91 |
Design, Synthesis and Characterization of Novel NanomaterialsThirupathi, Ravula January 2014 (has links) (PDF)
The present thesis entitled “Design, Synthesis and Characterization of Novel Nanomaterials” is divided into five chapters, staring with a general introduction. The remaining chapters focus on four different areas/projects that I have worked on.
Chapter 1: Introduction to nanomaterials
This chapter reviews the basic concepts of nanomaterials and their fabrication methods. Nanomaterials are defined as materials whose dimensions (at least one) are below 100 nm. One of the most exciting aspects of nanomaterials is that their properties may differ significantly from those of the corresponding bulk materials. Nanomaterials fabrication methods can be broadly classified according to whether the assembly follows either i) the bottom-up approach or ii) the top-down approach. These methods have been discussed with various examples including the self-assembly of proteins, peptides and small molecules. In the top-down approach synthetic procedures for Graphene Oxide and its application are discussed. All characterization techniques that are used for characterizing the nanomaterials are also described briefly.
Chapter 2 Section A: Self-assembly of 1-Hydroxy benzotriazole (HOBT) in water
The studies presented in Chapter 2 identifies HOBT as the smallest non-peptide building block that spontaneously self-assembles into hollow micro tubular structures upon evaporation of water. The tubes form under ambient conditions by rolling over of crystalline sheets of HOBT. The packing of HOBT in the tubes seem to be predominantly driven by intermolecular π-stacking interactions between the aromatic rings of HOBT. These structural and packing patterns are similar to those found in nanotubes formed by the self-assembly of peptides and other larger molecules. The cavities of these thermolabile microtubes act as molds for casting gold nanoparticles for the synthesis of gold microrods with monodisperse dimensions. The non-reacting inner surfaces of the cavities have been used to uniquely synthesize R6G-functionalized gold microrods. With these features, HOBT is an important novel non-peptide building block for accessing micro and nanometric materials for their applications in medicine, biology and molecular biotechnology.
Section B: Controlling the orientation of self-assembly of HOBT microtubes
The studies presented in this chapter address the self-assembly of HOBT into microtubular structures in different solvents of varying polarities (H2O and DCM:MeOH) to understand the role of solvent volatility and its direction on the orientation of the HOBT microtubes. HOBT self-assembles from DCM:MeOH mixtures in its bipolar canonical form and is coordinated with its water of hydration, similar to its crystals obtained from water. FTIR and TGA data shows that MeOH is also integrated with the microtubes. We observe for the first time that the orientation of microtubular self-assembly is controlled in the direction of evaporation of the solvent. We demonstrate further this feature by controlling the orientation of HOBT self-assembly in exclusively vertical direction through controlled vertical evaporation of the solvent mixture DCM:MeOH (9:1). Additionally, the unique transition between vertical and horizontal orientations for self-assembled HOBT microtubes is achieved by simple change of solvation between aqueous and organic solvents. These results reveal a dynamic relationship between the rate of evaporation of solvent and the rates of formation of different self-assembled morphologies. The rate of evaporation of the solvent primarily governs the rate of formation of the tubes, rather than their orientations in three dimensions.
Chapter 3: Chemical origins of debris in Graphene Oxide (GO)
This chapter is focused on the investigation of the carbonyl rich fragments arising from GO and provides an understanding of its formation. The fragments are expelled from GO due to an uncontrolled nucleophile driven reaction in aqueous medium leaving the holes on the sheet. These fragments are carbonyl rich small (5 ± 2 nm) nonaromatic molecules that form as by-products of oxidative chemical reactions that occur at the sp3 clusters on the basal surface of GO sheets when they are treated with nucleophilic bases under aqueous conditions. The structure and size of the debris, and hence that of the hole, depend on the size of the sp3 cluster on the sheet. These debris fall out of the GO sheet surface, leading to formation of nanometer sized holes. Formation of debris and hence the holes can be avoided by using anhydrous polar solvents. This work sheds new light on the fundamental structure of GO and the prevention of debris from it during redox reactions enabling better control over functionalization of the GO surface.
