• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protective coatings for Al press tools used in automotive industry / Protective coatings for Al press tools used in automotive industry

Tan, Ruoyo January 2014 (has links)
The application of the thermally sprayed WC-Co and Cr 3C2-NiCr coatings have been widely used in industry for its superior sliding, abrasive and erosive wear properties. The Al2O3 coating possessing high hardness can be utilized to improve the wear resistance of the metallic surface. Replacing the stamping tool material from steel to lightweight aluminium with protective coatings offers significant gains such as reduction in power costs and increasing operational efficiency during manufacturing of sheet automobile parts. In this study, the WC-CoCr and Cr3C2-NiCr coatings were sprayed with High Velocity Air-Fuel (HVAF) process and Al2O3 coating was deposited using Atmosphere Plasma Spraying (APS) process. The coatings were evaluated and compared based on the results of roughness tests, hardness tests, adhesion tests, quantitative imaging analysis and microstructure analysis. The experimental results revealed that the roughness value varied in a lower range which implies of a high density of the coatings. It was found that coatings have an extremely high hardness value as tested by the Vickers hardness test. The WC-Co coating was found to be the hardest (1215.2HV). The adhesion test was implemented according to the ASTM C633-79 standard. The result showed that WC-Co and Cr3C2-NiCr coatings without a bond coat had high tensile strength, higher than the respective glue strength (63.54MPa, 75.89MPa). Whereas, the Al2O3 coating has a much lower tensile strength (15.2MPa, 25.68MPa, with and without bond) than others and using a bond coat layer does not contribute to an increase in adhesion strength of the cermet coatings. The coating thickness was evaluated using Light Optical Microscopy (LOM) and microstructure analysis was carried out using Scanning Electron Microscopy (SEM). From the microstructure analysis, it was observed that all the coatings have a dense microstructure, very low porosity and low oxide inclusions in top coat. The WC and Cr3C2 grains retain a large volume fraction of finely dispersed in matrix. The alumina coating was found to have low levels of un-melted or the re-solidified particles in the coating. All of the aforementioned analysis and results reveal that WC/CoCr and Cr3C2-NiCr coating show promising potential for press tool applications. However, abrasive resistance test still remained to be done and will be performed in the future. The result of it can reveal the actual wear resistance between two coatings in reality and will be helpful in determining the better protective coating for aluminium press tools
2

Metallic Encapsulation for High Temperature (>500 °C) Thermal Energy Storage Applications

Bhardwaj, Abhinav 01 January 2015 (has links)
Deployment of high temperature (>500 °C) thermal energy storage in solar power plants will make solar power more cost competitive and pave the way towards a sustainable future. In this research, a unique metallic encapsulation has been presented for thermal energy storage at high temperatures, capable of operation in aerobic conditions. This goal was achieved by employing low cost materials like carbon steel. The research work presents the unique encapsulation procedure adopted, as well as various coatings evaluated and optimized for corrosion protection. Experimental testing favored the use of 150 μm of nickel on carbon steel for corrosion protection in these conditions. These metallic encapsulations survived several thermal cycles at temperatures from 580 °C to 680 °C with one encapsulation surviving for 1700 thermal cycles.
3

Revestimentos obtidos por oxidação da liga AA3104-H19 por plasma eletrolítico (PEO) / Coatings obtained by oxidation of alloy AA3104-H19 plasma electrolyte (PEO)

