• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 7
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 32
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Phosphorylation and subcellular localization of NMDA receptors : modulation by ethanol /

Alvestad, Rachel Marie. January 2005 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado, 2005. / Typescript. Includes bibliographical references (leaves 145-170). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
32

Structural Basis for Rab5 Activation and Effector Specificity in Endosome Tethering: A Dissertation

Merithew, Eric Lee 20 April 2004 (has links)
As critical regulators of vesicular trafficking, Rab proteins comprise the largest GTPase family, with thirty-eight functionally distinct members and another twenty isoforms in the human genome. Activated Rab GTPases interact with effector proteins involved in vesicle formation, transport, tethering, docking and fusion. The specificity of Rab interactions with effectors and regulatory factors plays a central role with respect to the fidelity of membrane trafficking. Rab recognition determinants and the mechanisms underlying interactions with structurally diverse regulatory factors and effectors are complex and poorly understood. Using Rab5 mediated endocytic transport as a model system, the work described in this thesis provides insight into the structural basis underlying the interaction of effectors and regulatory factors with Rab GTPases. In addition, structural and biochemical approaches have been used to define how specific Rab5 interacting proteins function in the endocytic and recycling pathways. These results establish novel structural and functional concepts that can be tested using family wide analyses of Rab GTPase recognition determinants and regulatory roles in the cell.
33

Modelagem molecular das proteínas captadoras de molibdato (ModA) e oligopeptídeos (OppA) de Xanthomonas axonopodis pv. citri . / Molecular modeling of molibdate (ModA) and oligopeptide (OppA) uptake proteins in Xanthomonas axonopodis pv. citri.

Alexandre Moutran 24 April 2009 (has links)
Sistemas de transporte tipo ABC são responsáveis pelo transporte de uma grande variedade de substâncias dentre elas os oligopeptídeos e molibdato. Neste trabalho estudamos dois sistemas de transportadores do tipo ABC (mod, envolvido na captação de molibdato e o opp na capação de oligopeptídeos) presentes na bactéria Xanthomonas axonopodis pv. citri (Xac). Em particular analisamos a organização genética dos óperons mod e as proteínas ModA e OppA, componentes solúveis localizados no periplasma e responsáveis pela ligação aos substratos. Por meio de técnicas de modelagem molecular, definimos modelos estruturais para as proteínas ModA e OppA. Para a proteína ModA caracterizamos cinco resíduos que compõem a cavidade ligadora e são responsáveis pelas interações com o íon molibdato, assim como a sua similaridade estrutural e sequencial com ortólogos de 3 grupos distintos de bactérias. Para a OppA, descrevemos o seu comportamento na ancoragem de diferentes oligopeptídeos. Avaliamos parâmetros como a extensão da cadeia e estabelecemos uma ordem crescente de afinidade entre os oligopeptídeos com diferente composição residual e a proteína OppA. / ABC transport system are responsable for the uptake of a large variety of substrates, including oligopeptides and molybdate. In this work we studied two ABC transporter systems (mod and opp responsable for molybdate and oligopeptide uptake, respectively) present in plant pathogen Xanthomonas axonopodis pv. citri (Xac). We investigated the genetic organization of mod operon and, particularly, structural feature of periplasmic components, ModA and OppA proteins, of the uptake systems. Using molecular modeling techniques, we defined the structural models of both ModA and OppA proteins. Based on the ModA structural model, amino acid residues involved in molybdate interaction were identified. In addition, both the structural and sequence similarities of Xac ModA and other bacterial orthologs with experimentally defined structural organizations were described. Based on the OppA structural model, we applied molecular docking tools to determine the binding specificity for different oligopeptide regarding number and amino acid composition. Collectively, our results represent an important contribution to the study of ABC transporters in an economically relevant phytopathogen bacterial species.
34

Proteínas da família FEZ (Fasciculation and Elongation protein Zeta) como adaptadoras bivalentes do transporte = aspectos funcionais, estruturais e evolutivos / FEZ proteins family (Fasciculation and Elongation protein Zeta) as bivalent transport adaptors : functional, structural and evolutionary aspects.