Chapter 4: Measurement of mechanical properties of polypeptide fragment from Insulin like growth factor binding protein nanotubes by the Peak Force QNM method
This chapter describes the discovery of Polypeptide fragment from an IGFBP-2. This fragment self-assembles spontaneously and reversibly into nanotubular structures under oxidizing conditions. These nanotubes were characterized by using Transmission electron microscopy. Notably as compared to the monomer, an increase in intrinsic fluorescence upon self-assembly. The thermal stability of these nanotubes is realized form the fluorescence studies. Peak Force Quantitative Nanomechanical Mapping method of AFM was used to measure the Young’s modulus of the nanotubes. These nanotubes were found to have Young’s modulus value of ~10 Gpa, which is comparable to those of bones presumably due to intermolecular disulphide bonds. These nanotubes will have potential applications in tissue engineering.
Chapter 5: Probing the pathways of n→π* interaction in peptides
This chapter deals with the theoretical study of n→π* interaction in designed peptidomimetics. The n→π* interaction involves the delocalization of the lone pair of the donor group into the antibonding orbital (π*) of a carbonyl group. However despite beeing extensively studied there exists a debate over the validation of these n→π* interaction which is reminiscent to Bürgi and Dunitz trajectory. This chapter present our findings that peptidomimetics containing the 5,6-dihydro-4H-1,3-oxazine (Oxa) and 5,6-dihydro-4H-1,3-thiazine (Thi) functional groups at the C-terminus of Pro selectively stabilizes the cis conformer by reverse n→πi-1* interaction. These systems have been used to study the n→πi1* interaction using Natural Bond Orbital (NBO) method. Our study reveals that the energetically most favorable trajectory of a nucleophile for a favorable n→π* interaction presumably to facilitate the overlap between the lonepair of the nucleophile and the antibonding orbital of the carbonyl group. The geometrical requirements for the optimum n→π* interaction depends on the relative orientations of the orbitals that are involved. This study has implications for more accurately identifying long distant n→π* interaction.
|
92 |
Caractérisation fonctionnelle et biochimique d'un nouveau partenaire de la poly(ADP-ribose) polymérase I : high-mobility group protein containing 2-like 1 / Biochemical and functionnal characterization of a new partner of poly(ADP-ribose) polymerase I : high-mobility group containing protein 2-like 1Kalisch, Thomas 26 September 2013 (has links)
La poly(ADP-ribosyl)ation est une modification post-traductionnelle des protéines catalysée par une famille d’enzymes : les poly(ADP-ribose) polymérases. Parmi les plus étudiées, PARP-1 et PARP-2 interviennent dans l’organisation, l’expression et le maintien de l’intégrité du génome. Nous avons initié l'étude d'un nouveau partenaire de PARP-1 préalablement identifié par double-hybride, et encore peu étudié à ce jour : HMG2L1 (High-Mobility Group protein 2 Like-1). La protéine humaine de 601 acides aminés contient un domaine HMG (High-Mobility Group) normalement impliqué dans l’interaction avec l’ADN. Quelques études ont montré que HMG2L1 régule la transcription en agissant comme co-régulateur négatif ou positif. Dans un premier temps, nous avons caractérisé le lien entre PARP-1 et HMG2L1. L’interaction avec PARP-1 a été confirmée in-vivo et in vitro. Nous avons montré que HMG2L1 pouvait également interagir avec PARP-2. HMG2L1 est poly(ADP-ribosyl)ée par PARP-1 et PARP-2, de même qu’elle est capable d’interagir avec le poly(ADP-ribose). La construction de formes tronquées de HMG2L1 en fusion avec la GFP nous a permis de montrer que le domaine N-terminal – en amont du domaine HMG – est impliqué dans ces interactions. Ce domaine N-terminal