• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 6
  • 1
  • Tagged with
  • 46
  • 46
  • 15
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle de DEPTOR dans la régulation du bilan d'énergie

Caron, Alexandre 23 April 2018 (has links)
La mechanistic target of rapamycin (mTOR) est une kinase qui s’associe à différentes protéines pour former deux complexes distincts (mTORC1 et mTORC2). Ces complexes jouent un rôle fondamental dans la régulation centrale du bilan d’énergie en assurant à la fois l’intégration hormonale et nutritionnelle, de même que le contrôle des déterminants énergétiques. Dans un contexte d’obésité, l’activation constitutive de mTORC1 engendrée par le surplus de nutriments conduit à la mise en place de boucles de rétroaction négative envers la voie de l’insuline. Cet évènement est en partie responsable de l’initiation de la résistance périphérique et hypothalamique à l’insuline. Des études récentes ont identifié Deptor comme un régulateur négatif de la voie de signalisation mTOR. Les connaissances actuelles démontrent que Deptor perturbe l’activité kinase de mTORC1 envers ses substrats en amont. Conséquemment, Deptor représente une cible de choix afin d’améliorer la sensibilité à l’insuline, particulièrement dans un contexte de balance énergétique positive qui exacerbe l’activité de mTORC1. Les travaux réalisés dans le cadre de cette thèse ont révélé la présence de Deptor dans différentes régions cérébrales impliquées dans la régulation du bilan d’énergie. De fait, nos travaux dévoilent la première caractérisation de la présence et de la modulation de Deptor dans le cerveau du rat et de la souris. L’expression de Deptor s’avère affectée par la restriction alimentaire dans un contexte d’obésité. Afin d’identifier le rôle de Deptor dans la régulation du métabolisme énergétique, nous avons développé des modèles murins permettant la surexpression systémique et hypothalamique de Deptor. Les résultats obtenus à partir de ces modèles démontrent que Deptor joue un rôle majeur dans la régulation centrale du bilan d’énergie en prévenant l’obésité et les complications métaboliques induites par une diète riche en gras. Nous avons observé que la surexpression hypothalamique de Deptor affecte la dépense énergétique et améliore le métabolisme du glucose. Au plan mécanistique, Deptor améliore la sensibilité neuronale à l’insuline en favorisant l’activation de la protéine kinase B (Akt) et en réprimant l’expression du peptide orexigène agouti-related (AgRP). / The mechanistic target of rapamycin (mTOR) is a kinase that nucleates two large protein complexes (mTORC1 and mTORC2). These complexes play fundamental roles in the central regulation of energy balance by ensuring the integration of nutrient and hormonal cues, and modulating the energy determinants. In a context of obesity, the constitutive activation of mTORC1 generated by nutrient overload leads to the generation of several negative feedback loops toward the insulin signaling pathway. This event is, at least in part, responsible for the initiation of hypothalamic and peripheral insulin resistance. Recent studies have identified Deptor as a negative regulator of the mTOR signaling pathway. Current knowledge demonstrates that Deptor affects the kinase activity of mTORC1 toward its upstream substrates. Consequently, Deptor represents a prime target to improve insulin sensitivity, particularly in a context of positive energy balance that exacerbates the activity of mTORC1. This thesis revealed the presence of Deptor in different brain regions involved in the regulation of energy balance. Our work reports the first characterization of the presence and modulation of Deptor in the mouse and rat brain. We revealed that expression of Deptor is affected by dietary restriction in a context of obesity. In order to identify the role of Deptor in regulating energy homeostasis, we have developed mouse models allowing the systemic and hypothalamic overexpression of Deptor. The results obtained from these models indicate that Deptor prevents obesity and metabolic complications induced by a high-fat diet. Therefore, hypothalamic Deptor overexpression affects energy expenditure and improves glucose metabolism. Mechanistically, our work reveals that Deptor improves neuronal insulin sensitivity by promoting the activation of protein kinase B (Akt/PKB) and by suppressing the expression of the orexigenic agouti-related peptide (AgRP).
2