Rocha, Luciene Vanessa Maia da, 1986- 23 August 2018 (has links)
Orientador: Célia Marina de Alvarenga Freire / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-23T08:53:31Z (GMT). No. of bitstreams: 1 Rocha_LucieneVanessaMaiada_M.pdf: 10471753 bytes, checksum: 50dcf0ffa0351262404847d42ac6a64a (MD5) Previous issue date: 2013 / Resumo: O alumínio (Al) é o terceiro elemento metálico mais abundante na Terra. É um metal leve e é notável pela sua capacidade de resistir à corrosão. Estas características tornam o alumínio amplamente utilizado para embalagens de bebida, sendo importante na proteção e na conservação do produto. Entretanto, produtos muito ácidos, como por exemplo, os refrigerantes, os chás e os sucos cítricos, podem levar à corrosão de embalagens metálicas, ocasionando a degradação do material. Atualmente, são empregados nas embalagens metálicas revestimentos orgânicos, com o objetivo de se evitar o contato do metal com o produto alimentício, minimizando as reações de interação lata/alimento. Esse trabalho tem por objetivo estudar um novo processo que produz uma camada de óxido estável na superfície de metais como o alumínio, chamado de Plasma Eletrolítico de Oxidação (PEO), que oferece uma resistência ao desgaste e uma proteção contra a corrosão, produzindo revestimentos cerâmicos densos, com uma boa adesão ao substrato. O substrato utilizado foi à liga de alumínio AA3104-H19 (alumínio utilizado na fabricação de latas de refrigerante). Foi utilizado para analisar o revestimento das amostras, a microscopia eletrônico de varredura, espectroscopia de energia dispersiva (EDS), espectroscopia de impedância eletroquímica (EIE), análise por infravermelho, rugosidade do revestimento, ensaio de dobramento e a análise dos revestimentos nas amostras em refrigerantes. O revestimento apresentou uma estrutura formada por nódulos composto por óxido de silício e óxido de alumínio, confirmado pela análise de EDS e por espectroscopia de absorção no infravermelho. As amostras evidenciaram a perda de propriedades barreira a partir do segundo dia de imersão analisados por EIE e evidenciado através da análise em imersão no refrigerante, porém a amostra com corrente de 1 ampère, 20g.L-1 de concentração de silicato de sódio e 3 minutos de deposição do revestimento e a amostra com corrente de 0,5 ampère, 15g.L-1 de concentração e 8 minutos de deposição do revestimento evidenciaram a perda de propriedades barreira a partir do sétimo dia de imersão. O ensaio de dobramento mostrou que para menores tempos de deposição houve falha do revestimento / Abstract: Aluminum (Al) is the third most abundant metallic element in the Earth. It is a lightweight metal and is notable for its ability to resist corrosion. These features make aluminum widely used for packaging of beverage, it is important for the protection and preservation of the product. However, very acidic products such as, for example, soft drinks, teas and citrus juices can lead to corrosion of metal packaging, leading to degradation of the material. Currently, employees are organic coatings in metal packaging, in order to prevent metal contact with the food product, minimizing the reactions of interaction tin / food. This work aims to study a new process that produces a stable oxide layer on the surface of metals such as aluminum, called Plasma Electrolytic Oxidation (PEO) that provides resistance to wear and corrosion protection, producing ceramic tile thick, with good adhesion to the substrate. The substrate used was the aluminum alloy AA3104-H19 (aluminum used in the manufacture of soda cans). Was used to examine the lining of the samples, scanning electron microscopy, energy dispersive spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), infrared analysis, roughness of the coating, bending test and analysis of coatings on the samples in soft drinks. The coating had a structure comprising nodes made up of silicon oxide and aluminum oxide confirmed by EDS analysis and by infrared absorption spectroscopy. The samples showed the loss of barrier properties from the second day of immersion and analyzed by EIS analysis evidenced by immersion in the coolant, but the sample with a current of 1 ampere, 20g.L-1 concentration of sodium silicate and 3 minutes of coating deposition and sample current of 0.5 ampere, 15g.L-1 concentration and 8 minutes of coating deposition showed loss of barrier properties from the seventh day of immersion. The bending test showed that for lower deposition times of the coating failed / Mestrado / Materiais e Processos de Fabricação / Mestra em Engenharia Mecânica
4

Engineering of Mixed Matrix Membranes for Water Treatment, Protective Coating and Gas Separation