Alborghetti, Marcos Rodrigo 07 August 2011 (has links)
Orientador: Jörg Kobarg / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-18T13:52:58Z (GMT). No. of bitstreams: 1 Alborghetti_MarcosRodrigo_D.pdf: 16630969 bytes, checksum: 42e040f25194010a25828aeaa31ac3c2 (MD5) Previous issue date: 2011 / Resumo: As proteínas humanas FEZ1 e FEZ2 (fasciculation and elongation protein zeta) são ortólogas da proteína UNC-76 de C. elegans e estão envolvidas no crescimento e na fasciculação dos axônios através de interações que envolvem kinesinas, mitocôndrias e vesículas sinápticas. Além disso, algumas evidências sugerem a participação de FEZ1 na etiologia da esquizofrenia, no ciclo viral, além da resistência à quimioterápicos. Sua estrutura intrinsecamente desordenada, com coiled-coil ao longo da sequência, pode contribuir para sua função. Nós exploramos a evolução molecular da família de proteínas FEZ com ênfase no ramo dos vertebrados. Através do perfil do interactoma comparado entre FEZ1 e FEZ2 de Homo sapiens e UNC-76 de C. elegans foi observado um padrão de conservação das interações proteínaproteína entre FEZ1 e UNC-76, que explicam a capacidade de FEZ1 resgatar os defeitos causados por mutações em unc-76 em nematoides, de acordo com o descrito por Bloom e colaboradores em 1997. Além disso, caracterizamos a interação entre FEZ1 e SCOCO (short coil-coiled) por SAXS (Small Angle X-ray Scattering). Essa interação já foi descrita previamente entre os seus ortólogos UNC-76 e UNC-69, que cooperam no crescimento axonal. Um estado de heterotetramérico foi observado, consistindo de duas moléculas GST-SCOCO interagindo com duas moléculas de 6xHis-FEZ1 dimerizadas. Por PAGE (Polyacrylamide Gel Electrophoresis, eletroforese em gel de poli-acrilamida), SAXS, Espectrometria de Massas e Ressonância Magnética Nuclear, constatamos que FEZ1 dimeriza envolvendo a formação de ponte dissulfeto. In vivo, este estado dimérico de forma covalente pode ser importante para o transporte mediado por kinesinas de proteínas ao longo dos microtúbulos. Assim, FEZ1 pode ser classificada como uma proteína adaptadora do transporte, dimérica e bivalente, essencial para o crescimento axonal e organização pré-sináptica normal e transporte de cargas. A agregação de novos parceiros de interação encontrada para a proteína FEZ2 poderia ser interpretada como aquisição de novas funções moleculares e pode ter ocorrido nos primeiros estágios da evolução dos cordados / Abstract: The human proteins FEZ1 and FEZ2 (fasciculation and elongation protein zeta 1) are orthologs of the protein UNC-76 from C. elegans, involved in growth and fasciculation of axons, through interactions that involve kinesins, mitochondria and synaptic vesicles. Moreover, some evidence suggests involvement of FEZ1 in the etiology of schizophrenia, in addition to the viral cycle and resistance to chemotherapy. Its structure intrinsically disordered, with coiled-coil along the sequence, can contribute to its function. We have explored the molecular evolution of the FEZ protein family with emphasis on the vertebrata branch. Analyzing the interactome profile of the FEZ1 and FEZ2 from Homo sapiens and UNC-76 from C. elegans we observed a conserved pattern of protein-protein interactions among FEZ1 and UNC-76 that explain the ability of FEZ1 to rescue the defects caused by unc-76 mutations in nematodes, according to Bloom and co-workers in 1997. Furthermore, we characterized the interaction between FEZ1 and SCOCO (short coiled-coil protein) by SAXS (Small Angle X-ray Scattering). This interaction has been previously reported between their orthologs UNC-76 and UNC-69 that cooperate in axonal outgrowth. A heterotetrameric state was observed, which consists of two GST-SCOCO molecules attached to two FEZ1 molecules. By PAGE (Polyacrylamide Gel Electrophoresis), SAXS, Mass Spectrometry and Nuclear Magnetic Resonance we defined that FEZ1 dimerizes involving formation of disulfide bond. In vivo this covalent mediated dimeric state could be important for kinesin mediated protein transport along the microtubule. Thereby, FEZ1 may be classified as a dimeric and bivalent transport adaptor, essential to axon outgrowth and normal pre-synaptic organization and transport of cargoes. The aggregation of new interaction partners found for the FEZ2 protein could be interpreted as the acquisition of new molecular functions and may have occurred in the early stages of chordate evolution / Doutorado / Bioquimica / Doutor em Biologia Funcional e Molecular
35

Function of Cytoskeletal Proteins in GLUT4 Vesicle Transport in Adipocytes: Dissertation