Étude de l'extension N-terminale de la kinase mitotique MPS1

Combes, Guillaume 24 April 2018 (has links)
Une des premières caractéristiques reconnues dans les cellules cancéreuses fut l’observation d’aberrations chromosomiques au cours de la division cellulaire. Parmi ces aberrations, on retrouve l’aneuploïdie, une mutation génétique définie par un nombre de chromosomes anormal de la cellule. Première cause associée aux fausses couches et au retard mental, l’aneuploïdie participe également à la progression tumorale. Plusieurs mécanismes sont mis en place par la cellule pour parer à ces aberrations chromosomiques. Le « spindle assembly checkpoint » (SAC) fait partie de ces mécanismes qui assurent la ségrégation précise des chromosomes au cours de la mitose. La kinase à double spécificité MPS1 codée par le gène TTK est une composante critique du SAC. La régulation de l’activité et de la localisation de MPS1 reste encore incomprise dans son ensemble. La localisation de MPS1 aux kinétochores (KT, structure des centromères permettant la mise en place du SAC) nécessite une région d’environ 50 acides aminés appelée NTE (N-Terminal Extension) qui ne possède pas de domaine fonctionnel clairement défini. Des données récentes ont montré que la région N-Terminale de MPS1 est impliquée dans la régulation de son activité. L’objectif principal de ces travaux est de comprendre dans quelle mesure la région NTE participe à la régulation de l’activité kinase et à la localisation de MPS1. Mettant en place une approche basée sur l’hypothèse que la conservation de la structure à travers l’évolution peut correspondre à une fonction, nous avons mis en évidence que la région NTE de MPS1 contribue à sa localisation et son activation par 2 modules indépendants. Nous avons démontré que les résidus 19-29 sont absolument requis pour la localisation de MPS1 déterminant ainsi plus précisément une région responsable de sa localisation. Cette région est également nécessaire pour diminuer l’interaction entre MPS1 et sa protéine partenaire ARHGEF17/TEM4 qui participe à son recrutement au KT, régulant de ce fait la localisation de MPS1. Le second module concerne les résidus 40-49 et c’est en particulier la phosphorylation de cette région qui contribue à l’activation de la kinase, vraisemblablement par la relâche d’un mécanisme d’auto-inhibition de la kinase. Ce mécanisme, participant à la régulation de l’activité kinase de MPS1, semble se produire successivement avec la dimérisation, puis la phosphorylation initiale de la région NTE et est enfin suivie de la trans-autophosphorylation de la boucle d’activation du domaine kinase. L’importance de la région NTE dans l’accomplissement des fonctions de MPS1 au cours de la mitose a été démontrée ainsi que la nécessité de ces deux régions particulières de la NTE requises indépendamment pour le fonctionnement optimal et le maintien de la robustesse du SAC. Ainsi, cette thèse apporte des informations supplémentaires et indispensables à la compréhension des mécanismes régulant l’activité kinase et la localisation au kinétochore de MPS1 par l’intermédiaire de sa région NTE. / One of the first recognized characteristics in cancer cells was the observation of chromosomal aberrations during cell division. Among these aberrations, there is aneuploidy, a genetic abnormality defined by having an incorrect number of chromosomes in the cell. As the leading cause of miscarriages and mental retardation, aneuploidy also contributes to tumor progression. Several mechanisms are established by the cell to counter these chromosomal aberrations. The "spindle assembly control point" (SAC) is one of these mechanisms which ensures accurate segregation of chromosomes during mitosis. The dual specificity kinase MPS1 coded by the TTK gene is a critical component of the SAC. The regulation of the activity and the localization of MPS1 is still not wholly understood. The localization of MPS1 to the kinetochores (KT, structure of the centromeres allowing SAC organization) requires a region of approximately 50 amino acids called NTE (N-Terminal Extension) which does not exhibit a known functional domain. Recent data have demonstrated that the N-Terminal region of MPS1 is involved in the regulation of its activity. The main objective of this project is to understand to what extent the NTE region participates in the regulation of the kinase activity and the localization of MPS1. Using a structure-based approach, we have demonstrated that the NTE region of MPS1 contributes to its localization and activation by 2 independent modules. We demonstrated that residues 19-29 are absolutely required for the localization of MPS1, thus defining more accurately the region responsible for its localization. This region is also necessary to decrease the interaction between MPS1 and its partner protein ARHGEF17/TEM4, which participates in its recruitment to the KT thereby regulating the localization of MPS1. The second module concerns the residues 40-49, especially the phosphorylation of this region which contributes to the activation of the kinase, presumably by the release of a mechanism of auto-inhibition of the kinase. This mechanism, which participates in the regulation of the MPS1 kinase activity, appears to occur successively with dimerization then the initial phosphorylation of the NTE region and finally followed by trans-autophosphorylation of the activation loop of the kinase domain. The importance of the NTE region in performing the functions of MPS1 during mitosis has been demonstrated as well as the need for these two particular regions of the NTE which are independently required for optimal functioning and maintaining the robustness of the SAC. Thus, this thesis provides additional and indispensable information for understanding the mechanisms regulating the kinase activity and the kinetochore localization of MPS1 via its NTE region.
3