Hammami, Mohamed Amen 11 1900 (has links)
Mixed Matrix Membranes (MMMs) have received worldwide attention during the last decades. This is due to the fact that the resulting materials can combine the good processability and low cost of polymer membranes with the diverse functionality, high performance and thermal properties of the fillers. This work explores the fabrication and application of MMMs. We focused on the design and fabrication of nanofillers to impart target functionality to the membrane for water treatment, protective coating and gas separation. This thesis is divided into three sections according to the application including: I- Water Treatment: This part is divided into three chapters, two related to the membrane distillation (MD) and one related to the oil spill. Three different nanofillers have been used: Periodic mesoporous organosilica (PMO), graphene and carbon nanotube (CNT). Those nanofillers were homogeneously incorporated into polyetherimide (PEI) electrospun nanofiber membranes. The doped nanoparticle not only improved the mechanical properties and thermal stability of the pristine fiber but also enhanced the MD and oil spill performance due to the functionality of those nanofillers. II- Protective coating: This part includes two chapters describing the design and the fabrication of a smart antibacterial and anti-corrosion coating. In the first project, we fabricated colloidal lysozyme-templated gold nanoclusters gating antimicrobial-loaded silica nanoparticles (MSN-AuNCs@lys) as nano-fillers in poly(ethylene oxide)/poly(butylene terephthalate) polymer matrix. MSN-AuNCs@lys dispersed homogeneously within the polymer matrix with zero NPs leaching. The system was coated on a common radiographic dental imaging device that is prone to oral bacteria contamination. This coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. In the second project, the coaxial electrospinning approach has been applied to fabricate smart core-shell nanofiber for controlled release of anti-corrosion material. Acetal-dextran was used as a pH controlled shell of the fibers and polyvinyl alcohol (PVA) as a hydrophilic core. Caffeine, as an anti-corrosion inhibitor was encapsulated in the fiber core to test its potential application as an anticorrosion coating. The almost negligible release was noticed at neutral pH. In acidic pH due to corrosion, the fibers quickly respond by releasing caffeine cargo. III- Gas separation: We describe the synthesis and application of novel ethylene-diamine-based PMO. The novel nanoparticles were homogeneously incorporated into polydimethylsiloxane to fabricate a MMMs thin layer on a porous polyacrylonitrile support. Our results prove that our PMOs can be used as nanofillers to enhance the CO2 selectivity of the PDMS polymer.
5

Study of Perovskite Structure Cathode Materials and Protective Coatings on Interconnect for Solid Oxide Fuel Cells