est très électropositif et intrinsèquement désordonné ce qui lui confère de nombreuses potentialités d’interactions. L’expression des fusions GFP dans des cellules HeLa nous a permis de montrer la localisation nucléaire et nucléolaire de HMG2L1, comme c’est le cas pour PARP-1 et PARP- 2. En outre, HMG2L1 colocalise avec UBF (Upstream Binding Factor), le facteur de transcription de l’ARN polymérase I responsable de la transcription des ARN ribosomaux. La surexpression de GFP-hHMG2L1 entraîne un stress nucléolaire caractérisé par l’inhibition de la transcription des ADNr et la formation de coiffes nucléolaires. Nous avons également entrepris une recherche de partenaires de HMG2L1 par spectrométrie de masse. De nombreuses protéines nucléolaires, impliquées dans la biogenèse des ribosomes ou la maturation des ARNs ont été identifiées, suggérant un rôle de HMG2L1 dans ces processus. Nous avons montré que la protéine purifiée interagit avec l’ADN via son domaine HMG principalement, et qu’elle interagit avec l’ARN via son domaine N-terminal. Mais surtout, nous avons mis en évidence une activité ARN-chaperonne, qui peut être régulée par le poly(ADP-ribose). La localisation de HMG2L1, son réseau d’interaction ainsi que son activité chaperonne nous laissent à penser qu’elle pourrait être impliquée dans des processus de maturation des ARN, régulés par la poly(ADPribosyl)ation. / Poly(ADP-ribosyl)ation is a post-translational modification of proteins mediated by a family of enzymes called poly(ADP-ribose) polymerases. Among the best studied, PARP-1 and PARP-2 are both implicated into the transcription, organization and integrity of genome. We have initiated the characterization of a new PARP-1 partner previously identified in a yeast two-hybrid screen, and still poorly studied: HMG2L1 (High-Mobility Group protein 2 Like-1). The human protein of 601 amino acids contains one HMGbox domain normally implicated in the recognition of DNA. Some studies have reported the role of HMG2L1 in the regulation of transcription by acting as a negative or positive coregulator. First, we characterized the link between PARP-1 and HMG2L1. We confirmed the interaction between both proteins in vivo and in vitro. We also showed that HMG2L1 couldinteract with PARP-2. HMG2L1 is poly(ADP-ribosyl)ated by PARP-1 and PARP-2, and is able to interact with poly(ADP-ribose). The construction of GFP-fused truncated versions of HMG2L1 allowed us to show that the N-terminal part – upstream to the HMGbox – is responsible for all these interactions. This N-terminal domain is highly electropositive and intrinsically disordered conferring a lot of interactions potentialities. The expression of the GFP-fused proteins in HeLa cells allowed us to localizeHMG2L1 into the nucleus and the nucleolus, like PARP-1 and PARP-2. Moreover, HMG2L1 colocalizes with UBF (Upstream Binding Factor), the transcription factor responsible for the transcription of ribosomal ARNs by RNA polymerase I. The overexpression of GFPhHMG2L1 leads to a nucleolar stress illustrated by the inhibition of transcription and the formation of nucleolar caps. We also undertook a proteomic study to find new partners of HMG2L1. We found a huge amount of nucleolar proteins, involved in ribosome biogenesis or RNA maturation, suggesting that HMG2L1 could be involved in these processes. Finally, we demonstrated the ability of the purified protein to interact with DNA mostly through its HMGbox domain and RNA through its N-terminal domain. Moreover, we discovered that HMG2L1 is endowed with a RNA-chaperone activity, that can be regulated by poly(ADP-ribose). Taken together, the localization of HMG2L1, its interacting partners and its RNA chaperone activity allow us to make the assumption that HMG2L1 could be implicated in RNA maturation processes, regulated by poly(ADP-ribosyl)ation.
