• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 8
  • 5
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 31
  • 27
  • 25
  • 23
  • 23
  • 23
  • 16
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Detektionsmethoden für Gammastrahlung in der therapeutischen Medizin mit CdZnTe-Detektoren

Weinberger, David 06 April 2018 (has links)
CdZnTe-Detektoren, zur direkten Messung von Gammastrahlung, die bei der Behandlung mit beschleunigten Teilchen entsteht, besitzen das Potential eine Reichweitenkontrolle zu ermöglichen und die Strahlendosis zu erfassen. Jedoch stellt die Identifizierung einzelner, energetisch nahe beieinander liegenden Photonenenergien, bei einem solchen Volumendetektor eine besondere Herausforderung dar. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung von Methoden zur Korrektur der Signalformen am Volumenhalbleiter CdZnTe und der damit verbundenen Verbesserung der Energie- und Zeitinformation des Detektors. Dies ist wichtig für den Einsatz in der therapeutischen Medizin mit beschleunigten Teilchen, da Ladungsträger durch Gammastrahlung in unterschiedlichen Tiefen des Detektors generiert werden und einen tiefenabhängigen Fehler in der Detektorgenauigkeit erzeugen. / CdZnTe detectors, used for the direct measurement of gamma radiation generated during the treatment with accelerated particles, have the potential to provide a range control and to detect the radiation dose. However, the identification of individual energetically close photon energies in such a volume detector is a particular challenge. The present work deals with the development of methods for correcting the signal forms of the CdZnTe and the associated improvement of the energy and time information of the detector This is important for use in accelerated particle medicine because charge carriers are generated by gamma radiation at different depths of the detector and produce a depth dependent error in detector accuracy.
72

Instrumentation of CdZnTe detectors for measuring prompt gamma-rays emitted during particle therapy

Födisch, Philipp 12 May 2017 (has links)
Background: The irradiation of cancer patients with charged particles, mainly protons and carbon ions, has become an established method for the treatment of specific types of tumors. In comparison with the use of X-rays or gamma-rays, particle therapy has the advantage that the dose distribution in the patient can be precisely controlled. Tissue or organs lying near the tumor will be spared. A verification of the treatment plan with the actual dose deposition by means of a measurement can be done through range assessment of the particle beam. For this purpose, prompt gamma-rays are detected, which are emitted by the affected target volume during irradiation. Motivation: The detection of prompt gamma-rays is a task related to radiation detection and measurement. Nuclear applications in medicine can be found in particular for in vivo diagnosis. In that respect the spatially resolved measurement of gamma-rays is an essential technique for nuclear imaging, however, technical requirements of radiation measurement during particle therapy are much more challenging than those of classical applications. For this purpose, appropriate instruments beyond the state-of-the-art need to be developed and tested for detecting prompt gamma-rays. Hence the success of a method for range assessment of particle beams is largely determined by the implementation of electronics. In practice, this means that a suitable detector material with adapted readout electronics, signal and information processing, and data interface must be utilized to solve the challenges. Thus, the parameters of the system (e.g. segmentation, time or energy resolution) can be optimized depending on the method (e.g. slit camera, time-of-flight measurement or Compton camera). Regardless of the method, the detector system must have a high count rate capability and a large measuring range (>7 MeV). For a subsequent evaluation of a suitable method for imaging, the mentioned parameters may not be restricted by the electronics. Digital signal processing is predestined for multipurpose tasks, and, in terms of the demands made, the performance of such an implementation has to be determined. Materials and methods: In this study, the instrumentation of a detector system for prompt gamma-rays emitted during particle therapy is limited to the use of a cadmium zinc telluride (CdZnTe, CZT) semiconductor detector. The detector crystal is divided into an 8x8 pixel array by segmented electrodes. Analog and digital signal processing are exemplarily tested with this type of detector and aims for application of a Compton camera to range assessment. The electronics are implemented with commercial off-the-shelf (COTS) components. If applicable, functional units of the detector system were digitalized and implemented in a field-programmable gate array (FPGA). An efficient implementation of the algorithms in terms of timing and logic utilization is fundamental to the design of digital circuits. The measurement system is characterized with radioactive sources to determine the measurement dynamic