The function of the pseudokinase domain of BUBR1 in mitosis

Gama Braga, Luciano 27 January 2024 (has links)
La mitose est un point critique de la division cellulaire, où la distribution précise du matériel génétique garantit la viabilité de la descendance. En conséquence, la ségrégation correcte des chromosomes pendant la mitose dépend de la capacité du point de contrôle d'assemblage du fuseau mitotique (SAC) à détecter l’interaction des chromosomes avec les microtubules. Ainsi, la voie de signalisation du SAC est responsable d’inhiber la séparation des chromatides-sœurs jusqu’à l’attachement correct de tous les chromosomes aux microtubules provenant des pôles opposés du fuseau mitotique. Une fois que les chromosomes sont fixés, le signal du SAC est éteint. L'extinction du SAC dépend d'une réaction rapide aux attachements, orchestrée par deux forces qui s’opposent au niveau des centromères : les activités kinases et phosphatases. Lorsque tous les chromosomes sont correctement attachés, l'activité phosphatase augmente et éteint le signal du SAC. Notamment, la protéine pseudokinase BUBR1 est cruciale pour la génération de l’activité phosphatase au niveau d’un grand complexe protéique établi aux centromères, le kinétochore. En bref, la voie de contrôle mitotique conduit à la phosphorylation de la protéine KNL1, un des principaux centres d’échafaudage du kinétochore, provoquant une accumulation de BUBR1 et d'autres protéines impliquées dans le SAC. La phosphorylation de BUBR1 à son domaine KARD crée un motif de liaison pour la sous-unité B56 de la phosphatase PP2A. Par conséquent, le complexe BURR1-PP2AB56 est essentiel pour la dephosphorylation de plusieurs sites aux kinétochores et éteindre le SAC. Pour cette raison, comprendre comment le chemin évolutif de la pseudokinase BUBR1 l'a amenée à promouvoir la déphosphorylation est une question intrigante. D'un point de vue évolutif, les gènes de la famille Bub, incluant le gène codant pour BUBR1, ont évolué à partir d'un seul gène ancestral appelé Madbub. Le gène Madbub a subi des événements de duplication de gènes distincts au cours de l'évolution conduisant à une sous-fonctionnalisation de la protéine produisant deux copies de gène différentes. Premièrement, la copie BUB1 a perdu un domaine indispensable pour le SAC appelé KEN box, mais a conservé un autre domaine crucial, le domaine kinase. Cependant, l'autre copie MAD3 a conservé le domaine KEN box et a perdu le domaine kinase. Remarquablement, la copie de la protéine MAD3 chez un certain nombre d'insectes et de vertébrés, appelé BUBR1, a conservé le domaine kinase malgré une dégénérescence résultant un domaine kinase inactif, ou pseudokinase. Il existe, notamment, des exceptions comme la Drosophila, qui présente une kinase active. En tous cas, l'avantage évolutif conféré par le maintien de ce domaine serait la stabilité qu’il confère à la protéine entière. Les mutations dans le gène codant pour BUBR1 qui causent la déstabilisation de la protéine sont associées à l’aneuploïdie variée en mosaïque, une maladie sévère qui entraîne le développement du cancer chez l’enfant. Également, des mutations au niveau de plusieurs résidus situés au niveau du domaine pseudokinase de BUBR1 déstabilisent la protéine entière. Toutefois, étant donné que BUBR1 tronqué au niveau de son domaine kinase est en fait plus stable que le type sauvage et que l'homologue BUBR1 dépourvu de kinase, MAD3, est présent dans la majorité des organismes inférieurs, cela soulève la question de savoir si le domaine pseudokinase confère un autre attribut à la fonction ou régulation de BUBR1, en particulier chez les organismes plus complexes. La présente étude vise à préciser si le domaine pseudokinase de BUBR1 régule la fonction du domaine KARD pendant la mitose. Nous présentons un aperçu d'un domaine de pseudokinase dans le contrôle de la liaison d'une phosphatase, car nos données confirment que le domaine pseudokinase régule l'affinité du KARD pour la phosphatase PP2AB56. Finalement, nous avons dévoilé un nouveau rôle du domaine pseudokinase de BUBR1 qui est crucial pour certaines fonctions mitotiques et qui aide à expliquer le chemin évolutif particulier subit par son gène. / Mitosis is a critical point of cell division, where the accurate distribution of genetic material guarantees the viability of the progeny. Proper chromosome segregation during mitosis relies on the capacity of the spindle assembly checkpoint (SAC) to sense the attachment of chromosomes to microtubules. The SAC pathway is responsible for halting sister chromatid separation until all chromosomes are correctly attached to microtubules originating from opposing poles of the mitotic spindle. After the chromosomes are successfully attached, the SAC signal is extinguished. SAC extinction depends on a swift response to microtubule attachments to sister-chromatids, which is orchestrated by the tug-of-war between two opposing sides: kinase and phosphatase activities. Each sister-chromatid possesses a kinetochore, a great protein complex that serves as interface between chromosomes and microtubules. At kinetochores unattached to microtubules, kinase activity dominates and turns the signalling on. Once all kinetochores are properly attached, phosphatase activity increases and silences the signalling. Importantly, the protein pseudokinase BUBR1 is crucial for the generation of phosphatase activity at kinetochores. When active, the mitotic checkpoint leads to the phosphorylation of MELT motifs in the kinetochore protein KNL1, causing BUBR1 and other SAC protein accumulation at kinetochores. In turn, BUBR1 phosphorylation at its kinetochoremicrotubule attachment domain (KARD) creates a binding motif for the B56 subunit of the phosphatase PP2A. Surprisingly, the pseudokinase BUBR1, in complex with PP2AB56, acts as an important phosphatase of the mitotic checkpoint by counteracting the SAC-activating kinases AURORA B and MPS1. How the evolutionary path of a protein kinase ultimately led it to promote dephosphorylation, the opposite role from its original kinase domain, is an intriguing question. From an evolutionary perspective, the Bub family gene evolved from a single ancestral gene, termed Madbub, that presented two essential domains for mitosis, v the kinase and the KEN box domain. Accordingly, Madbub undertook distinct gene duplication events throughout evolution leading to a parallel subfunctionalization of the protein yielding two different copies. One of the copies, BUB1, lost the KEN box domain but retained the kinase domain. However, the other copy, MAD3, retained the KEN box and lost the kinase domain. Barring a few exceptions, the MAD3 copy in a number of insects and vertebrates, called BUBR1, retained the kinase domain albeit severely degenerated, yielding an inactive kinase domain, or pseudokinase. Retaining this catalytically inactive domain is believed to be an evolutionary advantage since it confers stability to the whole protein. Indeed, mutations in the BUBR1 pseudokinase domain are associated with the disease Mosaic Variegated Aneuploidy, a severe condition that causes the development of cancer in children due to a reduction in BUBR1 levels. Nevertheless, since BUBR1 truncated at its kinase domain is in fact more stable than wild-type and the kinase-lacking BUBR1- homolog MAD3 is present in the majority of lower eukaryotes s raise questions concerning whether the pseudokinase domain provides another attribute to BUBR1 function or regulation, especially in more complex organisms. The present study aims to clarify whether the pseudokinase domain of BUBR1 regulates KARD function in mitosis. We present the first insight of a pseudokinase domain controlling its binding to a phosphatase, as our data supports that the pseudokinase regulates KARD affinity to PP2AB56. Here we demonstrate that, besides its role in AURORA B centromeric recruitment, BUB1 has also a role in opposing AURORA B activity by promoting PP2AB56 tethering to BUBR1. Collectively, we unraveled a new role of the BUBR1 pseudokinase domain that is crucial for proper mitotic functions and helps explain the characteristic evolutionary path undertaken by the Bub1b gene.
4

