Spelling suggestions: "subject:"propagation nonlinéaire"" "subject:"propagation nonlinéaires""
1 |
Etude numérique de la propagation non linéaire des infrasons dans l'atmosphèreHanique-Cockenpot, Gaël 26 October 2011 (has links)
Cette thèse propose une étude de la propagation non linéaire des infrasons dans l’atmosphère par résolution temporelle des équations de la mécanique des fluides compressibles en s’appuyant sur des algorithmes développés pour l’aéroacoustique. L’étude se restreint aux ondes émises par les explosions de forte amplitude. Une étude bibliographique est d’abord réalisée pour identifier les phénomènes physiques influents et pour détailler un modèle d’atmosphère réaliste qui soit compatible avec une résolution numérique directe. Les équations de Navier-Stokes sont ensuite formulées pour intégrer les effets hors-équilibre de la relaxation de la vibration moléculaire. Cette étape est accompagnée de développements analytiques servant de base `a une discussion des effets dissipatifs et des effets de l’inhomogénéité atmosphérique de grande échelle. Les méthodes numériques optimisées retenues pou l’implémentation du solveur sont ensuite présentées. La stabilité et la précision sont étudiées analytiquement, puis le code de calcul est validé par des séries de simulations dans des configurations simples pour lesquelles des solutions analytiques sont disponibles. Une discrétisation adaptée pour la simulation des infrasons non linéaires se propageant dans l’atmosphère est alors proposée. Le solveur est ensuite validé dans la configuration complexe d’un modèle réaliste d’atmosphère, d’abord par une convergence de maillage, puis par confrontation avec des méthodes numériques préexistantes. L’influence des effets dissipatifs et des effets non linéaires est ensuite discutée sur la base des résultats numériques. L’influence générale des vents atmosphériques est par ailleurs présentée et des phénomènes spécifiques tels que les réflexions partielles ou les ondes rampantes sont évoqués. Enfin, une confrontation des simulations avec une expérience de référence est réalisée et les similitudes entre les enregistrements numériques et expérimentaux sont soulignées. / This thesis proposes a study of non linear infrasound propagation through the atmosphere by a time integration of compressible fluid mechanics equations using aeroacoustics algorithms. The survey is restricted to the case of infrasound emitted by high amplitude explosions. Existing literature is reviewed to identify influential physical phenomena and to detail a realistic atmosphere model compatible with direct numerical methods. Afterwards, the Navier-Stokes equations are formulated to take non-equilibrated vibrational relaxation effects into account. Acoustic absorption and effects of high-scale atmospheric in homogeneities are then discussed on the basis of analytical developments. Subsequently, the optimized numerical methods implemented in the solver are introduced. Numerical stability and accuracy are analyzed, then the method is validated by series of simple configuration simulations and an adapted discretization is proposed to simulate non linear infrasound propagating in the atmosphere. The solver is validated in the configuration of a complex realistic atmosphere, first by a grid convergence method and second by confronting the results to those of other numerical approaches. The influence of acoustic absorption and non linear effects are then discussed by analyzing numerical results. General influence of winds is also introduced and specific phenomena, such as partially reflected waves or creeping waves, are evoked. Finally, simulations are compared with a full-scale experience and similarities between both kind results are underlined.
