• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 7
  • 2
  • Tagged with
  • 35
  • 35
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propagation acoustique en conduit traité: influence de l'écoulement sur la propagation acoustique avec impédance de paroi.

Leroux, Maud 19 September 2006 (has links) (PDF)
Ce travail de thèse effectué au Laboratoire d'Acoustique de l'Université du Maine s'inscrit dans le cadre d'une étude à caractère expérimental sur la propagation des ondes acoustiques dans des guides traités acoustiquement en présence d'un écoulement. Les guides d'onde considérés sont des conduits droits dont la paroi peut être localement modifiée. Les traitements pariétaux appliqués sont caractérisés globalement par leur impédance. Déterminer l'impédance de ces éléments permet d'en déduire l'atténuation sonore pour des applications industrielles possibles, telles que la réduction des nuisances sonores dans des pots d'échappement ou des réacteurs d'avion. <br />La présente étude se limite à des traitements à réaction dite locale, dont l'impédance est estimée en fonction de la fréquence.<br /><br />Une méthode basée sur la décomposition modale de la pression est exposée. La modélisation est adaptée aux différents traitements pariétaux étudiés et permet d'obtenir les caractéristiques de la transmission d'une onde acoustique. Les applications sont effectuées dans le cas de la propagation d'un mode plan, dans le cas où plusieurs modes sont considérés, ou enfin, dans le cas où le profil d'un écoulement non uniforme est pris en compte. Cette méthode est associée à une méthode inverse permettant d'estimer l'impédance des traitements pariétaux.<br /><br />Les résultats sont confrontés aux mesures réalisées. Les expériences ont été menées sur des bancs à écoulement où des mesures de matrice de diffusion sont réalisées à partir d'une méthode multi-microphonique classique.
2

Propagation acoustique non-linéaire en milieu inhomogène avec effets de sol : expériences à l'échelle du laboratoire