Les interactions moléculaires et la mobilité de la CaMKII à la synapse

Roy, Hugo 12 April 2018 (has links)
La protéine kinase Ca2+ /calmoduline-dépendante II (CaMKII) est une enzyme impliquée dans le remodelage synaptique dépendant de l'activation des récepteurs NMDA. Une activation importante des récepteurs NMDA provoque, dans l'épine dendritique, une augmentation du calcium libre ainsi que le recrutement de la CaMKII. Une fois dans l'épine, la CaMKII peut interagir avec plusieurs protéines, affectant ainsi sa mobilité et son accessibilité à certains substrats. Mes travaux démontrent que l'interaction de la CaMKII avec la sous-unité NR2B du récepteur NMDA, ainsi que l'auto-association de plusieurs holoenzymes de CaMKII peuvent modifier la localisation de la CaMKII dans des cellules non-neuronales suite à l'activation de la kinase. À l'aide de la technique de fluorescence recovery after photobleaching (FRAP), j'ai montré que l'activation des récepteurs NMDA mène à la rétention de la CaMKII dans l'épine dendritique. Mes résultats suggèrent que le recrutement et la rétention de la CaMKII à la synapse pourraient jouer un rôle dans la plasticité synaptique.
5

Étude des dynamiques spatio-temporelles de la CaMKII dans les neurones

Tardif, Christian 16 April 2018 (has links)
La protéine kinase Ca²⁺/calmoduline-dépendante II (CaMKII) est une enzyme clé dans le processus de la mémoire. Elle est impliquée dans les mécanismes qui régissent la plasticité synaptique et le recrutement de protéines à la synapse. Certaines hypothèses suggèrent que pour y parvenir, la CaMKII se fixe à la densité post-synaptique de manière persistante. Cette localisation pourrait faciliter son rôle de kinase vis-à-vis de ses partenaires et faciliter la transmission synaptique, en permettant l'exocytose des récepteurs AMPA par exemple. L'enzyme peut également se lier aux microtubules de manière plus brève lors des entrées calciques. Cette liaison pourrait à son tour phosphoryler certaines protéines associées aux microtubules et permettre la libération de cargos aux endroits spécifiques. Plusieurs questions sont présentement posées par la communauté scientifique au sujet des rôles de l'enzyme face à la plasticité synaptique. De quelles manières est-elle retenue à la synapse, quelles sont ses mécanismes et ses modes de diffusion, est-elle impliquée dans certains processus d'étiquetage synaptique ? Ce sont là quelques questions auxquelles j'ai tenté de répondre au cours de mes travaux de maîtrise. J'ai donc étudié les dynamiques spatiales et temporelles de la CaMKII de façon à mieux comprendre comment elle intervient au niveau synaptique. J'ai utilisé des cultures d'hippocampe de rats, dans lesquelles j'ai surexprimé la GFP-aCaMKII. J'ai fait du FRAP (fluorescence recovery after photobleaching) et du FLAPA (Fluorescence loss after Photo Activation) ce qui m'a permis d'obtenir de l'information sur la mobilité et la rétention de la CaMKII. J'ai également adapté une méthode d'analyse de régression sur le profil d'intensité en utilisant la méthode des maxima d'entropie. Mes résultats démontrent que suite à une activation synaptique, une plus grande fraction de CaMKII est retenue à la synapse, pour une durée de temps prolongée. Cette rétention, observée sur une longue période, pourrait avoir un rôle important dans les changements plastiques à long terme. J'ai aussi démontré que l'enzyme doit d'être activée via le complexe Ca²⁺/CaM. D'autres résultats m'ont permis de constater que lors des entrées calciques, la CaMKII se fixe aux microtubules. Mes travaux proposent donc que plusieurs dynamiques spatiales et temporelles de la CaMKII sont mises à contribution pour le bon fonctionnement du système de transmission synaptique.
6