|
2 |
Simulation directe 3-D de la propagation non-linéaire des ondes acoustiques dans l'atmosphère terrestre. / Three-dimensional direct numerical simulation of the nonlinear acoustic propagation in the earth's atmosphereSabatini, Roberto 30 January 2017 (has links)
Les infrasons sont des ondes acoustiques de fréquence inférieure à environ 20 Hz qui sont produits par une grande variété de sources naturelles (éruptions volcaniques, séismes, etc.) ou artificielles (explosions chimiques, avions, tirs de mine, etc.). Ils peuvent se propager dans l’atmosphère terrestre jusqu’à de très grandes distances, de quelques centaines à plusieurs milliers de kilomètres, et transportent des informations importantes concernant leur source. Pour cette raison, la mesure des ondes infrasonores représente aujourd’hui une des principales techniques utilisées dans le cadre du Traité d’interdiction complète des essais nucléaires (TICE) pour la détection, la localisation et l’identification de sources. La modélisation de la propagation atmosphérique des infrasons a été classiquement réalisée par des approximations géométriques, comme le tracé de rayons, ou par la résolution d’équations paraboliques. Grâce à un coût de calcul raisonnable, allant de quelques secondes à une heure, ces approches sont largement employées dans le domaine opérationnel. Leur efficience est néanmoins obtenue au détriment de la complexité physique de la propagation atmosphérique. Les avancées récentes de la simulation numérique directe en aéroacoustique rendent cependant envisageable la résolution directe des équations de Navier-Stokes instationnaires et compressibles, permettant ainsi de décrire sans approximation la propagation infrasonore. Dans la présente thèse, trois objectifs principaux ont été poursuivis. En utilisant une méthode de tracé de rayons, une caractérisation des effets non linéaires, visqueux, thermiques et de relaxation sur les ondes infrasonores produites par des sources explosives a été d’abord effectuée. La propagation non linéaire des signaux infrasonores dans l’atmosphère terrestre a été ensuite examinée à l’aide de simulations tridimensionnelles directes des équations de Navier-Stokes instationnaires et compressibles. Des sources de très grande amplitude et de fréquence de l’ordre de 0.1 Hz ont été considérées. Les calculs ont été menés jusqu’à des distances de propagation de plusieurs centaines de kilomètres et jusqu’à des altitudes de l’ordre de 140 km. Une étude détaillée de la diffusion par les petites échelles de l’atmosphère a été effectuée. Une première analyse de la pénétration en zone d’ombre provoquée par des phénomènes de diffraction au niveau des caustiques a été également réalisée. Des cas test bidimensionnels ont été enfin formulés et des solutions de référence ont été déterminées afin de permettre la validation numérique de codes de calcul et l’évaluation des erreurs commises par les approximations usuelles. / Infrasounds are acoustic signals of frequency lower than about 20 Hz. They are generated by a large variety of natural events, such as volcanic eruptions or earthquakes, and by artificial sources, like nuclear or chemical explosions and supersonic booms. Infrasonic waves can propagate through the different atmospheric layers up to very large distances, from few hundreds to thousands of kilometres, and can potentially carry relevant information about their source. For this reason, within the framework of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), infrasound recordings are widely employed to monitor clandestine nuclear tests. Infrasound modelling has classically been based on simplified equations. Ray tracing and parabolic models have been the most commonly used techniques. Their efficiency in terms of computational cost is however obtained at the expense of generality and some of the main phenomena affecting infrasound propagation are inherently excluded by these methods. Over the past decade, progress has been made towards the simulation of acoustic propagation by directly solving the fluid dynamics equations. Understandably, this approach is expected to allow a finer description of atmospheric propagation and to lead to a better interpretation of experimental observations. In the present thesis, three main objectives have been achieved. First of all, using ray theory, a characterization of nonlinear effects and absorption induced by thermo-viscous and vibrational relaxation phenomena on the propagation of infrasonic signals generated by explosive sources has been carried out. Direct numerical simulations of the three-dimensional unsteady compressible Navier-Stokes equations have been then performed to calculate the sound field generated by an infrasonic source in a realistic atmosphere. Computations have been carried out using a low-dispersive and low-dissipative finite-difference time-domain method, for very large source amplitudes and for source frequencies of order of 0.1 Hz, up to altitudes of 140 km and ranges of few hundreds of kilometres. The scattering from small-scale inhomogeneities, of characteristic dimension of the same order as the wavelength of the infrasonic wave, has been investigated. The penetration in the shadow zone induced by diffraction phenomena at the thermospheric caustic has also been studied. Two-dimensional benchmarks specific to infrasound atmospheric propagation have been finally formulated and reference solutions have been computed. They aim to allow the assessment of the accuracy of numerical solvers as well as the evaluation of the range of validity of the classical approaches.
