporel (FDTD) et l’utilisation de filtres d’impédance numériques (DIF) pour simuler des parois à relief géométrique possédant une impédance dépendante de la fréquence. L’intégration de la méthode FDTD dans la méthode ARD est rendue possible par l’utilisation de couches absorbantes parfaitement adaptées (PML). Le modèle numérique est validé par comparaison aux méthodes Kobayashi Potential (KP) et sources images ainsi qu’à des résultats expérimentaux. Enfin, le modèle est utilisé pour étudier la diffusion acoustique causée par plusieurs parois à relief expérimentales. Un coefficient d’absorption acoustique apparent est ainsi estimé pour caractériser chacune de ces parois / The study of sound propagation in an enclosed space requires a precise knowledge of the acoustic and geometrical characteristics of its boundaries. Indeed, the geometric relief on the walls of a room causes complex acoustic phenomena that can significantly impact the sound propagation: scattering, diffraction or even resonance if the relief has a particular geometry. The objective of this study is to develop a numerical model of sound propagation in an enclosed space bounded by walls with geometric relief. First, the Adaptive Rectangular Decomposition (ARD) method is used to simulate the propagation in a room. Then, this method is coupled with the Finite Difference in Time Domaine (FDTD) method and the use of digital impedance filters (DIF) to include boundaries with geometric relief and frequency-dependent impedance. The integration of the FDTD method into the ARD method is made possible by the use of perfectly matched layers (PML). The numerical model is validated by comparison with the Kobayashi Potential (KP) and image source methods as well as experimental results. Finally, the model is used to study the sound scattering caused by several experimental relief walls. An apparent sound absorption coefficient is thus estimated to characterize each of these different walls
16

Optimisation des protections anti-bruit routières de forme complexe

Baulac, Marine 12 October 2006 (has links) (PDF)
En ce début de 21e siècle, le bruit des transports est l'une des principales nuisances. Un important travail est réalisé par les acousticiens afin d'améliorer l'efficacité des écrans acoustiques.<br />Actuellement, le choix des protections anti-bruit se porte souvent sur des solutions triviales ou issues d'études paramétriques. Or le CSTB possède des codes de calculs numériques avancés dédiés à la simulation de la propagation acoustique en milieu extérieur. Le but de cette thèse est de coupler ces codes prévisionnels avec un outil mathématique à développer permettant une recherche systématique des solutions optimales.<br />Une étude bibliographique a permis de dégager des algorithmes applicables au cas de l'optimisation de paramètres caractérisant un écran acoustique. Ils ont été appliqués avec succès aux écrans multi-diffracteurs. Des méthodes d'optimisation multiobjectif ont en outre permis d'optimiser simultanément le prix de revient de la protection et son efficacité acoustique. Dans une optique de développement durable, un travail a été réalisé sur l'efficacité de protections acoustiques de faible hauteur en milieu urbain dans le but de créer des espaces calmes. Des mesures sur modèles réduits ont été confrontées aux simulations acoustiques et l'optimisation de la forme de ces protections a permis de dégager des solutions optimales. Enfin, les méthodes d'optimisation ont été appliquées au cas de l'optimisation de trajectoires.<br />Les principaux objectifs de la thèse ont été atteints, notamment par la création d'un outil utilisant des algorithmes d'optimisation (Nelder Mead et Algorithmes Génétiques) ainsi que les codes de calculs de simulation acoustique en milieu extérieur.
17

Propagation acoustique dans les guides d'ondes courbes et Problème avec source dans un écoulement cisaillé

Félix, Simon 26 November 2002 (has links) (PDF)
Les travaux de cette thèse ont pour cadre l'approche modale de la propagation d'ondes en conduit. Deux aspects sont abordés : la propagation acoustique dans les guides d'ondes courbes, sans écoulement, et le problème d'une source dans un écoulement cisaillé, dans un conduit rectiligne.<br />Pour un guide courbe à deux ou trois dimensions, une formulation multimodale de la propagation acoustique est mise en place et validée, et des équations différentielles matricielles sont établies pour la pression et la vitesse longitudinale, ainsi qu'une équation de Riccati pour la matrice impédance. Si les caractéristiques du coude (section, admittance aux parois) sont constantes, un calcul algébrique de la matrice de diffusion est possible, qui permet l'étude des propriétés de diffusion de ce coude et de tout système complexe composé de conduits droits et courbes. Une comparaison de cette approche, ondulatoire, et d'une matrice de diffusion construite par la méthode des rayons montre une très grande similitude entre ces résultats à haute fréquence. L'atténuation dans un coude traité en parois par un matériau absorbant est enfin étudiée dans le cadre de l'approche multimodale et nous mettons en évidence plusieurs propriétés des conduits courbes traités.<br /><br />La seconde partie de ces travaux concerne le problème de la propagation acoustique dans un guide droit siège d'un écoulement parallèle cisaillé, en présence d'une source. La fonction de Green de l'équation de Pridmore-Brown est calculée dans un premier temps. Par transformée de Fourier spatiale inverse, les pôles de la fonction de Green font apparaître les modes acoustiques perturbés par l'écoulement, dont il est alors possible de calculer l'amplitude. La présence d'un spectre continu dû à la singularité de l'équation de Pridmore-Brown est également mise en évidence, et la contribution du continuum de modes hydrodynamiques correspondant est étudiée et décrite.
18