Contribution de la kinase WNK1 à la guérison des plaies cornéennes

Desjardins, Pascale 22 December 2018 (has links)
La cornée, en raison de sa localisation anatomique superficielle, est particulièrement vulnérable à divers traumatismes, lesquels peuvent mener à des déficiences visuelles importantes. Les changements dans la matrice extracellulaire (MEC) qui accompagnent les lésions de l'épithélium cornéen sont perçus par les intégrines qui, en retour, activent différentes voies signalétiques intracellulaires, menant ultimement à la réparation de l'épithélium lésé. L’objectif de cette étude consistait, d’une part, à identifier les médiateurs signalétiques dont l’expression et/ou l’activité était modifiée durant la guérison des plaies cornéennes, et, d’autre part, à analyser l’impact de l’inhibition d’un de ces médiateurs signalétiques, la kinase WNK1, sur la guérison des plaies cornéennes. L’analyse des données obtenues en profilage génique et profilage de kinases a permis d’identifier d’importantes altérations dans l’expression et l’activité de plusieurs médiateurs, dont la kinase WNK1, en réponse aux changements dans la MEC qui ont lieu durant la guérison des plaies cornéennes. En utilisant la culture de cellules épithéliales cornéennes humaines (hCECs) en monocouche et la cornée humaine reconstruite par génie tissulaire (hTEC) comme modèles, il a été possible de démontrer que l’inhibition pharmacologique de WNK1 par le WNK463 ralentit la fermeture des plaies cornéennes. De plus, des analyses de buvardage Western et des mesures de taux de croissance ont permis de démontrer que l’inhibition de WNK1 empêche l’activation de ses protéines cibles en aval SPAK et OSR1 et altère les propriétés prolifératives des hCECs. Enfin, ces résultats ont permis d’identifier WNK1 comme un joueur important dans la guérison des plaies cornéennes, attribuant ainsi une toute nouvelle fonction à cette kinase. De plus, ces résultats contribueront à une meilleure compréhension des mécanismes cellulaires et moléculaires impliqués dans la cicatrisation de la cornée et pourraient mener à l'identification de nouvelles cibles thérapeutiques dans le traitement des lésions cornéennes. / The cornea, because of its superficial anatomical location, is continually subjected to abrasive forces and various traumas, which can lead to significant visual impairments. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix (ECM) to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by integrins that activate different intracellular signalling pathways, ultimately leading to reepithelialization of the injured epithelium. The aims of this study was, first, to identify the signalling mediators whose expression and/or activation was altered during the healing process of the cornea, and second, to analyze the impact of the inhibition of one of these signalling mediators, the WNK1 kinase, on the corneal wound healing. Analysis of the gene profiling data and kinase arrays revealed important alterations in the expression and activity of several mediators, including the WNK1 kinase, in response to the ECM changes that occur during corneal wound healing. Using both monolayers of hCECs and tissue-engineered human corneas (hTECs) as in vitro models, we demonstrated that pharmacological inhibition of WNK1 by WNK463 significantly reduced the rate of corneal wound closure. In addition, Western blot analyzes and growth rate measurements have shown that inhibition of WNK1 prevents the activation of its downstream target proteins SPAK and OSR1, and alters the proliferative properties of hCECs, respectively. Finally, these results allowed the identification of WNK1 as an important player in the wound healing of the cornea, thus assigning a new function to this kinase. These results will therefore contribute to a better understanding of the cellular and molecular mechanisms involved in corneal wound healing and could lead to the identification of new therapeutic targets in the treatment of corneal wounds.
7

Le rôle de la kinase activée par l'AMP dans l'effet insulinotropique du GLP-1

Barbuta, Mihaela 18 April 2018 (has links)
La sécrétion d'insuline stimulée par les incrétines tels le GLP-1 (glucagon-like peptide-1) et le GIP (glucose-dependent insulinotropic polypeptide), a un rôle majeur dans la régulation du métabolisme des glucides, puisque les incrétines sont responsables de 50 à 70 % de la réponse postprandiale de la cellule beta du pancréas endocrine. Les mécanismes impliquant l'activation de l'adénylate cyclase, l'augmentation intracellulaire de l'AMP cyclique (AMPc) et, en conséquence, l'activation de certaines protéines AMPc-dépendantes, sont responsables de l'effet sécrétagogue des incrétines. Cependant, l'effet du GLP-1 sur la sécrétion d'insuline est préservé même en absence de l'activation de ces protéines, ce qui suggère que des mécanismes indépendants de l'AMPc sont également impliqués. Dans la présente étude, nous nous sommes intéressés à élucider ces mécanismes. Nous avons observé que la voie de la kinase AMP-dépendante (AMPK), qui semble avoir un rôle dans la sécrétion d'insuline stimulée par des nutriments, était également modulée par le GLP-1 dans des cellules beta du pancréas. Nous avons ensuite démontré que l'activation de cette voie réduisait l'effet du GLP-1 sur la sécrétion d'insuline. Ainsi, notre étude a permis l'identification d'une nouvelle voie contribuant à l'effet du GLP-1 sur la sécrétion d'insuline.
8