|
3 |
Etude de la filamentation d'impulsions laser femtosecondes dans l'air.Méchain, Grégoire 17 October 2005 (has links) (PDF)
Ce travail de thèse a porté sur la propagation non linéaire sous forme de filament des impulsions laser femtosecondes ultra-intenses dans l'atmosphère. Nos résultats issus des expériences en laboratoire et en extérieure apportent de nombreux éléments de réponses dans le domaine. Nous avons démontré expérimentalement qu'il était possible de maîtriser le processus de filamentation et la formation de canaux de plasma sur de longues distances. En effet, en propageant un train de deux impulsions de focales différentes décalées de manière adéquate dans le temps, un canal de plasma unique et continu sur une grande distance peut être généré en connectant plusieurs canaux de plus courte distance. Nous avons aussi mis en évidence que le contrôle de la longueur et de la localisation des filaments pouvait s'effectuer en agissant sur la dérive en fréquence de l'impulsion laser initiale pour des puissances bien supérieures à la puissance critique. On peut ainsi maximiser soit la génération d'un continuum de fréquences, soit la présence de canaux de plasma sur des distances pouvant atteindre plus de 300 m, soit la longueur d'intenses canaux de lumière. Ces canaux de lumière intenses ont été observés jusqu'à 2350 m et leur intensité est de l'ordre de 1012 W cm-2. Enfin, nous avons montré que l'on pouvait organiser de manière déterministe la formation de figures multi-filamentaires en imposant des conditions initiales d'amplitude ou de phase au faisceau. Les structures organisées de filaments sont régulières, stables et reproductibles. Les applications atmosphériques à longue portée impliquent des propagations verticales à de très hautes altitudes. Nous avons donc étudié la filamentation pour différentes pressions de l'air. Ces études expérimentales et théoriques ont permis de démontrer que la filamentation femtoseconde subsistait à des pressions correspondant à des altitudes allant jusqu'à environ 11 km. Nous avons également poursuivi l'étude du déclenchement et du guidage de décharges haute tension à l'aide de filaments. Les expériences menées dans les installations haute tension de l'Université Technique de Berlin et du CEAT à Toulouse ont permis de mettre en évidence les mécanismes de déclenchement et de guidage de décharges haute tension sur des distances pouvant atteindre 4,50 m. Ceci constitue un record pour ce genre de décharges. Nous avons aussi démontré que malgré une pluie abondante, les canaux de plasma générés par filamentation femtoseconde subsistaient et étaient toujours capables de déclencher et de guider des décharges de haute tension. Ces résultats sont donc particulièrement prometteurs pour le déclenchement et le guidage de la foudre à l'échelle atmosphérique.