|
93 |
Relations fonctionnelles entre les voies des hormones thyroïdiennes et WNT dans la physiopathologie intestinale : étude de la fonction de sFRP2 / Functional relations between the thyroïd hormones and WNT pathways in the intestinal physiopathology : study of sFRP2 functionSkah, Seham 27 September 2012 (has links)
L'épithélium intestinal est un tissu en constant renouvellement, grâce à des cellules souches somatiques présentes dans les cryptes intestinales. Le renouvellement perpétuel et l’homéostasie de ce tissu sont assurés par plusieurs réseaux de signalisation. Il est maintenant admis que la dérégulation de ces mêmes voies est impliquée dans le processus d’initiation et/ou de progression tumorale. Mon laboratoire a décrit l'implication des hormones thyroïdiennes (HT) et de leur récepteur nucléaire TRα1 dans le contrôle de l'homéostasie intestinale, via la régulation de la voie Wnt, jouant un rôle clé dans la physiopathologie de ce tissu. Plus précisément, TRα1 active l’expression et la stabilisation de β-caténine via un mécanisme impliquant le facteur sFRP2. Au cours de ma thèse, j’ai participé, d’une part à l’étude de souris transgéniques surexprimant TRα1 dans l’épithélium intestinal et à l’analyse des mécanismes moléculaires de la régulation croisée entre TRα1 et la voie Wnt canonique dans l’induction des tumeurs intestinales. Nous avons donc démontré un rôle oncogénique de TRα1 dans l’épithélium intestinal. De plus, le mécanisme moléculaire et fonctionnel implique les deux effecteurs de la voie canonique, β-caténine et TCF4. D’autre part, j’ai analysé la fonction de sFRP2 dans la physiopathologie intestinale, et son action sur la voie Wnt. D’une manière intéressante, l’étude de la fonction de sFRP2 nous a permis de révéler son rôle original dans la différenciation des cytotypes épithéliaux. De plus, nous avons montré que sFRP2 est un modulateur positif des voies Wnt canonique et non canonique (JNK). Par ailleurs, l’absence d’expression de sFRP2 a pour conséquence d’augmenter l’apoptose dans les cryptes intestinales et ainsi diminuer le nombre de tumeurs chez des animaux double mutants sFRP2-/-/Apc+/1638N comparé aux simple mutants Apc+/1638N. Ces résultats fournissent des éléments originaux et importants sur les relations fonctionnelles entre les voies des HT et Wnt. / The intestinal epithelium is a tissue constantly renewing through somatic stem cells located within the crypts. Several signalling pathways control this process and the homeostasis in this tissue. It is now recognized that the deregulation of these pathways is involved in the process of initiation and/or progression of intestinal tumors. My laboratory has described the involvement of thyroid hormones (TH) and their nuclear receptor TRα1 in the control of the intestinal homeostasis via the regulation of Wnt pathway, which plays a key role in the intestinal physiopathology. Specifically, TRα1 directly activates the expression of β-catenin and controls its stabilization through a mechanism involving sFRP2 (secreted frizzled-related protein 2). During my thesis, I participated to the characterization of transgenic mice overexpressing TRα1 in the intestinal epithelium. Moreover, I have been involved in the study of the molecular mechanisms of the cross-regulation between TRα1 and the canonical Wnt in the induction of intestinal tumors. We have therefore demonstrated an oncogenic role of TRα1 in the intestinal epithelium. In addition, the molecular and functional mechanisms involve both effectors of the canonical pathway, β-catenin and TCF4. On the other hand, I carried out the study of sFRP2 function in the intestinal physiopathology, and its action on the Wnt pathway. My data strongly suggest that sFRP2 plays an essential role in the differentiation of epithelial cytotypes. In addition, we showed that sFRP2 is a positive modulator of the canonical and non-canonical (JNK) Wnt. For instance, the absence of sFRP2 expression increases the apoptosis in the intestinal crypts and thus reduces the number of tumors in the double mutant sFRP2-/-/Apc+/1638N compared to simple mutant Apc+/1638N. These results provided original and important data of the functional relationships between TH and Wnt pathways.
|
94 |
Prolyl-4-hydroxylase domain 3 (PHD3) is a critical terminator for cell survival of macrophages under stress conditionsSwain, Lija 07 July 2014 (has links)
No description available.