Salze, Edouard 16 November 2012 (has links)
La modélisation de la propagation acoustique longue distance du bang sonique dans l’air nécessite de prendre en compte la complexité des phénomènes en interaction : turbulence atmosphérique, gradients de célérité du son, impédance et rugosité du sol, et propagation non-linéaire. L’évaluation des nuisances sonores, et la validation des modèles par la comparaison avec des mesures en extérieur est délicate, car les conditions atmosphériques ne peuvent être ni suffisamment contrôlées ni caractérisées de façon extensive. Une alternative est la réalisation d’expériences à l’échelle du laboratoire où le milieu de propagation, la source sonore et les récepteurs peuvent être contrôlés et caractérisés. Ce travail porte sur la propagation à travers la turbulence d’ondes dites ’en N’, de forte amplitude et de courte durée, en champ libre ou en présence d’une paroi plane, avec un gradient de célérité du son causant une ”zone d’ombre” près du sol. Les impulsions sonores sont expérimentalement générées par claquage électrique entre deux électrodes. La turbulence est créée par convection libre au-dessus d’une grille de résistances chauffées, et la zone d’ombre acoustique est obtenue au moyen d’une paroi cylindrique. La mesure est réalisée à l’aide de microphones 1/8”.Pour l’étude de la source, une technique de strioscopie a été mise en œuvre afin de déterminer la forme d’onde. Le niveau de pression doit cependant être déterminé par une analyse complémentaire, basée sur la théorie des chocs faibles avec une forme d’onde différente de l’onde en N idéale. Un des facteurs limitant des expériences à l’échelle du laboratoire est la transposition vers une gamme ultrasonore, afin que le rapport longueur d’onde - distance de propagation reste du même ordre de grandeur que pour l’atmosphère. Constatant qu’il n’existe pas de méthode de calibration adaptée dans une gamme de fréquence de 10 kHz à 1 MHz (typique des expériences à l’échelle du laboratoire), une nouvelle méthode de calibration a été proposée et appliquée avec succès. En champ libre, la turbulence thermique cause en moyenne une atténuation du pic de pression. Des zones de focalisation aléatoire existent néanmoins, où l’amplitude de l’onde est multipliée par 3. Les répartitions statistiques du pic de pression ont été décrites avec un excellent accord par une loi de probabilité de type Gamma généralisée. La présence d’une frontière peut en outre donner lieu à des réflexions irrégulières, en raison des niveaux de pression importants. Nous avons mis en évidence ce phénomène dans l’air avec une paroi plane ou cylindrique. Pour l’étude de la propagation en zone d’ombre acoustique, un résultat important de la thèse est que, contrairement à la propagation en champ libre, la probabilité que la turbulence atténue le pic de pression en zone d’ombre est nulle. Cette observation suggère qu’avec turbulence, le mécanisme dominant de propagation est la diffusion acoustique par les structures turbulentes. Ceci aurait pour conséquence dans le cas du bang sonique l’extension de la zone d’exposition sonore sous la trace de l’avion (carpette primaire). / Long range sound propagation in the atmosphere is influenced by several effects: atmospheric turbulence, sound-speed gradients, ground properties (impedance, rugosity) etc. In the context of supersonic aircraft, nonlinear propagation of the sonic boom has to be taken into account. To evaluate the influence of these different effects, a statistical analysis is needed. However, field measurements suffer from a lack of control on atmosphere characteristics, and the statistical analysis remains circumscribed by the limited number of aircraft flight tests. An alternative to outdoor measurements is to perform experiments under well-controlled laboratory conditions. These experiments allow to study the effects purely related to the turbulent layer and to the sound-speed gradient. The propagation of high amplitude and short duration N-waves through thermal turbulence is studied. In particular, the influence of a rigid boundary and a negative sound-speed gradient resulting in a shadow-zone near the boundary, are pointed out. An experimental setup has been designed : N-waves are generated using a spark source. Thermal turbulence is obtained with a grid of electrical resistors, and the shadow-zone is obtained used a curved boundary. Measurements are performed using 1/8” microphones, and a schlieren shadowgraphy technique. The real pressure waveform (different from the ideal N-wave) delivered by the spark source has been obtained using the strioscopy technique, up to a multiplicative constant. Weak-shock theory enables to estimate the pressure level under the assumption that the pressure waveform is an ideal N-wave. This method has been modified to take into account the real pressure waveform. Because of the geometrical scaling, laboratory-scale experiments lead to a shift to a higher frequency domain : typically, 10 kHz – 1 MHz. In this frequency range, no calibration method is available up to now. A new method has been proposed and successfully applied. Free-field propagation of high-amplitude N-waves through the turbulent layer leads to a mean attenuation of the pressure level. However, random focus of the pressure waves can be observed, up to factor of 3. Probability densities of the shock overpressure have been described with an excellent agreement by a generalized Gamma probability distribution. With a rigid boundary, irregular reflections of shockwaves can be observed because of the high pressure level. This type of irregular reflections has been outlined either with a plane or a cylindrical boundary. Propagation in an acoustical ”shadow zone” lead to an amplification of the pressure, contrary to the free-field observations. An important result of the experiment is that the probability to observe an attenuation of the pressure level is null, for every single wave propagating in the ”shadow zone”. This result suggests that, with turbulence, the dominant propagation mechanism into the shadow-zone is scattering by sound-speed in homogeneities. In the context of sonic boom exposure on the ground, this would lead to an extension of the primary carpet of the aircraft.
3

Straddling the jamming transition : non-local rheology and acoustics in dry granular media / De part et d'autre de la transition de brouillage : rhéologie et acoustique non locales en milieu granulaire sec