|
4 |
Diffusion multiple et retournement temporel des ondes ultrasonores dans les milieux granulaires secs et immergés / Multiple scattering and time reversal of ultrasound in dry and immersed granular mediaHarazi, Maxime 23 November 2017 (has links)
Le retournement temporel (RT) est une méthode qui permet de faire revivre à une onde sa vie passée et de la faire ainsi reconverger sur la source qui lui a donné naissance. Au cours de cette thèse, nous avons étudié – expérimentalement et numériquement – le RT des ondes ultrasonores dans des milieux granulaires. En se propageant de grains en grains, les ondes ultrasonores fournissent une sonde unique du réseau hétérogène 3D des contacts. Pour des ondes se propageant en régime de diffusion multiple, nous montrons que la focalisation est globalement robuste mais toutefois sensible à des mouvements des grains à des échelles spatiales bien plus fines que la longueur d’onde. À cet égard, la propagation d’une onde ultrasonore à travers le réseau discret et métastable des contacts entre grains apparaît comme une situation intermédiaire entre l’instabilité du mouvement d’une particule dans un gaz de Lorentz et la propagation d’une onde ultrasonore dans une matrice homogène remplie d’obstacles diffusants. Lorsque l’amplitude de la source augmente, nous entrons dans un régime nonlinéaire où l’onde elle-même provoque des réarrangements du milieu, ce qui conduit à la dégradation de la focalisation obtenue par retournement temporel de ladite onde. Celle-ci n’agit alors plus seulement comme une sonde, mais aussi comme une « pompe ». Enfin, nous montrons que le RT d’une onde de faible amplitude, mais allongée dans le temps par la diffusion multiple, peut être utilisé pour focaliser une onde de grande amplitude en un point du milieu et y déclencher ainsi de façon contrôlée des réarrangements irréversibles du réseau des contacts. L’ensemble de ces résultats est supporté par un modèle numérique vectoriel fondé sur un système masses-ressorts percolé bidimensionnel. / : Time reversal (TR) is a technique which gives the possibility to make a wave relive its life in reverse chronology, and to focus back to its source. In this thesis, TR of ultrasound in granular media has been investigated experimentally and numerically. By propagating from grain to grain, ultrasounds provide a unique probe of the heterogeneous 3D contact network. We show that for multiply scattered waves, the focusing is essentially robust but sensitive to displacements of grains on a scale much smaller than the wavelength. In this respect, the ultrasound propagation through the discrete and metastable contact network between the grains appears to represent an intermediary situation between the instability in the propagation of a particle in a Lorentz gas and the propagation of ultrasounds in an homogeneous medium filled with scatterers. When the source amplitude is increased, a non-linear regime is reached where the wave itself triggers rearrangements in the medium, thus degrading the quality of the TR focusing. In this regime, the wave acts not only as a probe, but also as a « pump ». Finally, we show that the TR of a small-amplitude multiply-scattered wave can be used to focus a high-amplitude wave in the medium and trigger in a controlled way irreversible rearrangements of the contact network. These results are supported by a vectorial numerical model based on a 2D percolated masses-springs network.
|
5 |
Etude de composants optiques à base de fibres optiques non-linéairesNguyen, Thanh Nam 03 October 2008 (has links) (PDF)
Ce travail de thèse examine la possibilité d'utiliser de nouvelles fibres optiques fortement non-linéaires pour des applications de régénération tout-optique à 40 Gbit/s. Les fibres optiques étudiées sont des fibres optiques microstructurées en verre de silice et en verre de chalcogénure fabriquées dans le cadre d'une collaboration avec la Plate-forme d'Etudes et de Recherche sur les Fibres Optiques Spéciales (PERFOS, Lannion) et l'Equipe Verres et Céramiques (EVC) de l'UMR Sciences Chimiques de Rennes. Le régénérateur optique étudié est le régénérateur proposé par P.V. Mamyshev, basé sur le phénomène d'automodulation de phase dans une fibre optique non-linéaire. Les résultats originaux obtenus lors de ce travail de thèse se situent sur les trois plans suivants : la modélisation de la propagation non-linéaire dans les fibres optiques, la caractérisation de fibres optiques non linéaires et l'étude d'un régénérateur tout-optique à 40 Gbit/s. <br />En ce qui concerne la modélisation de la propagation non-linéaire, ce travail passe en revue plusieurs méthodes de résolution de l'équation non-linéaire de Schrödinger (ENLS) connues sous le nom de méthodes split-step Fourier. Pour trois de ces méthodes, une modification astucieuse de l'algorithme de résolution numérique de l'ENLS permettant d'augmenter l'efficacité de la méthode est proposée. Ce travail présente également une nouvelle méthode split-step Fourier permettant de résoudre l'ENLS avec une précision choisie.<br />Pour la partie concernant la caractérisation de fibres optiques non-linéaires, ce travail présente, pour la première fois, les caractérisations optiques de fibres optiques microstructurées en verre de chalcogénure et démontre leur fort potentiel pour des applications non-linéaires. Des caractérisations non-linéaires de fibres optiques microstructurées en verre de silice présentant une faible atténuation et un gain Raman record sont également présentées. Une nouvelle méthode pour mesurer simultanément la dispersion chromatique et le coefficient non-linéaire de fibres optiques, basée sur l'effet de compression soliton, est proposée.<br />Concernant l'étude du régénérateur de Mamyshev, ce travail propose une étude théorique conduisant à l'élaboration d'un abaque pour le dimensionnement du régénérateur et permettant d'étudier le rôle du pré-filtrage et le mécanisme de gigue temporelle introduite par le régénérateur. L'étude expérimentale du régénérateur met en évidence le rôle néfaste de l'effet Brillouin et du mélange à quatre ondes sur les performances d'un régénérateur à 40 Gbit/s. Une nouvelle architecture de régénérateur, basée sur l'utilisation d'un compresseur d'impulsions, est proposée afin d'éliminer ces effets indésirables. Son efficacité est démontrée au cours d'une expérience de régénération en boucle à recirculation.