Étude des interactions dynamiques de la CaMKII avec le cytosquelette du neurone

Labrie-Dion, Étienne. 18 March 2022 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / La formation des connexions entre les neurones durant le développement et la plasticité des connexions synaptiques une fois établies nécessite une fine régulation au niveau du cytosquelette du neurone. Les interactions entre les microtubules et l'actine du cytosquelette sont à l'origine du déplacement et du guidage de l'extrémité de l'axone en croissance, et de récentes évidences suggèrent qu'elles pourraient être importantes dans la réorganisation synaptique. La protéine kinase Ca2+/calmoduline-dépendante II (CaMKII), une des protéines les plus abondantes du cerveau, pourrait être impliquée dans la régulation de ces interactions. Il a été montré que la sous-forme CaMKIIb, exprimée dans le développement et liant l'actine en situation de faible activité, détecte les oscillations calciques dans le cône de croissance et provoque son attraction. Le mécanisme par lequel la CaMKIIb entraîne le virage du cône est cependant inconnu. L'isoforme CaMKIIa, essentielle dans la potentialisation à long-terme de l'épine dendritique, a été observée s'accumulant sous l'épine dendritique lors d'une forte activité locale, où elle pourrait contrôler la livraison locale de cargos destinés à la synapse. Dans le laboratoire du Dr. De Koninck, nous avons observé ces deux formes se lier à des structures ressemblant à des microtubules pendant une forte stimulation. La liaison de la CaMKII aux microtubules pourrait expliquer le mécanisme d'action de la CaMKIIb dans le virage du cône de croissance ainsi que mettre en évidence un nouveau rôle de la CaMKIIa dans l'épine dendritique. Au cours de mes travaux de maîtrise, j'ai observé la CaMKII et le cytosquelette dans des cultures de neurones d'hippocampe de rats en marquant les protéines avec des anticorps ou en transfectant des protéines de fusion fluorescentes. Mes analyses de colocalisation m'ont permis de montrer que la dépolarisation du neurone provoque le déplacement de la CaMKIIb de l'actine vers les microtubules dans le cône de croissance et la localisation de la CaMKIIa aux microtubules, mais pas aux neurofilaments, dans le neurone plus mature. Les études d'inhibition de la CaMKIIb au cours du développement ainsi que l'étude du guidage du cône de croissance n'ont pas donné de résultats probants permettant d'expliquer le rôle du déplacement de la CaMKIIb. Finalement, il est possible que la liaison de la CaMKIIa aux microtubules sous l'épine puisse être impliquée dans les entrées de microtubules dans l'épine et dans la livraison de récepteurs AMPA.
9

Mécanismes segmentaires de l'allodynie mécanique statique trigéminale : rôle des dérivés réactifs de l'oxygène (ROS), de la désinhibition GABAergique et des interneurones PKCγ / Segmental mechanisms of trigeminal static mechanical allodynia : role of reactive oxygen species (ROS), GABAAergic disinhibition and PKCγ interneurons