Izzet, Adrien 16 May 2017 (has links)
Les milieux granulaires, dans leur état dense, se présentent sous la forme deux régimes, un régime « solide » qui représente un état bloqué des particules et un régime fluide. La première partie de ce travail porte sur le régime fluide du milieu granulaire. Dans un premier temps, le modèle de rhéologie non-locale y est présenté et discuté au regard des modèles proposés dans la communauté. Afin de tester le modèle sur un système réel, nous présentons une expérience d’avalanche dans un canal étroit, dans lequel l’état de contrainte est hétérogène et permet ainsi de faire coexister les deux régimes. L’ajustement du modèle pose la question de la définition des conditions aux limites. Nous présentons alors une étude numérique par simulation de dynamique moléculaire en plan incliné afin d’ajuster le modèle et mesurer la condition à la surface libre. La seconde partie de la thèse porte sur le régime bloqué du milieu granulaire et plus précisément sur la mesure des modules élastiques proche de la transition. A la limite de rigidité du matériau, les propriétés élastiques disparaissent mais le module élastique en cisaillement s’annule plus vite que le module en compression. Ainsi, nous présentons une étude de propagation d’ondes acoustiques en compression permettant de mesurer les modules élastiques à des pressions de confinement évanescentes, au moyen de vols paraboliques. Nous proposons un modèle de contact inter-particulaire permettant d’expliquer la dépendance du module élastique à la pression et ainsi d’appréhender les différentes lois d’échelles évoquées dans la littérature. Enfin, nous présentons des résultats préliminaires portant sur la propagation d’ondes de cisaillement. / In their dense state, granular media can either flow like fluids or behave like solids, when they are jammed. The first part of this thesis deals with the flowing regime. We begin by presenting the non-local rheology and discuss this model with respect to the other ones proposed in the community. In order to probe this model, we perform experimental measurements of the velocity profile in an avalanche flow in a narrow channel. This setup allows to observe both the fluid regime and the creep of the supposedly jammed region, in the depth of the channel. We probe the non-local model on the experimental results. The fit of the theory raises the question of the definition of the boundary conditions on such system. We therefore perform molecular dynamic simulations on an incline plane setup in order to fit the non-local model and measure the free surface boundary condition.The second part of this thesis investigates the elastic properties of jammed granular media weakly confined. Near the rigidity (jamming) transition of the medium, elastic moduli decrease and exhibit different scaling laws in their dependence on the confining pressure. We therefore perform acoustic measurements of compression waves at vanishing pressures, by the mean of parabolic flights. We then revisit the model of inter-particle contacts. This enables to predict the elastic behavior of the medium over a wide range of pressures: from evanescent to high pressures, at which the prediction from the mean field approach using the Hertz contact model has been shown to be valid. Last, we present preliminary results of shear wave propagations.
4

Approche numérique pour le calcul de la matrice de diffusion acoustique : application pour les cas convectifs et non convectifs / A numerical approach for the calculation of the acoustical scattering matrix : application for the convective and the non-convective cases

Kessentini, Ahmed 01 July 2017 (has links)
La propagation acoustique guidée est étudiée dans ce travail. La propagation des ondes acoustiques dans une direction principale est privilégiée. La méthode des éléments finis ondulatoires est donc exploitée pour extraire les nombres d'ondes. Les déformées des différents modes de conduit rigide sont aussi obtenues. Pour des conduits avec des discontinuités d'impédance, la matrice de diffusion peut être calculée à l'aide d'une modélisation par éléments finis de la partie traitée acoustiquement. Une modélisation tridimensionnelle des conduits traités acoustiquement permet une étude de la propagation pour tous les ordres des modes, de leur diffusion et du comportement acoustique des matériaux absorbants. Les réponses forcées de diverses configurations de guides d'ondes aux conditions aux limites imposées sont également calculées. L'étude est finalement étendue à la propagation acoustique dans les guides d'ondes avec un écoulement moyen uniforme. / The guided acoustical propagation is investigated in this work. The propagation of the acoustic waves in a main direction is privileged. A Wave Finite Element method is therefore exploited to extract the wavenumbers. Rigid duct's mode shapes are moreover obtained. For ducts with impedance discontinuities, the scattering matrix can be then calculated through a Finite Element modelling of the lined part. A three dimensional modelling of the lined ducts allows a study of the propagation for the full modes orders, their scattering and the acoustic behaviour of the absorbing materials. The forced responses of various configurations of waveguides with imposed boundary conditions are also calculated. The study is finally extended to the acoustical propagation within waveguides with a uniform mean flow.
5