range and resolution. Finally, the performance is examined in terms of the requirements of particle therapy with experiments at particle accelerators. Results: A detector system based on a CZT pixel detector has been developed and tested. Although the use of an application-specific integrated circuit is convenient, this approach was rejected because there was no circuit available which met the requirements. Instead, a multichannel, compact, and low-noise analog amplifier circuit with COTS components has been implemented. Finally, the 65 information channels of a detector are digitized, processed and visualized. An advanced digital signal processing transforms the traditional approaches of nuclear electronics in algorithms and digital filter structures for an FPGA. With regard to the characteristic signals (e.g. varying rise times, depth-dependent energy measurement) of a CZT pixel detector, it could be shown that digital pulse processing results in a very good energy resolution (~2% FWHM at 511 keV), as well as permits a time measurement in the range of some tens of nanoseconds. Furthermore, the experimental results have shown that the dynamic range of the detector system could be significantly improved compared to the existing prototype of the Compton camera (~10 keV..7 MeV). Even count rates of ~100 kcps in a high-energy beam could be ultimately processed with the CZT pixel detector. But this is merely a limit of the detector due to its volume, and not related to electronics. In addition, the versatility of digital signal processing has been demonstrated with other detector materials (e.g. CeBr3). With foresight on high data throughput in a distributed data acquisition from multiple detectors, a Gigabit Ethernet link has been implemented as data interface. Conclusions: To fully exploit the capabilities of a CZT pixel detector, a digital signal processing is absolutely necessary. A decisive advantage of the digital approach is the ease of use in a multichannel system. Thus with digitalization, a necessary step has been done to master the complexity of a Compton camera. Furthermore, the benchmark of technology shows that a CZT pixel detector withstands the requirements of measuring prompt gamma-rays during particle therapy. The previously used orthogonal strip detector must be replaced by the pixel detector in favor of increased efficiency and improved energy resolution. With the integration of the developed digital detector system into a Compton camera, it must be ultimately proven whether this method is applicable for range assessment in particle therapy. Even if another method is more convenient in a clinical environment due to practical considerations, the detector system of that method may benefit from the shown instrumentation of a digital signal processing system for nuclear applications.:1. Introduction 1.1. Aim of this work 2. Analog front-end electronics 2.1. State-of-the-art 2.2. Basic design considerations 2.2.1. CZT detector assembly 2.2.2. Electrical characteristics of a CZT pixel detector 2.2.3. High voltage biasing and grounding 2.2.4. Signal formation in CZT detectors 2.2.5. Readout concepts 2.2.6. Operational amplifier 2.3. Circuit design of a charge-sensitive amplifier 2.3.1. Circuit analysis 2.3.2. Charge-to-voltage transfer function 2.3.3. Input coupling of the CSA 2.3.4. Noise 2.4. Implementation and Test 2.5. Results 2.5.1. Test pulse input 2.5.2. Pixel detector 2.6. Conclusion 3. Digital signal processing 3.1. Unfolding-synthesis technique 3.2. Digital deconvolution 3.2.1. Prior work 3.2.2. Discrete-time inverse amplifier transfer function 3.2.3. Application to measured signals 3.2.4. Implementation of a higher order IIR filter 3.2.5. Conclusion 3.3. Digital pulse synthesis 3.3.1. Prior work 3.3.2. FIR filter structures for FPGAs 3.3.3. Optimized fixed-point arithmetic 3.3.4. Conclusion 4. Data interface 4.1. State-of-the-art 4.2. Embedded Gigabit Ethernet protocol stack 4.3. Implementation 4.3.1. System overview 4.3.2. Media Access Control 4.3.3. Embedded protocol stack 4.3.4. Clock synchronization 4.4. Measurements and results 4.4.1. Throughput performance 4.4.2. Synchronization 4.4.3. Resource utilization 4.5. Conclusion 5. Experimental results 5.1. Digital pulse shapers 5.1.1. Spectroscopy application 5.1.2. Timing applications 5.2. Gamma-ray spectroscopy 5.2.1. Energy resolution of scintillation detectors 5.2.2. Energy resolution of a CZT pixel detector 5.3. Gamma-ray timing 5.3.1. Timing performance of scintillation detectors 5.3.2. Timing performance of CZT pixel detectors 5.4. Measurements with a particle beam 5.4.1. Bremsstrahlung Facility at ELBE 6. Discussion 7. Summary 8. Zusammenfassung / Hintergrund: Die Bestrahlung von Krebspatienten mit geladenen Teilchen, vor allem Protonen oder Kohlenstoffionen, ist mittlerweile eine etablierte Methode zur Behandlung von speziellen Tumorarten. Im Vergleich mit der Anwendung von Röntgen- oder Gammastrahlen hat die Teilchentherapie den Vorteil, dass die Dosisverteilung im Patienten präziser gesteuert werden kann. Dadurch werden um den Tumor liegendes Gewebe oder Organe geschont. Die messtechnische