|
6 |
Simulation non linéaire en ultrasons : application à l'imagerie du paramètre de non linéarité des tissus en mode échoVarray, François 05 October 2011 (has links) (PDF)
L'imagerie ultrasonore harmonique, qui repose sur la non linéarité du milieu de propagation, est une technique d'imagerie clinique qui améliore la résolution des images. La mesure ultrasonore du paramètre local de non linéarité d'un milieu est une voie de recherche qui amènerait de nouvelles perspectives dans le domaine de la caractérisation des tissus. Cependant, l'accès à cette information se heurte à deux écueils : d'une part il n'existe pas actuellement de méthode de mesure de ce paramètre à partir du mode écho classique et d'autre part, les outils de simulation prenant en compte la non-linéarité du milieu sont peu développés. Une méthode de spectre angulaire a donc été proposée afin de calculer le champ de pression dans des milieux de non linéarité inhomogène. Ce champ de pression est ensuite utilisé pour engendrer des images échographiques contenant l'information harmonique. Cette méthode spectrale a été portée sur GPU afin d'accélérer le calcul et a été intégrée dans un logiciel libre : CREANUIS. Dans un deuxième temps, une extension d'une méthode comparative (ECM) a été proposée pour prendre en compte des milieux de non linéarité non homogène, fonctionnant en mode écho. Grâce aux outils de simulation développés, différentes configurations ont été utilisées pour la mise au point de l'ECM qui a ensuite été validée à partir d'objets tests et in vitro sur foies d'animaux. Même si la méthode de mesure présente une résolution relativement faible, les images obtenues démontrent le potentiel de l'imagerie du paramètre de non linéarité des tissus.
|
7 |
Etude numérique de la propagation non linéaire des infrasons dans l'atmosphèreHanique Cockenpot, Gaël 26 October 2011 (has links) (PDF)
Cette thèse propose une étude de la propagation non linéaire des infrasons dans l'atmosphère par résolution temporelle des équations de la mécanique des fluides compressibles en s'appuyant sur des algorithmes développés pour l'aéroacoustique. L'étude se restreint aux ondes émises par les explosions de forte amplitude. Une étude bibliographique est d'abord réalisée pour identifier les phénomènes physiques influents et pour détailler un modèle d'atmosphère réaliste qui soit compatible avec une résolution numérique directe. Les équations de Navier-Stokes sont ensuite formulées pour intégrer les effets hors-équilibre de la relaxation de la vibration moléculaire. Cette étape est accompagnée de développements analytiques servant de base 'a une discussion des effets dissipatifs et des effets de l'inhomogénéité atmosphérique de grande échelle. Les méthodes numériques optimisées retenues pou l'implémentation du solveur sont ensuite présentées. La stabilité et la précision sont étudiées analytiquement, puis le code de calcul est validé par des séries de simulations dans des configurations simples pour lesquelles des solutions analytiques sont disponibles. Une discrétisation adaptée pour la simulation des infrasons non linéaires se propageant dans l'atmosphère est alors proposée. Le solveur est ensuite validé dans la configuration complexe d'un modèle réaliste d'atmosphère, d'abord par une convergence de maillage, puis par confrontation avec des méthodes numériques préexistantes. L'influence des effets dissipatifs et des effets non linéaires est ensuite discutée sur la base des résultats numériques. L'influence générale des vents atmosphériques est par ailleurs présentée et des phénomènes spécifiques tels que les réflexions partielles ou les ondes rampantes sont évoqués. Enfin, une confrontation des simulations avec une expérience de référence est réalisée et les similitudes entre les enregistrements numériques et expérimentaux sont soulignées.