Modélisation en domaine temporel de la propagation acoustique

Ehrhardt, Loïc 11 March 2013 (has links)
La propagation acoustique en milieu externe est fortement influencée par l'environnement. Les effets liés à la géométrie, comme la topographie ou la présence d'obstacles, sont principalement les réflexions et les diffractions. Concernant l'effet de l'atmosphère, les gradients moyens génèrent des réfractions tandis que la turbulence provoque des fluctuations aléatoires et une perte de cohérence du signal. La plupart de ces effets sont généralement bien décrits de manière théorique, cependant dans les configurations réelles le cumul de tous ces effets rend l'utilisation des expressions analytiques très difficile. Les études expérimentales présentent également des limites liées à la difficulté de connaître l'environnement parfaitement et d'isoler un effet physique particulier. Dans cette perspective, la simulation numérique est une alternative pratique et complémentaire à la théorie et l'expérimentation. Parmi les modèles numériques de propagation existants, ceux basés sur une résolution par différences finies dans le domaine temporel (FDTD pour Finite-Difference Time-Domain) des équations d'Euler linéarisées sont récents et particulièrement prometteurs. Cependant comme pour tout modèle nouveau, il reste à montrer qu'effectivement l'ensemble des phénomènes physiques d'intérêt sont retranscrits.Dans le cadre de ses études sur la propagation acoustique extérieure, l’Institut franco-allemand de recherches de Saint-Louis (ISL) a implémenté un tel modèle de propagation. Cette implémentation est ci-après appelée ITM, pour ISL FDTD Model. L'objectif de cette thèse, proposée par l'ISL en collaboration avec le Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), est de poursuivre le développement et les validations de cette implémentation. Une part importante du travail consiste également à illustrer les potentialités du code ITM pour des applications de propagation de signaux acoustiques complexes dans un environnement complexe. [...] / Outdoor sound propagation is strongly influenced by the environment. The geometry, such as topography and the presence of obstacles, alters the sound through reflexions and diffractions. Regarding atmosphere-related effects, the mean gradients produce refractions while turbulence cause random fluctuations and signal coherence loss. Most of those effects are generally well described theoretically. Still, in real configurations, the accumulation of those effects makes the use of analytical expressions difficult. Experimental studies are also limited because of difficulties in perfectly determining the environment or in separating a precise physical effect. In that perspective, numerical simulation is a convenient and complementary alternative approach to theory and experimentation. Among the existing numerical propagation models, those based on a Finite-Difference resolution in the Time-Domain (FDTD) of the linearized Euler equations are recent and particularly promising. However as for every new model, it remains to show that indeed the physical phenomena of interest are reproduced. In the framework of its studies on outdoor sound propagation, the french-german research Institute of Saint-Louis (ISL) has implemented such a propagation model. This implementation is hereafter called ITM, for ISL FDTD Model. The objectives of the thesis, proposed by ISL in collaboration with the Laboratory of Fluid Mechanics and Acoustics (LMFA), are to pursue the developments and validations of this implementation. An important part of the work is also given on the illustration of the potentialitiesof the ITM code in propagating complex acoustic signals in complex environments. […]
6

Etude de la méthode Boltzmann sur Réseau pour les simulations en aéroacoustique.

Marié, Simon 27 February 2008 (has links) (PDF)
Ce travail de thèse s'inscrit dans une problématique visant à étudier numériquement le bruit d'origine aérodynamique généré par les écoulements turbulents autour des véhicules en utilisant la méthode Boltzmann sur Réseau (LBM). Les objectifs de cette thèse sont l'étude des capacités aéroacoustiques de la LBM ainsi que l'élaboration d'un code de calcul tridimensionnel et parallèle.<br />Dans un premier temps, les élements historiques et théoriques de la LBM sont présentés ainsi que le développement permettant de passer de l'équation de Boltzmann aux équations de Navier-Stokes. La construction des modèles à vitesses discrètes est également décrite. Deux modèles basés sur des opérateurs de collision différents sont présentés : le modèle LBM-BGK et le modèle LBM-MRT. Pour l'étude des capacités aéroacoustiques de la LBM, une analyse de von Neumann est réalisée pour les modèles LBM-BGK et LBM-MRT ainsi que pour l'équation de Boltzmann à vitesse discrète (DVBE). Une comparaison avec les schémas Navier-Stokes d'ordre élevé est alors menée. Pour remédier aux instabilités numériques de la méthode Boltzmann sur Réseau intervenant lors de la propagation dans des directions particulières à M>0.1, des filtres sélectifs sont utilisés et leur effet sur la dissipation est étudié.<br />Dans un second temps, le code de calcul L-BEAM est présenté. La structure générale et les différentes techniques de calculs sont décrites. Un algorithme de transition de résolution est développé. La modélisation de la turbulence est abordée et le modèle de Meyers-Sagaut est implémenté dans le code. Enfin, des cas tests numériques sont utilisés pour valider le code et la simulation d'un écoulement turbulent complexe est réalisée.
7