Peirs, Cédric 14 December 2012 (has links)
Les douleurs chroniques, inflammatoire ou neuropathique, se traduisent par un état d'hypersensilité douloureuse. Cet état se manifeste par des douleurs spontanées et des douleurs provoquées, soit par une stimulation normalement non douloureuse (allodynie), soit par une stimulation douloureuse provoquant une sensation exagérée (hyperalgésie). Les traitements actuels ne sont souvent que partiellement efficaces et peuvent s'accompagner d'effets secondaires importants. Quel sont les mécanismes de ces symptômes douloureux et donc les cibles thérapeutiques potentielles pour de nouveaux médicaments ? Utilisant des approches comportementales, pharmacologiques, électrophysiologiques, anatomo-fonctionnelles, moléculaires et microscopiques, nous avons caractérisé les mécanismes segmentaires de la douleur spontanée et l'allodynie mécanique statique (douleur provoquée par une légère pression cutanée). En utilisant le modèle de douleur provoquée par l'injection sous-cutanée (s.c.) de capsaïcine dans la face chez le rat, nous avons évalué (1) le rôle de l'inhibition GABAAergique et des dérivés réactifs de l'oxygène (ROS) (2) l'implication d'interneurones spécifiques exprimant l'isoforme γ de la protéine kinase C (PKCγ) localisés dans les couche II interne (IIi) et III externe (IIIe), et (3) les propriétés de ces interneurones, dans le sous-noyau caudal du trijumeau. L'immunohistochimie anti-phospho-ERK1/2 révèle que deux circuits neuronaux différents sont mis en jeu lors de la douleur spontanée et de l'allodynie mécanique statique après injection s.c. de capsaïcine. Le premier implique des neurones uniquement dans les couches superficielles (I et II externe (IIe)) et le second, des neurones dans les couches I, IIe, IIi et IIIe, dont les interneurones PKCγ. Comme après injection s.c. de capsaïcine, l'injection intracisternale (i.c.) d'un donneur de ROS ou d'un inhibiteur des récepteurs GABAA induit une allodynie mécanique statique et l'activation neuronale associée impliquant les interneurones PKCγ. Ces deux phénomènes sont supprimés par l'inhibition pharmacologique de ROS ou de la PKCγ, avant injection s.c. de capsaïcine, alors que la douleur spontanée subsiste. Les microscopies optique et électronique montrent que ces interneurones PKCγ (1) expriment les récepteurs GABAA et glycine et (2) ne reçoivent de projections directes que de fibres afférentes de type A. La PKCγ est majoritairement localisée au niveau de la membrane cytoplasmique, où elle forme souvent des clusters perisynaptique. Nos résultats suggèrent qu'une allodynie mécanique statique se manifeste lorsque des circuits polysynaptiques locaux spécifiques, incluant les interneurones PKCγ, sont désinhibés par réduction de l'inhibition GABAAergique, vraisemblablement provoquée par une libération de ROS suite à une stimulation intense des fibres afférentes nociceptives. Des mécanismes spécifiques semblent donc exister pour chaque symptôme douloureux, représentant autant de cibles pour un traitement particulier de chacun d'eux. / Inflammatory or neuropathic chronic pain is characterized by persistent pain hypersensitivity. This includes spontaneous pain (pain experienced in the absence of any obvious peripheral stimulus), hyperalgesia (an increased responsiveness to noxious stimuli) and allodynia (pain in response to normally innocuous stimuli). Much of the currently available clinical treatment is only partially effective and may be accompanied by distressing side effects. What are the mechanisms underlying these pain symptoms and therefore the putative targets for new drugs? Using behavoural, pharmacological, electrophysiological, anatomo-functional, molecular and microscopic techniques, we have characterized the segmental mechanisms of spontaneous pain and static mechanical allodynia (pain produce by a light pressure). Using the facial capsaicin pain model in rats, we evaluated (1) the role of GABAAergique inhibition and reactive oxygen species (ROS), (2) the involvement of specific interneurons which express the γ isoform of protein kinase C (PKCγ) and are localized in the inner part of laminae II (IIi) and the outer part of lamina III (IIIe), and (3) the properties of these PKCγ interneurons in the medullary dorsal horn (MDH). Phospho-ERK1/2 immunochemsitry reveals that two different neuronal circuits are involved in the manifestation of spontaneous pain and static méchanical allodynia after subcutaneous (s.c.) injection of capsaicin. The first includes neurons exclusively located in the most superficial laminae (I and outer part of lamina II (IIe)) and the second, neurons in laminae I, IIe, IIi and IIIe, including PKCγ interneurons. As after s.c. capsaicin, intracisternal (i.c.)injection of a ROS donor or a GABAA receptor inhibitor induces static mechanical allodynia and associated activation of the local circuit. Conversely, these two phenomenons, but not spontaneous pain, are suppressed following i.c. injection of ROS scavenger and PKCγ inhibitors before s.c. capsaicin. Light and electron microscopies show that PKCγ interneurons (1) express both GABAA and glycine receptors, and (2) only receive direct inputs from A-fiber primary afferents. PKCγ is mostly localized on cytoplasmic membranes where it often clusters close to synaptic clefts. Our results suggest that static mechanical allodynia is expressed when specific local polysynaptic circuits, including PKCγ interneurons, are unmasked by disrupted GABAAergic inhibition, likely produced by ROS release following a strong activation of C-fiber nociceptive primary afferents. Specific mechanisms appear to be involved in these different pain symptoms, each of them being a possible target for new drugs aimed specifically at these symptoms.
10

Régulation des variants d'épissage du cotransporteur rénal Na+-K+-Cl- de type 2 (NKCC2) : implication de la voie des kinases with no lysine (WNK)