Shen, Fengyu 08 February 2017 (has links)
Solid oxide fuel cells (SOFCs) are promising devices to convert chemical energy to electrical energy due to their high efficiency, fuel flexibility, and low emissions. However, there are still some drawbacks hindering its wide application, such as high operative temperature, electrode degradation, chromium poisoning, oxidization of interconnect, and so on. Cathode plays a major role in determining the electrochemical performance of a single cell. In this dissertation, three perovskite cathode materials, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF), and Sm0.5Sr0.5Co0.2Fe0.8O3 (SSCF), are comparatively studied through half-cells in the temperature range of 600-800 ºC. Sm0.2Ce0.8O1.9 (SDC) block layer on the yttria-stabilized zirconia (YSZ) electrolyte can lead to smaller polarization resistances of the three cathode materials through stopping the reaction between the cathodes and the YSZ electrolyte. SDC is also used as a catalyst to increase the oxygen reduction reaction (ORR) rate in the LSCF cathode. In addition, interconnect is protected by CoxFe1-x oxide and Co3O4/SDC/Co3O4 tri-layer coatings separately. These coatings are demonstrated to be effective in decreasing the area specific resistance (ASR) of the interconnect, inhibiting the Cr diffusion/evaporation, leading higher electrochemical performance of the SSCF-based half-cell. Only 1.54 at% of Cr is detected on the surface of the SSCF cathode with the Co0.8Fe0.2 oxide coated interconnect and no Cr is detected with the Co3O4/SDC/Co3O4 tri-layer coated interconnect. Finally, single cells with LSCF, BSCF, and SSCF as the cathodes are operated in the temperature range of 600-800 °C fueled by natural gas. BSCF has the highest power density of 39 mW cm-2 at 600 °C, 88 mW cm-2 at 650 °C, and 168 mW cm-2 at 700 °C; LSCF has the highest power density of 263 mW cm-2 at 750 °C and 456 mW cm-2 at 800 °C. Activation energies calculated from the cathode ASR are 0.44 eV, 0.38 eV, and 0.52 eV for the LSCF, BSCF, and SSCF cathodes respectively, which means the BSCF cathode is preferred. The stability test shows that the BSCF-based single cell is more stable at lower operative temperature (600 °C) while the LSCF-based single cell is more stable at higher operative temperature (800 °C). / Ph. D. / Solid oxide fuel cells (SOFCs) are promising devices to convert chemical energy to electrical energy due to their high efficiency, fuel flexibility, and low emissions. However, there are still some drawbacks hindering its wide application, such as high operative temperature, electrode degradation, chromium poisoning, oxidization of interconnect, and so on. A single cell is composed of an anode, electrolyte, and cathode. Interconnect can connect individual single cell to stack to increase voltage and current. In order to improve the electrochemical performance, such as resistance and power density, cathode materials and protective coatings to interconnect are studied. Three perovskite cathode materials, La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3</sub> (LSCF), Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3</sub> (BSCF), and Sm0.5Sr0.5Co0.2Fe0.8O3 (SSCF), are comparatively studied in 600-800 ºC to obtain the optimal cathode at different operating temperatures. BSCF has the smallest resistance at 600 ºC, LSCF at 700 ºC, and SSCF at 800 ºC. A thin Sm<sub>0.2</sub>Ce<sub>0.8</sub>O<sub>1.9</sub> (SDC) block layer on the yttria-stabilized zirconia (YSZ) electrolyte can lead to smaller resistances of the three cathode materials through stopping the reaction between the cathodes and the YSZ electrolyte. SDC is also used as a catalyst by three methods to lower the resistances of the LSCF cathode. In addition, interconnect is protected by Co<sub>x</sub>Fe<sub>1-x</sub> oxide and Co<sub>3</sub>O<sub>4</sub>/SDC/Co<sub>3</sub>O<sub>4</sub> tri-layer coatings separately. They are demonstrated to be effective in decreasing the resistance of the interconnect, inhibiting the Cr diffusion/evaporation outward to poison cathodes. Only 1.54 at% of Cr is detected on the surface of the SSCF cathode with the Co<sub>0.8</sub>Fe<sub>0.2</sub> oxide coated interconnect and no Cr with the Co<sub>3</sub>O<sub>4</sub>/SDC/Co<sub>3</sub>O<sub>4</sub> tri-layer coated interconnect. Finally, single cells with LSCF, BSCF, and SSCF as the cathodes are operated in 600-800 °C fueled by natural gas. BSCF has the highest power densities at lower operating temperatures while LSCF has the highest power densities at higher operating temperatures. Activation energies are 0.44 eV, 0.38 eV, and 0.52 eV for the LSCF, BSCF, and SSCF cathodes respectively, which means the BSCF cathode is preferred. The stability test shows that the BSCF-based single cell is more stable at 600 °C while the LSCF-based single cell is more stable at 800 °C.
6