|
95 |
Bone Regeneration with Cell-free Injectable ScaffoldsHulsart Billström, Gry January 2017 (has links)
Bone is a remarkable multifunctional tissue with the ability to regenerate and remodel without generating any scar tissue. However, bone loss due to injury or diseases can be a great challenge and affect the patient significantly. Autologous bone grafting is commonly used throughout the world. Autograft both fills the void and is bone inductive, housing the particular cells that are needed for bone regeneration. However, a regenerative complement to autograft is of great interest as the use of biomaterials loaded with bioactive molecules can avoid donor site morbidity and the problem of a limited volume of material. Two such regenerative products that utilise bone morphogenetic protein (BMP)-7 and -2 have been used for more than a decade clinically. Unfortunately, several side effects have been reported, such as severe swelling due to inflammation and ectopic bone formation. Additionally, the products require open surgery and use of supra physiological doses of the BMPs due to poor localisation and retention of the growth factor. The purpose of this thesis was to harness the strong inductive capacity of the BMP-2 by optimising the carrier of this bioactive protein, thereby minimising the side effects that are associated with the clinical products and facilitating safe and localised bone regeneration. We focused on an injectable hyaluronan-based carrier developed through polymer chemistry at the University of Uppsala. The strategy was to use the body’s own regenerative pathway to stimulate and enhance bone healing in a manner similar to the natural bone-healing process. The hyaluronan-based carrier has a similar composition to the natural extracellular matrix and is degraded by resident enzymes. Earlier studies have shown improved properties when adding hydroxyapatite, a calcium phosphate that constitutes the inorganic part of the bone matrix. In Paper I, the aim was to improve the carrier by adding other forms of calcium phosphate. The results indicated that bone formation was enhanced when using nano-sized hydroxyapatite. In Paper II, we discovered the importance of crushing the material, thus enhancing permeability and enlarging the surface area. We wished to further develop the carrier system, but were lacking an animal model with relatively high throughput, facilitated access, paired data, and we were also committed to the 3Rs of refinement, reduction, and replacement. To meet these challenges, we developed and refined an animal model, and this is described in Paper III. In Paper IV, we sought to further optimise the biomaterial properties of the hydrogel through covalent bonding of bisphosphonates to the hyaluronan hydrogel. This resulted in exceptional retention of the growth factor BMP-2. In Paper V, SPECT/PET/µCT was combined as a tri-modal imaging method to allow visualisation of the biomaterial’s in situ action, in terms of drug retention, osteoblast activity and mineralisation. Finally, in Paper VI the correlation between existing in vitro results with in vivo outcomes was observed for an array of biomaterials. The study identified a surprisingly poor correlation between in vitro and in vivo assessment of biomaterials for osteogenesis.
|
96 |
ATP-Binding Cassette Efflux Transporters and Passive Membrane Permeability in Drug Absorption and DispositionMatsson, Pär January 2007 (has links)
<p>Transport into and across the cells of the human body is a prerequisite for the pharmacological action of drugs. Passive membrane permeability and active transport mechanisms are major determinants of the intestinal absorption of drugs, as well as of the distribution to target tissues and the subsequent metabolism and excretion from the body. In this thesis, the role of ATP-binding cassette (ABC) transporters and passive permeability on drug absorption and disposition was investigated. Particular emphasis was placed on defining the molecular properties important for these transport mechanisms. </p><p>The influence of different transport pathways on predictions of intestinal drug absorption was investigated using experimental models of different complexity. Experimental models that include the paracellular pathway gave improved predictions of intestinal drug absorption, especially for incompletely absorbed drugs. Further, the inhibition of the ABC transporters breast cancer resistance protein (BCRP/ABCG2) and multidrug-resistance associated protein 2 (MRP2/ABCC2) was experimentally investigated using structurally diverse datasets that were representative of orally administered drugs. A large number of previously unknown inhibitors were identified among registered drugs, but their clinical relevance for drug-drug interactions and drug-induced toxicity remains to be determined. The majority of the inhibitors affected all three major ABC transporters BCRP, MRP2 and P-glycoprotein (P gp/ABCB1), and these multi-specific inhibitors were found to be enriched in highly lipophilic weak bases. </p><p>To summarize, the present work has led to an increased knowledge of the molecular features of importance for ABC transporter inhibition and passive membrane permeability. Previously unknown ABC transporter inhibitors were identified and predictive computational models were developed for the different drug transport mechanisms. These could be valuable tools to assist in the prioritization of experimental efforts in early drug discovery.</p>