Park, Jin Gyoon 06 March 2003 (has links)
Insulin stimulates glucose uptake in adipose and muscle cells via translocation of the intracellular vesicles containing GLUT4. It was largely unknown whether and/or how the signaling molecules such as PI 3-kinase and Akt regulate the mechanical movements of the GLUT4-containing vesicles. Hence, this study was performed to test the hypothesis that actin and microtubules function in translocating GLUT4 vesicles. Treatments of insulin as well as endothelin-1 (ET-1), an insulin-mimicking peptide which does not act through PI 3-kinase, induced polymerization of actin without affecting the microtubular network. By mass spectrometry, the tyrosine kinase PYK2 was identified to be tyrosine phosphorylated specifically by ET-1 but not by insulin. Expression of the carboxyl-terminal fragment (CRNK) PYK2, but not wild type nor kinase-deficient PYK2 mutants, inhibited ET-1-stimulated actin polymerization while expression of all three PYK2 constructs had no effect on insulin-stimulated actin polymerization. More importantly, expression of CRNK, but not wild type nor kinase-deficient PYK2 constructs, blocked ET-1- but not insulin-stimulated GLUT4 translocation to the plasma membrane. These suggest that ET-1 and insulin stimulate actin polymerization via distinct signaling pathways, and that the actin polymerization is required for GLUT4 vesicle translocation. In order to test the possible involvement of microtubule in GLUT4 vesicle translocation, time lapse imaging of 3T3-L1 adipocytes expressing GLUT4-YFP and tubulin-CFP was performed. GLUT4-YFP vesicles move long-range bi-directionally on microtubules, which suggests the presence of molecular motors on the vesicles. Moreover, insulin increased the number of vesicle movements on microtubules without changing the velocities. Interestingly, the stimulatory action of insulin appears to be independent of PI 3-kinase activation. Conventional kinesin was identified as a highly expressed kinesin isotype in adipocytes. Notably, expression of dominant negative mutants but not wild type kinesin inhibited insulin-stimulated long-range GLUT4 vesicle movements and GLUT4 translocation to the plasma membrane in live and fixed cells, respectively. These data indicate that insulin signaling induces the movement of GLUT4 vesicles on microtubule which is mediated by conventional kinesin. Overall, the data presented here provide evidence supporting the hypothesis that actin and microtubule cytoskeletons are required for insulin to mobilize GLUT4 vesicles in adipocytes.
36

Regulation of the Transfer of the Ribosome-Nascent Chain Complex from the Signal Recognition Particle to the Translocation Channel: a Thesis

Song, Weiqun 01 June 2000 (has links)
Translocation across or integration into the rough endoplasmic reticulum (RER) membrane is the first step in the intracelluar sorting of proteins in eukaryotic cells. This process is initiated when a signal sequence in the nascent protein chain emerges from the ribosome and is recognized by the signal recognition particle (SRP). The resulting SRP-ribosome-nascent chain-complex (SRP-RNC) is targeted to the RER membrane through the concerted action of the SRP and the SRP receptor (SR). The nascent chain is then displaced from SRP and transferred to the translocon, a proteinaceous channel composed of oligomers of the Sec61 complex. To gain a better understanding of the molecular mechanism of protein translocation, we treated ribosome-stripped micro somes with proteases of different cleavage specificities to sever cytoplasmic domains of SRα, SRβ, TRAM, and the Sec61 complex, and then characterized protein translocation intermediates that accumulate when Sec61α or SRβ is inactivated by proteolysis. We found that GTP hydrolysis by the SRα-SRP complex and dissociation of SRP54 from the signal sequence are blocked in the absence of a functional Sec61 complex. Experiments using SR-reconstituted proteoliposomes confirmed the assembly of a membrane-bound, GTP-stabilized post-targeting intermediate. These results strongly suggest that the Sec61 complex regulates the GTP hydrolysis cycle of the SRP-SR complex at the stage of signal sequence dissociation from SRP54. This regulatory role of Sec61α is proposed to provide a mechanism that inhibits signal sequence dissociation from SRP54 if the adjacent Sec61 complex is occupied by a translating ribosome, thereby insuring efficient transfer of an RNC from the SRP-SR complex to the translocation channel. We also found that complex formation between SRα and SRP is compromised in the absence of intact SRβ. Results obtained using a soluble system of in vitro translated SRα and SRβ suggest that SRβ is either required for GTP binding to SRα and SRP54 or for stabilizing the SRα-SRP complex. Moreover, using the XTP mutants of SRα and SRP54, we found that XTP cannot support efficient protein translocation in the absence of GTP. The addition of GTP dramatically promotes protein translocation into the endoplasmic reticulum, suggesting the GTPase activity of SRβ is required for this process. Further mutagenesis experiments revealed that the GTP-binding pocket of SRβ is involved in dimerization with SRa. All these data demonstrate that SRβ is important in protein translocation and will help elucidate the precise role of SRβ in vivo.
37