Modélisation de la propagation acoustique par la méthode du potentiel d'intensité

Thivant, Michael 29 September 2003 (has links) (PDF)
Nouvelle méthode de prédiction de la propagation acoustique en MF/HF, la méthode du potentiel d'intensité (IPA) est basée sur un bilan local d'énergie. La discrétisation du volume d'air en éléments finis permet de respecter au mieux la géométrie. Une véritable analogie avec la conduction thermique permet l'utilisation de solveurs existants, dotés d'interfaces graphiques. L'hypothèse d'une "Loi de Fourier" reliant l'énergie et l'intensité, non démontrée dans le cas général, est relaxée. Le champ d'intensité irrotationnelle est calculé, fournissant des informations locales précieuses sur les voies de transfert acoustique dès la phase de conception des produits industriels. Le calcul de la pression est possible en champ libre. La méthode du potentiel d'intensité a été validée sur une maquette d'encapsulage de moteur de camion, par comparaison avec des mesures de fonction de transfert et avec un calcul par éléments frontières. La puissance de la source dans son environnement est mesurée.
8

Propagation acoustique non-linéaire en milieu inhomogène avec effets de sol : expériences à l'échelle du laboratoire

Salze, Edouard 16 November 2012 (has links) (PDF)
La modélisation de la propagation acoustique longue distance du bang sonique dans l'air nécessite de prendre en compte la complexité des phénomènes en interaction : turbulence atmosphérique, gradients de célérité du son, impédance et rugosité du sol, et propagation non-linéaire. L'évaluation des nuisances sonores, et la validation des modèles par la comparaison avec des mesures en extérieur est délicate, car les conditions atmosphériques ne peuvent être ni suffisamment contrôlées ni caractérisées de façon extensive. Une alternative est la réalisation d'expériences à l'échelle du laboratoire où le milieu de propagation, la source sonore et les récepteurs peuvent être contrôlés et caractérisés. Ce travail porte sur la propagation à travers la turbulence d'ondes dites 'en N', de forte amplitude et de courte durée, en champ libre ou en présence d'une paroi plane, avec un gradient de célérité du son causant une "zone d'ombre" près du sol. Les impulsions sonores sont expérimentalement générées par claquage électrique entre deux électrodes. La turbulence est créée par convection libre au-dessus d'une grille de résistances chauffées, et la zone d'ombre acoustique est obtenue au moyen d'une paroi cylindrique. La mesure est réalisée à l'aide de microphones 1/8".Pour l'étude de la source, une technique de strioscopie a été mise en œuvre afin de déterminer la forme d'onde. Le niveau de pression doit cependant être déterminé par une analyse complémentaire, basée sur la théorie des chocs faibles avec une forme d'onde différente de l'onde en N idéale. Un des facteurs limitant des expériences à l'échelle du laboratoire est la transposition vers une gamme ultrasonore, afin que le rapport longueur d'onde - distance de propagation reste du même ordre de grandeur que pour l'atmosphère. Constatant qu'il n'existe pas de méthode de calibration adaptée dans une gamme de fréquence de 10 kHz à 1 MHz (typique des expériences à l'échelle du laboratoire), une nouvelle méthode de calibration a été proposée et appliquée avec succès. En champ libre, la turbulence thermique cause en moyenne une atténuation du pic de pression. Des zones de focalisation aléatoire existent néanmoins, où l'amplitude de l'onde est multipliée par 3. Les répartitions statistiques du pic de pression ont été décrites avec un excellent accord par une loi de probabilité de type Gamma généralisée. La présence d'une frontière peut en outre donner lieu à des réflexions irrégulières, en raison des niveaux de pression importants. Nous avons mis en évidence ce phénomène dans l'air avec une paroi plane ou cylindrique. Pour l'étude de la propagation en zone d'ombre acoustique, un résultat important de la thèse est que, contrairement à la propagation en champ libre, la probabilité que la turbulence atténue le pic de pression en zone d'ombre est nulle. Cette observation suggère qu'avec turbulence, le mécanisme dominant de propagation est la diffusion acoustique par les structures turbulentes. Ceci aurait pour conséquence dans le cas du bang sonique l'extension de la zone d'exposition sonore sous la trace de l'avion (carpette primaire).
9