|
97 |
ATP-Binding Cassette Efflux Transporters and Passive Membrane Permeability in Drug Absorption and DispositionMatsson, Pär January 2007 (has links)
Transport into and across the cells of the human body is a prerequisite for the pharmacological action of drugs. Passive membrane permeability and active transport mechanisms are major determinants of the intestinal absorption of drugs, as well as of the distribution to target tissues and the subsequent metabolism and excretion from the body. In this thesis, the role of ATP-binding cassette (ABC) transporters and passive permeability on drug absorption and disposition was investigated. Particular emphasis was placed on defining the molecular properties important for these transport mechanisms. The influence of different transport pathways on predictions of intestinal drug absorption was investigated using experimental models of different complexity. Experimental models that include the paracellular pathway gave improved predictions of intestinal drug absorption, especially for incompletely absorbed drugs. Further, the inhibition of the ABC transporters breast cancer resistance protein (BCRP/ABCG2) and multidrug-resistance associated protein 2 (MRP2/ABCC2) was experimentally investigated using structurally diverse datasets that were representative of orally administered drugs. A large number of previously unknown inhibitors were identified among registered drugs, but their clinical relevance for drug-drug interactions and drug-induced toxicity remains to be determined. The majority of the inhibitors affected all three major ABC transporters BCRP, MRP2 and P-glycoprotein (P gp/ABCB1), and these multi-specific inhibitors were found to be enriched in highly lipophilic weak bases. To summarize, the present work has led to an increased knowledge of the molecular features of importance for ABC transporter inhibition and passive membrane permeability. Previously unknown ABC transporter inhibitors were identified and predictive computational models were developed for the different drug transport mechanisms. These could be valuable tools to assist in the prioritization of experimental efforts in early drug discovery.
|
98 |
ATP-Binding-Cassette Transporters in Biliary Efflux and Drug-Induced Liver InjuryPedersen, Jenny M. January 2013 (has links)
Membrane transport proteins are known to influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. At the onset of this thesis work, only a few structure-activity models, in general describing P-glycoprotein (Pgp/ABCB1) interactions, were developed using small datasets with little structural diversity. In this thesis, drug-transport protein interactions were explored using large, diverse datasets representing the chemical space of orally administered registered drugs. Focus was set on the ATP-binding cassette (ABC) transport proteins expressed in the canalicular membrane of human hepatocytes. The inhibition of the ABC transport proteins multidrug-resistance associated protein 2 (MRP2/ABCC2) and bile salt export pump (BSEP/ABCB11) was experimentally investigated using membrane vesicles from cells overexpressing the investigated proteins and sandwich cultured human hepatocytes (SCHH). Several previously unknown inhibitors were identified for both of the proteins and predictive in silico models were developed. Furthermore, a clear association between BSEP inhibition and clinically reported drug induced liver injuries (DILI) was identified. For the first time, an in silico model that described combined inhibition of Pgp, MRP2 and breast cancer resistance protein (BCRP/ABCG2) was developed using a large, structurally diverse dataset. Lipophilic weak bases were more often found to be general ABC inhibitors in comparison to other drugs. In early drug discovery, in silico models can be used as predictive filters in the drug candidate selection process and membrane vesicles as a first experimental screening tool to investigate protein interactions. In summary, the present work has led to an increased understanding of molecular properties important in ABC inhibition as well as the potential influence of ABC proteins in adverse drug reactions. A number of previously unknown ABC inhibitors were identified and predictive computational models were developed.