Functional analysis of arabidopsis and rice vacuolar sorting receptor (VSR) proteins. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Vacuolar sorting receptors (VSRs) are type I integral membrane family proteins that mediate protein transport from late Golgi or trans-Golgi network (TGN) to vacuole via prevacuolar compartment (PVC) in plant cells. The N-terminus of a VSR is believed to be important for cargo binding while its transmembrane domain (TMD) and cytoplasmic tail (CT) are essential for its correct subcellular localization. In this study, I first developed and tested an expression system using transgenic tobacco BY-2 cells to produce truncated VSR proteins (VSRNT) lacking the TMD/CT into the cultured media. The secreted VSRs bind specifically to the vacuolar sorting determinants (VSDs) of known vacuolar proteins and such binding is calcium dependent in vitro. Thus, VSR cargo proteins are likely secreted into the cultured media along with the truncated VSRs, which enable the identification of various VSR cargo proteins from the cultured media of transgenic cells. I then identified these putative VSR cargo proteins through liquid-chromatography with tandem mass spectrometry (LC-MS/MS) and Fourier transform mass spectrometry (FT-MS) using transgenic Arabidopsis cell suspension cultures PSB-D expressing these truncated VSRs. Among the 17 unique proteins found in the cultured media of transgenic Arabidopsis PSB-D cell line expressing VSRNT, an Arabidopsis glycosyl hydrolase family 3 protein At5g10560 (GH3) was chosen for further study on VSR-cargo protein interaction. GFP-tagged GH3 fusion protein was found to co-localize with VSR-RFP marker protein in PVC, whereas GH3 was also shown to interact with a VSR protein BP-80. Loss-of-function analysis demonstrated that the GH3 contained a vacuolar sorting determinant (VSD) for PVC targeting. / Suen, Pui Kit. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 77-84). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
38

Structural studies of the inner membrane ring of the bacterial type III secretion system

McDowell, Melanie A. January 2012 (has links)
Shigella flexneri attacks cells of the intestinal tract, causing over 1 million deaths annually from bacterial dysentery. A type III secretion system (T3SS) initiates the host-pathogen interaction and transports virulence factors directly into host cells via a needle complex (NC) comprising an extracellular needle and membrane-spanning basal body. Rings formed by the single-pass membrane proteins MxiG and MxiJ are arranged concentrically within the inner membrane ring (IMR) of the NC. The Neterminal domain of MxiG (MxiG-N) is the predominant IMR cytoplasmic structure, however it was structurally and functionally uncharacterised. Determination of the solution structure of MxiG-N in this study revealed it to be a forkhead associated (FHA) domain, although subsequent analyses of conserved residues suggested it does not have the canonical role in cell-signalling via phospho-threonine recognition. Subsequent positioning of the structure in the electron microscopy (EM) density for the S. flexneri NC supported models with 24-fold symmetry in the IMR. Both MxiG and MxiJ also have significant periplasmic domains, which were purified to homogeneity in this study, facilitating preliminary characterisation of their structures and intermolecular interactions. In addition, the entire IMR within the context of intact basal bodies was isolated and visualised in vitro by EM. The essential function of MxiG-N could be to localise the putative cytoplasmic ring (Cering) at the base of the T3SS. Although absolutely required for secretion, the Csring component, Spa33, was structurally uncharacterised. The crystal structure of the Cvterminal domain of Spa33 (Spa33-C) was determined in this study, showing an intertwined dimer that aligned with homologous structures and exhibited a novel interaction with the N-terminus of the ATPase regulator, MxiN. Subsequently, Spa33-C was identified as an altemative translation product of spa33 that formed a 2: 1 complex with Spa33 in vitro. This complex oligomerised further, demonstrating for the first time that Spa33 has the propensity to form the ordered, high molecular weight assemblies that would be required for C-ring formation in S. flexneri.
39

The nuclear export of DNA topoisomerase iialpha in hematological myeloma cell lines as a function of drug sensitivity : clinical implications and a theoretical approach for overcoming the observed drug resistance /

Engel, Roxane. January 2005 (has links)
Thesis (Ph.D.)--University of South Florida, 2005. / Includes vita. Includes bibliographical references (leaves 221-265).
40

Intracellular trafficking of influenza hemagglutinin and members of the low density lipoprotein receptor family

Tall, Renee Danielle. January 2004 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2004. / Vita. Bibliography: 150-177.

Page generated in 0.0816 seconds