Stabilité et Structure d'Agrégats Catanioniques

vautrin, claire 02 July 2004 (has links) (PDF)
Le système catanionique CTAOH - C13COOH - H2O étudié forme des colloïdes de charge contrôlée<br />lorsque les tensioactifs sont mis en solution. Le diagramme de phase établi ici présente des agrégats particuliers<br />(micelle, vésicule, disque, phase lamellaire). L'étude de la CMC a fait apparaître des interactions<br />fortes entre monomères : le coefficient d'interaction est de -10kT. Du point de vue microscopique, nous<br />avons montré par diffusion couplée WAXS et WANS que les chaînes alkyl s'organisent suivant un réseau<br />hexagonal et que les têtes ioniques conservent un ordre liquide. Par ailleurs, les liaisons hydrogène<br />participent à la cohésion du système, et les propriétés mécaniques de la membrane sont assez proches<br />de celles d'un phospholipide. Les mesures des compressibilités par propagation acoustique et cuve de<br />Langmuir nous ont permis d'estimer le module d'Young à 100MPa. L'analyse calorimétrique par DSC a<br />montré que la transition de fusion de chaînes dépend de la composition de l'échantillon.
19

Modélisation du rayonnement acoustique dans les guides traités par des matériaux absorbants à réaction localisée ou non localisée en présence d'écoulement par la méthode des éléments finis

Ouedraogo, Boureima 28 September 2011 (has links) (PDF)
On s'intéresse dans ce travail au problème de propagation acoustique dans des guides à parois traitées avec des matériaux absorbants à réaction localisée ou non localisée en présence d'écoulement. En effet, dans les systèmes industriels comme les turboréacteurs d'avions, les silencieux d'échappement et les systèmes de ventilation, le bruit est le plus souvent canalisé vers l'extérieur par des guides de géométries plus ou moins complexes. Une étude des guides d'ondes permet donc de prédire et de comprendre les phénomènes physiques tels que la réfraction, la convection, l'absorption et l'atténuation des ondes. Dans l'étude des guides d'ondes, on considère souvent qu'ils sont infiniment longs afin de s'affranchir de certains phénomènes (réflexion par exemple) à leurs extrémités. Résoudre le problème de propagation dans les guides infinis par la méthode des éléments finis nécessite de tronquer le domaine infini par des frontières artificielles sur lesquelles des conditions limites transparentes doivent être écrites. Dans ce travail, les conditions limites transparentes sont écrites sous forme d'un opérateur Dirichlet-to-Neumann (DtN) basé sur une décomposition de la pression acoustique sur la base des modes propres du guide étudié tout en prenant en compte l'influence des paramètres comme l'écoulement et le traitement acoustique avec des matériaux absorbants. La propagation acoustique dans le guide est régie par un modèle scalaire basé sur l'équation de Helmholtz et les matériaux absorbants utilisés sont des matériaux absorbants d'impédance locale Z et des matériaux poreux. Nous nous sommes intéressés en particulier aux matériaux poreux ? squelette rigide que l'on modélise par un fluide équivalent car la propagation acoustique dans ces matériaux est aussi gouvernée par l'équation de Helmholtz comme dans un milieu fluide. Des résultats d'étude de la propagation acoustique dans des guides rectilignes uniformes traités en présence d'un écoulement uniforme ont permis de valider la méthode développée pour tronquer les domaines infinis. L'étude a aussi été menée avec succés pour des guides non uniformes traités en présence d'un écoulement potentiel.
20

Application de la méthode TLM à la modélisation de la propagation acoustique en milieu urbain

Guillaume, Gwenaël 13 October 2009 (has links) (PDF)
Le bruit constitue un problème sociétal majeur, en particulier en zones urbaines et périurbaines où les sources de bruit associées au traffic routier sont nombreuses et variées. Les logiciels de prévision acoustique actuels, basés sur des modèles énergétiques et géométriques et développés initialement pour des applications en milieux extérieurs faiblement bâtis, sont donc limités pour la prévision acoustique en milieux urbains et périurbains (présence de bâtis et d'encombrements, sources de bruit réelles mobiles avec un régime de fonctionnement variant dans le temps...). Le travail de thèse a consisté à proposer un modèle numérique temporel, adapté à la modélisation de la propagation acoustique en milieu urbain. Parmi les méthodes envisageables, la méthode TLM ("Transmission Line Modelling") constitue une approche originale, puisqu'elle permet de considérer des domaines de propagation de géométries complexes en intégrant la plupart des phénomènes physiques mis en jeu lors de la propagation du son sur de grandes distances (diffraction, réflexion, phénomènes stationnaires, divergence géométrique, atténuation atmosphérique, effets micrométéorologiques). Toutefois, l'étude bibliographique a mis en évidence deux limitations majeures de la méthode pour répondre pleinement à notre problématique : l'implémentation de conditions aux frontières réalistes et la modélisation d'un milieu de propagation infini. Un modèle TLM générique a ainsi été développé, et permet de réaliser des simulations en deux ou en trois dimensions en combinant l'ensemble des phénomènes influant sur la propagation du son en milieux extérieurs densément bâtis. Une approche permettant d'implémenter une condition d'impédance aux frontières a également été proposée. La méthode consiste à approcher l'impédance par une somme de systèmes linéaires du premier ordre. L'usage d'une méthode de convolution récursive permet par ailleurs de limiter le coût numérique associé au calcul du champ de pression sonore sur la frontière. Des simulations de la propagation acoustique au-dessus de différents types de sols absorbants ont été réalisées et confrontées avec succès aux solutions analytiques. Concernant la modélisation d'un milieu de propagation infini, une formulation de couches absorbantes anisotropes permettant de limiter le domaine de calcul a également été développée. Enfin, des applications réalistes de problématiques "urbaines" (écrans acoustiques, façades et terrasses végétalisées) ont finalement été proposées.

Page generated in 0.1158 seconds