|
99 |
Bone Regeneration with Cell-free Injectable ScaffoldsHulsart Billström, Gry January 2014 (has links)
Bone is a remarkable multifunctional tissue with the ability to regenerate and remodel without generating any scar tissue. However, bone loss due to injury or diseases can be a great challenge and affect the patient significantly. Transplanting bone graft from one site in the patient to the site of fracture or bone void, i.e. autologous bone grafting is commonly used throughout the world. The transplanted bone not only fills voids, but is also bone inductive, housing the particular cells that are needed for bone regeneration. Nevertheless, a regenerative complement to autograft is of great interest and importance because the benefits from an off-the-shelf product with as good of healing capacity as autograft will circumvent most of the drawbacks with autograft. With a regenerative-medicine approach, the use of biomaterials loaded with bioactive molecules can avoid donor site morbidity and the problem of limited volume of material. Two such regenerative products that utilize bone morphogenetic protein 7 and 2 have been used for more than a decade in the clinic. However, some severe side effects have been reported, such as severe swelling due to inflammation and ectopic bone formation. Additionally, the products require open surgery, use of supra physiological doses of the BMPs due to poor localization and retention of the growth factors. The purpose of this thesis was to harness the strong inductive capability of the BMP-2 by optimizing the carrier of this bioactive protein, thereby minimizing the side effects that are associated with the clinical products and facilitating safe and localized bone regeneration at the desired site. We focused on an injectable hyaluronan-based carrier. The strategy was to use the body’s own regenerative pathway to stimulate and enhance bone healing in a manner similar to the natural bone-healing process. The hyaluronan-based carrier has a similar composition to the natural extracellular matrix and is degraded by resident hyaluronidase enzymes. Earlier studies have shown a more controlled release and improved mechanical properties when adding a weight of 25 percent of hydroxyapatite, a calcium phosphate that constitutes the inorganic part of the bone matrix. In Paper I, the aim was to improve the carrier by adding other forms of calcium phosphate. The results indicated that the bone formation was enhanced when using nano-sized hydroxyapatite. We wished to further develop the carrier system but were lacking an animal model with high output and easy access. We also wanted to provide paired data and were committed to the 3 Rs of refinement, reduction and replacement. To meet these challenges, we developed and refined an animal model, and this is described in Paper II. In Paper III, we characterized and optimized the handling properties of the carrier. In Paper IV, we discovered the importance of crushing the material, thus enhancing permeability and enlarging the surface area. In Paper V, we sought to further optimize biomaterial properties of the hydrogel through covalently bonding of bisphosphonates to the hyaluronan hydrogel. The results demonstrated exceptional retention of the growth factor BMP-2. In Paper VI, the in vivo response related to the release of the growth factor was examined by combining a SPECT/PET/µCT imaging method to visualize both the retention of the drug, and the in-vivo response in terms of mineralization.
|
100 |
Estudo in vitro dos efeitos da BMP-2 e do seu antagonista Noggin sobre a prolifera??o e migra??o celulares em carcinoma epiderm?ide de l?nguaCarvalho, Cyntia Helena Pereira de 27 February 2014 (has links)
Made available in DSpace on 2014-12-17T15:32:33Z (GMT). No. of bitstreams: 1
CyntiaHPC_TESE.pdf: 1535929 bytes, checksum: 7d7c8298def3233365b9ad5eb617d015 (MD5)
Previous issue date: 2014-02-27 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in the oral cavity and
reach a large number of individuals, has become an important public health problem. Studies
have demonstrated changes in pathway components BMP in various types of cancers as
prostate, colon, breast, gastric and OSCCs. Is the current knowledge that these proteins may