|
8 |
Instabilité, solitons et solhiations. Une approche expérimentale de la dynamique non linéaire en fibres optiquesVan Simaeys, Gaetan 17 January 2003 (has links)
<p align="justify">Il y a un demi siècle, Fermi, Pasta et Ulam découvraient la récurrence du même nom, et créaient une discipline nouvelle, la dynamique non linéaire. Leur expérience numérique consistait à exciter le mode fondamental d'une chaîne d'oscillateurs reliés entre eux par des ressorts linéaires et faiblement non linéaires. Alors qu'ils s'attendaient à ce que l'énergie se répartisse progressivement sur un large spectre en raison du couplage non linéaire, ils observèrent au contraire un échange périodique (récurrent) d'énergie entre quelques-uns des modes d'ordre inférieur uniquement. Dix ans plus tard, des chercheurs ont interprété ce comportement récurrent comme le résultat de l'interaction entre des impulsions qui se propagent sans se déformer et résistent aux collisions entre elles, les solitons. Par la suite, le soliton a émergé dans différents domaines pour finalement occuper le cœur des sciences non linéaires. Et c'est sans doute en optique non linéaire que le soliton a connu ses plus grands succès, tant sur le plan fondamental que sur celui des applications. En particulier, les phénomènes non linéaires sont aisés à observer dans les fibres optiques grâce au large éventail des sources lasers disponibles et en raison du fort confinement de la lumière qui s'y propage.</p>
<p align="justify">Dans notre travail de thèse, nous avons apporté la première démonstration expérimentale de la récurrence de Fermi-Pasta-Ulam dans la dynamique d'instabilité modulationnelle en fibre optique. En effet, une onde continue perturbée évolue spontanément, sous certaines conditions, en un train d'impulsions : l'énergie est transférée du mode fondamental (l'onde continue) aux modes d'ordre supérieur. La théorie prévoit qu'ensuite, l'onde continue initiale se reforme comme l'énergie revient vers le mode fondamental. Pour réaliser cette expérience, il faut parvenir à rencontrer les conditions prescrites par la théorie tout en évitant l'intervention d'effets perturbateurs. Dans ce but, nous avons étudié l'évolution d'impulsions plateaux, qui reproduisent les conditions d'onde continue requises par la théorie tout en permettant d'atteindre des puissances suffisantes pour observer la récurrence.</p>
<p align="justify">Nous nous sommes ensuite intéressés à un nouveau type de soliton appelé paroi de domaines de polarisation, qui se présente comme la structure de commutation entre deux domaines semi-continus de polarisations circulaires orthogonales. En principe, les parois de domaines pourraient être exploitées dans les lignes de transmission optique où elles serviraient à séparer des séquences de bits de valeurs différentes, le 1 logique étant représenté par exemple par une polarisation circulaire droite, et le 0 par la polarisation circulaire orthogonale. Ces parois se propagent sans déformation et, contrairement aux solitons habituellement utilisés pour la transmission par fibre optique, elles conservent une position stable au sein du train de données transmis. Grâce à cette stabilité intrinsèque des parois de domaines, il devient possible de rapprocher des impulsions successives et d'accroître le débit des lignes de transmission, qui pourrait atteindre le Tbit/s en monocanal. Toutefois, les parois de domaines de polarisation n'existent en théorie que dans les fibres isotropes, alors que les fibres réelles sont soumises à de nombreuses perturbations qui les rendent biréfringentes. Dans notre travail, nous avons déterminé les paramètres d'une fibre spéciale qui permette l'observation de parois de domaines dans des conditions réalistes, mais nous n'avons pas réalisé l'expérience car la fibre commandée n'a pas pu être fabriquée.</p>