Light Stabilisation of Photochromic Prints

Brixland, Nikolina January 2016 (has links)
Light stabilisation of photochromic dyes is seen as the most challenging part in the development of photochromic dyes. The aim of this research is to compare stabilisation methods and their effect on the lifetime of a photochromic print on textile. The vision is to create a textile UV-sensor that detects current UV light exposure in the surroundings and alarms the wearer by showing colour. The developed inks have been formulated for ink-jet printing as a novel production method with resource saving properties. UV-LED light curable ink formulations were prepared for two dye classes; a non-commercial spirooxazine, a commercial spirooxazine (Oxford Blue) and a commercial naphthopyran (Ruby Red). Two different stabilisation methods were applied; chemically by incorporation of hindered amine light stabilisers and physically by polyurethane coating. Fatigue tests were performed to evaluate and compare the stabilisation methods. The tests included were household washing, multiple activations and intensive sun-lamp exposure. As a result it was found that Oxford Blue and spirooxazine had an initial better resistance to photodegradation than Ruby Red. The coating reduced the ability of colour development in higher extend for Oxford Blue and spirooxazine compared to Ruby Red. Moreover, the photocolouration increased with the number of activations for Oxford Blue and spirooxazine in particular. In general, the physically stabilised samples showed a better or similar fatigue resistance compared to chemically stabilised samples. On the other hand the results are weak in significance. It is concluded that the developed coating method in combination with further optimising has potential.
7

Nouveaux traitements de surface anti-corrosion à base de sol-gel dans le domaine des matériaux du nucléaire : application au cas du générateur de vapeur / New sol-gel based anticorrosion surface treatments in the nuclear field : application to the steam generator

Astorg, Adèle 16 October 2017 (has links)
Le phénomène de relâchement de nickel des tubes de générateur de vapeur des centrales R.E.P. est responsable d'une grande partie de la contamination radioactive du circuit primaire. Une solution envisagée pour limiter ce relâchement est l'application d'un revêtement anticorrosion, côté interne des tubes. Ce travail vise à étudier la faisabilité et l'efficacité de ce type de traitement de surface dans les conditions du circuit primaire (320°C, 150 bars). L'étude a permis d'établir un procédé de synthèse par voie sol-gel compatible avec des substrats métalliques, conduisant à des films denses et mésoporeux à partir d'alcoxydes de métaux de transition, dont la réactivité est contrôlée par l'ajout de l'acétylacétone. La température de traitement thermique conditionne la cristallisation des films, la formation d'une couche enrichie en chrome contribuant à l'effet anticorrosion et la diffusion de nickel et de fer dans le film. Les films denses de ZrO2 présentent un meilleur effet barrière à la diffusion cationique et constitue une barrière anticorrosion. L'applicabilité des films de ZrO2 sur les tubes de générateur de vapeur à l'état de réception a été réalisée en adaptant l'épaisseur du film. Des essais de vieillissement dans les conditions du milieu primaire en autoclave et dans une boucle à recirculation ont été réalisés. Ces essais ont montré un phénomène de dissolution et reprécipitation des films de TiO2 tandis que les films de ZrO2 conservent davantage leur structure, malgré la formation de porosités en surface. Les films de ZrO2 vieillis pendant 500 h semblent conserver leurs propriétés de barrière à la diffusion de nickel. / Steam generator nickel release represents a major contribution to the radioactive contamination of the Pressurized Water Reactor primary circuit. One of the considered solutions is the deposition of a protective coating on the internal side of the alloy 690 tubes. The goal of this work is to study these coatings and their feasibility and efficiency in the primary circuit conditions (320°C, 150 bars). Firstly, a sol-gel thin film synthesis, leading to dense and mesoporous films, from transition metals alcoxides (butoxide titanium and propoxide zirconium) has been studied. Their reactivity is controlled by acetylacetone, which plays the role of complexing agent. The thermal treatment temperature appears to be a key parameter of the process, as it determines the oxide crystallization, the formation of a rich chromium layer below the film (which reinforces anticorrosion properties) and the nickel and iron diffusion in the film. ZrO2 coatings behave as cationic diffusion barriers and limit the corrosion. The applicability of ZrO2 coatings on industrial substrates, namely steam generators internal side with a 200 nm roughness, has been carried out by adapting the film thickness. Ageing tests in the primary circuit conditions have been conducted in an autoclave and a circulation loop. These tests have shown a dissolution – reprecipitation behavior of TiO2 coatings whereas ZrO2 coatings keep their structure despite the formation of surfacic porosities. ZrO2 dense coatings seem to keep limiting the nickel diffusion after 500 h of ageing in the primary circuit conditions.
8