exert pro-tumor effect in more advanced stages of neoplastic development coming to favor
progression and invasion tumor. The inhibition of the signaling pathway BMP-2 through its
antagonists, have shown positive results of antitumor activity and use of Noggin may be a novel
therapeutic target for cancer. Given this evidence and the few studies with BMP-2, Noggin and
OSCC, the objective of this research was to evaluate the effect of BMP-2 and its antagonist
Noggin on proliferation and migration cell in line of cell cultures of human tongue squamous
cell carcinoma (SCC25). The study was divided in three groups, a control group, where SCC25
cells suffered no treatment, a BMP-2 group, in which cells were treated with 100ng/ml of BMP-2 and a group of cells that were treated with 100ng/ml of Noggin. For the proliferation assay
and cell cycle were established three time intervals (24, 48 and 72 hours). Proliferative activity
was investigated by trypan blue and cell cycle analysis by staining with propidium iodide flow
cytometry. The potential for migration / invasion of SCC25 cells was performing by a cell
invasion assay using Matrigel in a 48-hour interval. The proliferation curve showed a higher
proliferation in cells treated with BMP-2 in 72 hours (p < 0.05), and lower overgrowth and cell
viability in Noggin group. Recombinant proteins favored a greater percentage of cells in cell
cycle phase Go/G1 with a statistically significant difference in the interval of 24 hours (p <
0.05). BMP- 2 produced a greater invasion of cells studied as well as its antagonist Noggin
inhibits invasion of cells (p < 0.05). Thus, these results indicate that BMP-2 promotes malignant
phenotype, dues stimulates proliferation and invasion of SCC25 cells and, its antagonist Noggin
may be an alternative treatment, due to inhibit the tumor progression / O carcinoma epiderm?ide oral (CEO) representa a neoplasia maligna mais prevalente na
cavidade oral e por atingir um grande n?mero de indiv?duos, acaba se tornado um relevante
problema de sa?de p?blica. Muitos estudos demonstram altera??es nos componentes da via
BMP em v?rios tipos de tumores, como os de pr?stata, c?lon, mama, g?stricos e CEOs. ? do
conhecimento atual que essas prote?nas podem exercer efeito pr?-tumoral em est?gios mais
avan?ados do desenvolvimento neopl?sico vindo a favorecer a progress?o e invas?o tumoral.
A inibi??o da via de sinaliza??o da BMP-2, atrav?s dos seus antagonistas, tem mostrado
resultados positivos de a??o antitumoral e que assim, o uso do Noggin pode ser um novo alvo
terap?utico contra o c?ncer. Diante destas evid?ncias e dos escassos trabalhos com BMP-2,
Noggin e CEO, o objetivo desta pesquisa foi avaliar o efeito da BMP-2 e seu antagonista
Noggin sobre a prolifera??o e migra??o celulares em culturas de c?lulas de carcinoma
epiderm?ide de l?ngua humana (SCC25). Foi feita a divis?o em tr?s grupos de estudo, um grupo
controle, onde as c?lulas SCC25 n?o sofriam tratamento com subst?ncia alguma, um grupo
BMP-2, no qual as c?lulas eram tratadas com 100ng/ml de BMP-2 e um grupo de c?lulas que
eram tratadas com 100ng/ml de Noggin. Para o ensaio de prolifera??o e ciclo celular foram
estabelecidos tr?s intervalos de tempo (24, 48 e 72 horas). A atividade proliferativa foi
investigada por azul de tripan e a an?lise do ciclo celular atrav?s da marca??o por iodeto de
prop?dio em Citometria de fluxo. O potencial de migra??o/invas?o das c?lulas SCC25 foi
avaliado atrav?s da realiza??o de um ensaio de invas?o celular utilizando o matrigel em um
intervalo de 48 horas. A curva de prolifera??o revelou maior crescimento celular nas c?lulas
tratadas com BMP-2 no intervalo de 72 horas (p<0.05) e menor crecimento e viabilidade celular
no grupo Noggin. As prote?nas recombinantes favoreceram a maior porcentagem das c?lulas na
fase do ciclo celular Go/G1 com diferen?a estatisticamente significativa no intervalo de 24
horas (p<0,05). A BMP-2 promoveu uma maior invas?o das c?lulas estudadas, assim como o
seu antagonista Noggin inibiu a invas?o das c?lulas estudadas (p<0,05). Dessa forma, os
resultados indicam que a BMP-2 favorece o fen?tipo maligno, pois estimula a prolifera??o e
invas?o das c?lulas SCC25 e seu antagonista Noggin pode ser uma alternativa terap?utica pois
inibiu essas caracter?sticas pr?-tumorais
|
Page generated in 0.061 seconds