<p align="justify">Si l'amélioration des performances des systèmes de télécommunications futurs passera nécessairement par l'accroissement des débits d'information en monocanal, elle exigera également la mise au point de dispositifs tout optiques, donc ultra-rapides, destinés au routage et au traitement des signaux transmis. Au-delà des applications en télécommunications, le développement de tels dispositifs provoquerait une véritable révolution photonique : les photons, plus rapides, supplanteraient pour les tâches usuelles les électrons utilisés dans les transistors électroniques. Ces dispositifs photoniques sont généralement basés sur les propriétés particulières résultant de la périodicité intrinsèque des matériaux utilisés. Cette périodicité se traduit par l'existence d'une bande interdit : quand les photons s'y trouvent (on dit alors qu'ils vérifient approximativement la condition de Bragg), ils ne peuvent se propager. Par ailleurs, la transmission de ces dispositifs est contrôlée en exploitant leurs propriétés non linéaires. Dans le cas des fibres, la bande interdite peut être réalisée quasiment sur mesure en imposant une modulation périodique contrôlée de l'indice de réfraction de la fibre. On crée ainsi un réseau de Bragg fibré, dans lequel la lumière subit une forte réflexion quand elle vérifie la condition de Bragg. Pourtant, même dans ces conditions, des impulsions suffisamment intenses appelées solhiatons peuvent encore subsister et se déplacer dans le réseau, les effets non linéaires compensant la réflexion du réseau. Pour observer les solhiatons, il faut toutefois parvenir à plonger immédiatement et complètement les impulsions dans le réseau, sans quoi elles sont irrémédiablement réfléchies par le réseau. Pour y parvenir, nous avons généré un réseau de Bragg dynamique : il se déplace le long de la fibre avec les impulsions. Nous avons constaté le confinement de deux impulsions qui, en l'absence du réseau dynamique, se propageraient à des vitesses différentes en raison de la dispersion chromatique. Ces impulsions devraient en plus se propager sans déformation, mais nous n'avons pas pu l'observer dans nos conditions expérimentales. Ce confinement constitue la première démonstration expérimentale du processus de formation de solhiatons stationnaires. Transposé des fibres aux matériaux semi-conducteurs, le solhiaton pourrait être exploité dans certains types de transistors photoniques. Les perspectives sont ambitieuses de voir un jour les résultats de notre recherche fondamentale contribuer à l'émergence de nouvelles applications.</p>
|
9 |
Simulation in nonlinear ultrasound : application to nonlinear parameter imaging in echo mode configuration / Simulation non linéaire en ultrasons : application à l’imagerie du paramètre de non linéarité des tissus en mode échoVarray, François 05 October 2011 (has links)
L’imagerie ultrasonore harmonique, qui repose sur la non linéarité du milieu de propagation, est une technique d’imagerie clinique qui améliore la résolution des images. La mesure ultrasonore du paramètre local de non linéarité d'un milieu est une voie de recherche qui amènerait de nouvelles perspectives dans le domaine de la caractérisation des tissus. Cependant, l'accès à cette information se heurte à deux écueils : d'une part il n’existe pas actuellement de méthode de mesure de ce paramètre à partir du mode écho classique et d'autre part, les outils de simulation prenant en compte la non-linéarité du milieu sont peu développés. Une méthode de spectre angulaire a donc été proposée afin de calculer le champ de pression dans des milieux de non linéarité inhomogène. Ce champ de pression est ensuite utilisé pour engendrer des images échographiques contenant l’information harmonique. Cette méthode spectrale a été portée sur GPU afin d’accélérer le calcul et a été intégrée dans un logiciel libre : CREANUIS. Dans un deuxième temps, une extension d’une méthode comparative (ECM) a été