SFEER Hydrogen Permeation : Finding a suitable coating for the PA6 liner

Friis, Elsa, Karlsson, Klara, Damgren, Rebecka, Åkesson, Emma, Johansson, Malin January 2023 (has links)
Water Stuff &amp; Sun are developing a hydrogen battery based on a technology called SFEER’s. The SFEER’s are spherical high-pressure gas storage containers that are the size of a tennis ball. They consist of a carbon fiber-shell that is lined on the inside with a polymer called PA6. The aim of this literature review is to present suitable materials that can be utilized as a coating on the PA6 liner in the SFEER’s to minimize the hydrogen permeability. The metallic coatings that were investigated are compounds based on chromium, boron, alu- minum and titanium. The non-metallic coatings that were investigated are lamellar inorganic components (LIC) in combination with PA6 and modified graphene oxide (GO). The coating methods that were investigated are some different PVD and CVD methods (sputter deposition, plasma enhanced CVD, ALD), electrodeposition and cold spray. The lowest permeability out of all the coatings was observed for alumina, Al2O3. Titanium nitride, TiN, was also found to have very low permeability. Since these two coatings had the lowest permeabilities they were further compared considering other factors. This resulted in alumina being chosen as the final recommendation for coating the SFEER’s. A comparison was also made to find the most suitable coating method for alumina. Cold spray was found to be very promising but if it can not be used the PVD and CVD methods are other potential candidates.
9

Etude et développement de barrière de diffusion pour les sous-couches de système barrière thermique / Study and development of new coatings including a diffusion barrier for application on nickel based superalloys gas turbine blades

Cavaletti, Eric 24 November 2009 (has links)
A haute température, l’interdiffusion entre un superalliage et son revêtement protecteur (ß-NiAl ou ß- NiPtAl) dégrade à la fois la protection contre l’oxydation, par modification de la composition chimique du revêtement, et la microstructure du superalliage (3ième et 4ième générations) par formation de Zones de Réaction Secondaires (SRZ). Le but de cette étude a donc été (1) de développer des barrières de diffusion (BD) constituées d’une dense précipitation de phases a-W après traitement sous vide (BD simple) ou chromisation en phase vapeur (BD enrichie en chrome) (2) de mettre au point une méthode pour en étudier l’efficacité. Des mesures de concentration chimique (à partir de cartographies spectrales EDS), couplées à des ajustements des comportements en oxydation cyclique en utilisant le modèle « p-kp », et le développement d’un modèle « p-kp-ß » ont permis de montrer l’efficacité de la BD selon sa composition et la durée de vieillissement. Pour des longues durées de vieillissement, l’efficacité de la BD se réduit par la dissolution des précipités d’a-W dans les phases y’ et y formées à cause de la dégradation des propriétés protectrices du revêtement ß NiPtAl (augmentation de l’écaillage de l’oxyde formé et de la cinétique d’oxydation). Plusieurs causes probables de cette dégradation ont pu être déterminées, soit dues aux procédés (pollution au soufre) soit liées à la mise en place de la BD : augmentation de la transformation martensitique, enrichissement en tungstène et présence de précipités d’alpha chrome. Enfin, il a été montré que si l’initiation des SRZ est modifiée par l’ajout de la BD, leur cinétique de propagation ne l’est pas et est essentiellement dépendante de la composition de l’alliage. Un modèle de propagation des SRZ décrivant les évolutions chimiques locales de part et d’autres de l’interface « SRZ / superalliage » a été proposé. L’ajout de chrome à la BD permet d’inhiber la formation des SRZ, une couche riche en phases TCP remplace alors la SRZ. / At high temperature, interdiffusion between a superalloy and its protective coating (ß-NiAl or ß- NiPtAl) degrades the oxidation protection by modifying the chemical composition of the coating. It also degrades the 3rd et 4th generation superalloy microstructure due to the formation of Secondary Reaction Zones (SRZ). As a consequence, the aim of this study was (1) to develop diffusion barriers (DB) composed of a dense precipitation of a-W phases after a thermal treatment under vacuum (simple DB) or a vapour phase chromisation (Cr enriched DB), (2) to develop a method for quantifying the DB efficiency. Chemical concentration measurements (with EDS spectral maps) coupled with the « p-kp » modelling of the cyclic oxidation kinetics, and the development of the model « p-kp-ß » have permitted to study DB efficiency as a function of its composition and its high temperature ageing. For long ageing duration, the efficiency of the DB is reduced. Indeed, it is shown that the DB degrades the protection character of the ß-NiPtAl by increasing the oxide scale spallation and of its growth kinetic. This, in turns, accelerates the ß to y’ and y phases transformation and then increases the a-W precipitates dissolution. Some likely causes of this degradation have been determined, either due to the process (sulphur pollution) or intrinsic of the DB addition (increase of the martensitic transformation, enrichment in tungsten and a-Cr formation in the coating). Finally, it has been proved that DB addition modifies the SRZ initiation but not their propagation kinetic, which only depends on the superalloy local composition. A SRZ propagation model which describes local chemical evolutions on both sides of the « SRZ / superalloy » interface was proposed. The addition of chromium to the DB permits to inhibit the SRZ formation. In this case, a layer rich in TCP platelets replaces the SRZ.
10