Modélisation en domaine temporel de la propagation acoustique

Ehrhardt, Loïc 11 March 2013 (has links) (PDF)
La propagation acoustique en milieu externe est fortement influencée par l'environnement. Les effets liés à la géométrie, comme la topographie ou la présence d'obstacles, sont principalement les réflexions et les diffractions. Concernant l'effet de l'atmosphère, les gradients moyens génèrent des réfractions tandis que la turbulence provoque des fluctuations aléatoires et une perte de cohérence du signal. La plupart de ces effets sont généralement bien décrits de manière théorique, cependant dans les configurations réelles le cumul de tous ces effets rend l'utilisation des expressions analytiques très difficile. Les études expérimentales présentent également des limites liées à la difficulté de connaître l'environnement parfaitement et d'isoler un effet physique particulier. Dans cette perspective, la simulation numérique est une alternative pratique et complémentaire à la théorie et l'expérimentation. Parmi les modèles numériques de propagation existants, ceux basés sur une résolution par différences finies dans le domaine temporel (FDTD pour Finite-Difference Time-Domain) des équations d'Euler linéarisées sont récents et particulièrement prometteurs. Cependant comme pour tout modèle nouveau, il reste à montrer qu'effectivement l'ensemble des phénomènes physiques d'intérêt sont retranscrits.Dans le cadre de ses études sur la propagation acoustique extérieure, l'Institut franco-allemand de recherches de Saint-Louis (ISL) a implémenté un tel modèle de propagation. Cette implémentation est ci-après appelée ITM, pour ISL FDTD Model. L'objectif de cette thèse, proposée par l'ISL en collaboration avec le Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), est de poursuivre le développement et les validations de cette implémentation. Une part importante du travail consiste également à illustrer les potentialités du code ITM pour des applications de propagation de signaux acoustiques complexes dans un environnement complexe. [...]
10

3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom / Simulation 3D de la propagation d'ondes de choc acoustiques en atmosphère turbulente. Application au bang sonique

Luquet, David 08 January 2016 (has links)
Cette thèse traite des effets de la turbulence atmosphérique sur la propagation d'ondes de choc acoustiques. Ces effets sont d'un grand intérêt pour des applications comme le bang sonique, le buzz saw noise ou le tonnerre. Une méthode numérique unidirectionnelle est développée pour modéliser et simuler la propagation tridimensionnelle d'ondes de choc acoustiques en milieu hétérogène en mouvement. Elle repose sur une approche à pas fractionnés qui permet de prendre en compte efficacement les différents mécanismes physiques présents. Pour s'attaquer à des problèmes 3D réalistes (de l'ordre du milliard de degré de liberté), l'implémentation de la méthode est réalisée en utilisant le paradigme de programmation parallèle " single program multiple data ". La validité de cette méthode est évaluée sur différents cas tests. La méthode est appliquée à l'étude des effets de la turbulence atmosphérique sur la propagation du bang sonique dans la couche limite planétaire. Ainsi, le bang sous trace et le bang dans la zone d'ombre sont calculés pour la configuration hypersonique développée dans le projet européen ATLLAS II. Enfin, la focalisation de chocs faibles sur une caustique cuspidée est simulée. Cela est, à notre connaissance, la première étude de la stabilité d'une caustique non linéaire à des perturbations dues à un écoulement. / This thesis deals with the effects of atmospheric turbulence on the propagation of acoustical shock waves. These effects are of major interest for applications such as sonic boom, buzz saw noise or thunder. A numerical one-way method is developed to model and to simulate three-dimensional nonlinear propagation of acoustical shock waves in a moving heterogeneous medium. It relies on a split-step approach that permits to take into account efficiently the different involved physical mechanisms. To tackle realistic 3D problems (of order of one billion of degree of freedom), the implementation of the method is done using the parallel single program multiple data paradigm. Validity of this method is assessed using multiple test cases. The method is applied to investigate the effects of atmospheric turbulence on sonic boom propagation through the Planetary Boundary Layer. Hence, both under-track boom and boom in the shadow zone are studied for a hypersonic configuration developed in the European project ATLLAS II. Finally, the focusing of weak shock waves on a cusped caustic is simulated. It is the first study of the stability of a nonlinear caustic to flow perturbations to our knowledge.

Page generated in 0.1574 seconds