proposée pour prendre en compte des milieux de non linéarité non homogène, fonctionnant en mode écho. Grâce aux outils de simulation développés, différentes configurations ont été utilisées pour la mise au point de l’ECM qui a ensuite été validée à partir d'objets tests et in vitro sur foies d’animaux. Même si la méthode de mesure présente une résolution relativement faible, les images obtenues démontrent le potentiel de l’imagerie du paramètre de non linéarité des tissus. / Harmonic imaging, based on the propagated medium nonlinearity, is a clinical imaging technique which increases the resolution of ultrasound images. The ultrasound measure of the local nonlinear parameter brings new perspectives in term tissues characterization. However, access to this information suffers from two strong points: from one hand, there is no current measurement method of this parameter in echo mode configuration and on the other hand, the simulation tools taking into account the nonlinearity are not many developed. An angular spectrum method has been proposed to compute the nonlinear pressure field with inhomogeneous nonlinear parameter. This pressure field is then used to generate ultrasound images containing the harmonic component. This spectral approach has been implemented on a GPU in order to accelerate the computation and package in a free software made available to the scientific community under the name CREANUIS. In a second time, a extension of a comparative method (ECM) has been proposed to take into account media with inhomogeneous nonlinearity, working an echo mode configuration. Thanks the developed simulation tools, different configurations have been used to parameterize and to evaluate the ECM which has then be validated on test objects and in vitro animal’s livers. Even if the measure presents a relatively weak resolution, the obtained images demonstrated a high potential in the nonlinear parameter imaging of tissues.
|
10 |
Contribution expérimentale à l'étude de la diffusion multiple des ultrasons en régimes de propagation linéaire et non linéaireViard, Nicolas 05 February 2014 (has links) (PDF)
Ces travaux de thèse expérimentaux portent sur la propagation linéaire et non linéaire d'ultrasons en milieux aléatoires fortement hétérogènes. En régime non linéaire, nous étudions la transmission cohérente d'une onde de choc à travers deux milieux aléatoires hétérogènes modèles : une forêt de tiges métalliques immergées dans l'eau, et un gel bulleux. L'expérience montre que les effets de la non linéarité et de la diffusion multiple y sont découplés. Nous exploitons alors l'étendue spectrale de l'onde de choc incidente, pour mesurer l'atténuation et la vitesse de groupe de l'onde cohérente, sur un large intervalle de fréquences. En comparant nos mesures à une théorie linéaire de la diffusion, incluant des corrélations de paires entre centres diffuseurs, nous étendons son domaine de validité, et nous montrons par la même qu'une onde de choc constitue un bon outil de spectroscopie des milieux fortement hétérogènes. À l'aide du même dispositif expérimental, nous observons pour la première fois une coda ultrasonore transmise par un milieu bulleux. Dans un régime de propagation linéaire, nous exploitons la coda engendrée par la diffusion multiple pour mesurer les paramètres de transport des forêts de tiges métalliques immergées. Nous présentons des mesures impulsionnelles et résolues en fréquence de la constante de diffusion des ultrasons dans ces milieux. Ces dernières montrent tout l'intérêt d'étudier la coda, qui fournit des mesures mieux résolues que l'onde cohérente. Enfin, nous présentons les premières mesures résolues en fréquence de la vitesse de transport pour ces milieux modèles. Avec ces mesures, nous disposons maintenant d'un milieu hétérogène synthétique parfaitement caractérisé en régime linéaire.
|
Page generated in 0.1135 seconds