Etude du vieillissement des disques optiques numériques : recherche de corrélations entre évolution des constituants et perte de l’information / Study of the ageing of digital optical discs : research into correlations between the evolution of components and the loss of information

Collin, Steeve 20 September 2013 (has links)
Les disques optiques numériques sont utilisés par de nombreux organismes, publics ou privés, pour l’archivage de données. Malgré les espoirs fondés dans l’utilisation de ces supports, des pertes d’information ont été observées, parfois après seulement quelques années d’archivage. Cette évolution a été attribuée au vieillissement des disques, sans préjuger des constituants impliqués. Ce travail de thèse visait à identifier les modifications chimiques et physiques résultant de l’application de différentes contraintes (photochimique, thermique ethydrolytique) sur des constituants de disques optiques : substrats de CD-R en polycarbonate, couches enregistrables de types « phtalocyanine » et « azoïque » et vernis de protection. L’étude de ce dernier constituant a permis d’élargir les recherches au cas du Blu-ray Disc. Ces évolutions physico-chimiques ont ensuite été corrélées à des variations des paramètres analogiques et numériques de disques soumis aux mêmes contraintes. L’objectif ultime de ce travail était de mettre en place une méthodologie générale permettant de comprendre l’origine de la perte d’information de disques optiques numériques exposés à des contraintes. / Optical discs are often used by many private or public organizations to archive essential data. For a long time these media were supposed to be reliable. However, a loss of the stored data was highlighted, sometimes only after a few years of storage. This degradation was attributed to the discs ageing, without any identification of the materials involved in this ageing. This work aimed to determine the chemical and physical modifications resulting from the application of different stresses (photochemical, thermal and hydrolytic) on the materials used in optical discs : the CD-R polycarbonate substrates, the recording layers based on phthalocyanines and azo compounds, and the protective layers. The study of this last component allowed us to extend the researches to the case of the Blu-ray Disc. These physico-chemical modifications were then correlated to variations in digital and analog parameters of discs submitted to the same stresses. The ultimate objective of this work was to propose a general method that could help to understand the origin of the loss of information of optical discs submitted to stresses.

Page generated in 0.0846 seconds