Marcoux, Andrée-Anne 13 December 2019 (has links)
L’hypertension artérielle affecte 40 % des Canadiens et Canadiennes âgés de 56 à 65 ans et correspond à un facteur de risque important pour le développement de maladies cardiovasculaires. Les causes de l’hypertension artérielle sont multifactorielles et le plus souvent difficiles à circonscrire. Elles incluent des facteurs génétiques, comme le dérèglement de certains systèmes de transport ionique dans le rein, et des facteurs environnementaux, comme l’ingestion excessive de sodium par la diète, l’abus d’alcool, la sédentarité, etc. La réabsorption du sodium filtré par le rein est effectuée par des protéines de transport spécialisées. Parmi celles-ci, le cotransporteur Na-K-Cl de type 2 (NKCC2), exprimé uniquement dans l’anse ascendante large de Henle (AAH) du néphron, assure la réabsorption d’environ 20 % du sodium. Ce transporteur est inhibé par les diurétiques de l’anse qui sont utilisés en clinique pour traiter certaines formes d’hypertension. Un changement de l’activité de cette protéine, soit intrinsèque ou lié à celui de certaines enzymes qui agissent sur NKCC2, a aussi été associé à des désordres de la pression artérielle. NKCC2 existe sous trois variants principaux qui sont produits par l’épissage alternatif de l’exon 4. Ces variants d’épissage, nommés NKCC2A, NKCC2B et NKCC2F, sont identiques les uns aux autres à l’exception du segment transmembranaire deux et de la boucle intracellulaire adjacente. Malgré tout, ils ont des caractéristiques, des localisations et des rôles différents le long de l’AAH. NKCC2 est impliqué dans la régulation du volume cellulaire puisqu’il est activé en condition de stress hypertonique. Cette activation serait médiée (du moins en partie) par certains isoformes des kinases with no lysine (WNK) dont WNK1 et WNK3. Toutefois, l’effet de ces kinases sur chaque isoforme n’est pas connu et les mécanismes provoquant l’activation du cotransporteur en réponse au stress hypertonique sont peu définis. Une meilleure connaissance à ce sujet nous permettrait de mieux comprendre comment NKCC2 est régulé et de savoir de quelle manière il pourrait être modulé pour en contrôler l’activité dans un but thérapeutique éventuel. Les objectifs de cette thèse étaient comme suit : 1) déterminer les mécanismes par lesquels les kinases WNK1 et WNK3 régulent chacun des variants de NKCC2 lors du stress hypertonique (chapitre 1) et 2) identifier les résidus de NKCC2 qui permettent la réponse au stress hypertonique et la régulation différentielle par les kinases WNK (chapitre 2). Le modèle des ovocytes de Xenopus laevis a été utilisé à cette fin. Dans le chapitre 1, nous avons montré que le stress hypertonique produisait son effet en augmentant l’abondance de NKCC2A et NKCC2B à la surface cellulaire et que cet effet était mimé par WNK3, mais pas par WNK1. De plus, nous avons montré que WNK3 augmentait le recyclage à la membrane des transporteurs endocytés alors que le stress hypertonique ne produisait pas cette réponse. Enfin, NKCC2F s’est révélé peu sensible au stress hypertonique et à WNK3, suggérant que des résidus lui étant uniques dans l’exon 4 contribuaient à cette réponse différentielle. Dans le chapitre 2, nous nous sommes intéressés aux rôles des résidus divergents entre les variants pour déterminer si l’exon 4 jouait un rôle dans les réponses observées. Par des études de mutagénèse dirigée, nous avons mis en évidence que les résidus en position 230 et 238 avaient un impact sur le trafic cellulaire de NKCC2. En outre, nous avons constaté que les résidus de NKCC2F à ces positions avaient pour effet de favoriser la rétention du transporteur à la membrane cellulaire. En somme, l’ensemble de ces travaux permettent de mieux comprendre les mécanismes de régulation du cotransporteur NKCC2 par le stress hypertonique et par la voie des kinases WNK. À la partie variable de NKCC2, l’exon 4, nous avons identifié un nouveau rôle qui est de participer à la régulation du trafic cellulaire du transporteur. Grâce à cette connaissance, nous saurons désormais que des stratégies d’intervention pour contrôler l’activité de NKCC2 pourraient miser sur la modification du nombre de transporteurs au site d’expression. / High blood pressure affects 40% of Canadians aged 56 to 65 and is a major risk factor for cardiovascular diseases. The causes of high blood pressure are multifactorial and are often difficult to circumscribe. They include genetic factors, such as abnormalities in the function of renal ion transporters, and environmental factors, such as excessive dietary sodium intake, alcohol abuse, sedentary lifestyle, etc. In the kidney, the ultrafiltered NaCl load is reabsorbed by specialized ion transport systems. Of these systems, the Na-K-Cl cotransporter type 2 (NKCC2), is confined to the thick ascending loop of Henle (TALH) of the nephron where it reabsorbs approximatively 20% of the ultrafiltered NaCl load. This transporter is inhibited by loop diuretics that are used clinically to treat certain types of hypertension. A change in the activity of NKCC2, either intrinsic or secondary to the effect of regulatory enzymes, has also been associated with blood pressure disorders. NKCC2 exists as three main variants that are produced through the alternative splicing of exon 4. These splice variants, named NKCC2A, NKCC2B, and NKCC2F, are identical to each other except for the residue composition of transmembrane segment 2 and the following connecting segment. Yet, they have different characteristics and roles along the TALH. NKCC2 is involved in cell volume regulation as it is activated by cell shrinkage. This activation is mediated (at least in part) by certain isoforms of the with no lysine (WNK) kinases including WNK1 and WNK3. However, the effect of these kinases on each of the splice variants is not known and the mechanisms that underlie the response to cell shrinkage are poorly defined. A better knowledge in these regards would allow us to better understand how NKCC2 is regulated and how it could be acted upon optimally towards maximal clinical benefits. The objectives of this thesis were as follows: 1) to determine the mechanisms by which WNK1 and WNK3 regulate each of the NKCC2 variant under hypertonic stress (Chapter 1) and 2) to identify residues in NKCC2 that sustain the response to cell shrinkage and differential regulation by the WNK kinases (chapter 2). The oocyte model of Xenopus laevis was used for this purpose. In Chapter 1, we showed that cell shrinkage produced its effect by increasing the abundance of NKCC2A and NKCC2B at the cell surface and that this effect was mimicked by WNK3, but not by WNK1. In addition, we showed that WNK3 increased membrane recycling of endocytosed transporters while cell shrinkage failed to produce such a response. Finally, NKCC2F was found to be insensitive to cell shrinkage and WNK3, suggesting that specific residues that are unique to this variant in exon 4 contributed to this differential response In Chapter 2, we looked at the roles of divergent residues between the variants to determine whether exon 4 played a role in the observed responses. Using mutagenic studies, we showed that residues at positions 230 and 238 played a major role in NKCC2 trafficking. In addition, we found that the residues of NKCC2F at these positions had the effect of promoting carrier retention at the cell membrane In sum, our findings have allowed us to better understand the mechanisms through which NKCC2 is regulated during cell shrinkage and by the WNK kinase-dependent pathway. Our findings have also allowed us to identify a new role for exon 4 in NKCC2 trafficking. With this gain of knowledge, we have found that strategies aimed at controlling the activity of NKCC2 could be based on altering the number of transporters at the cell surface.

Page generated in 0.0921 seconds