Verifikation des Bestrahlungsplans mit der tatsächlichen Dosisdeposition kann über eine Reichweitenkontrolle des Teilchenstrahls erfolgen. Für diesen Zweck werden prompte Gammastrahlen detektiert, die während der Bestrahlung vom getroffenen Zielvolumen emittiert werden. Fragestellung: Die Detektion von prompten Gammastrahlen ist eine Aufgabenstellung der Strahlenmesstechnik. Strahlenanwendungen in der Medizintechnik finden sich insbesondere in der in-vivo Diagnostik. Dabei ist die räumlich aufgelöste Messung von Gammastrahlen bereits zentraler Bestandteil der nuklearmedizinischen Bildgebung, jedoch sind die technischen Anforderungen der Strahlendetektion während der Teilchentherapie im Vergleich mit klassischen Anwendungen weitaus anspruchsvoller. Über den Stand der Technik hinaus müssen für diesen Zweck geeignete Instrumente zur Erfassung der prompten Gammastrahlen entwickelt und erprobt werden. Die elektrotechnische Realisierung bestimmt maßgeblich den Erfolg eines Verfahrens zur Reichweitenkontrolle von Teilchenstrahlen. Konkret bedeutet dies, dass ein geeignetes Detektormaterial mit angepasster Ausleseelektronik, Signal- und Informationsverarbeitung sowie Datenschnittstelle zur Problemlösung eingesetzt werden muss. Damit können die Parameter des Systems (z. B. Segmentierung, Zeit- oder Energieauflösung) in Abhängigkeit der Methode (z.B. Schlitzkamera, Flugzeitmessung oder Compton-Kamera) optimiert werden. Unabhängig vom Verfahren muss das Detektorsystem eine hohe Ratenfestigkeit und einen großen Messbereich (>7 MeV) besitzen. Für die anschließende Evaluierung eines geeigneten Verfahrens zur Bildgebung dürfen die genannten Parameter durch die Elektronik nicht eingeschränkt werden. Eine digitale Signalverarbeitung ist für universelle Aufgaben prädestiniert und die Leistungsfähigkeit einer solchen Implementierung soll hinsichtlich der gestellten Anforderungen bestimmt werden. Material und Methode: Die Instrumentierung eines Detektorsystems für prompte Gammastrahlen beschränkt sich in dieser Arbeit auf die Anwendung eines Cadmiumzinktellurid (CdZnTe, CZT) Halbleiterdetektors. Der Detektorkristall ist durch segmentierte Elektroden in ein 8x8 Pixelarray geteilt. Die analoge und digitale Signalverarbeitung wird beispielhaft mit diesem Detektortyp erprobt und zielt auf die Anwendung zur Reichweitenkontrolle mit einer Compton-Kamera. Die Elektronik wird mit seriengefertigten integrierten Schaltkreisen umgesetzt. Soweit möglich, werden die Funktionseinheiten des Detektorsystems digitalisiert und in einem field-programmable gate array (FPGA) implementiert. Eine effiziente Umsetzung der Algorithmen in Bezug auf Zeitverhalten und Logikverbrauch ist grundlegend für den Entwurf der digitalen Schaltungen. Das Messsystem wird mit radioaktiven Prüfstrahlern hinsichtlich Messbereichsdynamik und Auflösung charakterisiert. Schließlich wird die Leistungsfähigkeit hinsichtlich der Anforderungen der Teilchentherapie mit Experimenten am Teilchenbeschleuniger untersucht. Ergebnisse: Es wurde ein Detektorsystem auf Basis von CZT Pixeldetektoren entwickelt und erprobt. Obwohl der Einsatz einer anwendungsspezifischen integrierten Schaltung zweckmäßig wäre, wurde dieser Ansatz zurückgewiesen, da kein verfügbarer Schaltkreis die Anforderungen erfüllte. Stattdessen wurde eine vielkanalige, kompakte und rauscharme analoge Verstärkerschaltung mit seriengefertigten integrierten Schaltkreisen aufgebaut. Letztendlich werden die 65 Informationskanäle eines Detektors digitalisiert, verarbeitet und visualisiert. Eine fortschrittliche digitale Signalverarbeitung überführt die traditionellen Ansätze der Nuklearelektronik in Algorithmen und digitale Filterstrukturen für einen FPGA. Es konnte gezeigt werden, dass die digitale Pulsverarbeitung in Bezug auf die charakteristischen Signale (u.a. variierende Anstiegszeiten, tiefenabhängige Energiemessung) eines CZT Pixeldetektors eine sehr gute Energieauflösung (~2% FWHM at 511 keV) sowie eine Zeitmessung im Bereich von einigen 10 ns ermöglicht. Weiterhin haben die experimentellen Ergebnisse gezeigt, dass der Dynamikbereich des Detektorsystems im Vergleich zum bestehenden Prototyp der Compton-Kamera deutlich verbessert werden konnte (~10 keV..7 MeV). Nach allem konnten auch Zählraten von >100 kcps in einem hochenergetischen Strahl mit dem CZT Pixeldetektor verarbeitet werden. Dies stellt aber lediglich eine Begrenzung des Detektors aufgrund seines Volumens, nicht jedoch der Elektronik, dar. Zudem wurde die Vielseitigkeit der digitalen Signalverarbeitung auch mit anderen Detektormaterialen (u.a. CeBr3) demonstriert. Mit Voraussicht auf einen hohen Datendurchsatz in einer verteilten Datenerfassung von mehreren Detektoren, wurde als Datenschnittstelle eine Gigabit Ethernet Verbindung implementiert. Schlussfolgerung: Um die Leistungsfähigkeit eines CZT Pixeldetektors vollständig auszunutzen, ist eine digitale Signalverarbeitung zwingend notwendig. Ein entscheidender Vorteil des digitalen Ansatzes ist die einfache Handhabbarkeit in einem vielkanaligen System. Mit der Digitalisierung wurde ein notwendiger Schritt getan, um die Komplexität einer Compton-Kamera beherrschbar zu machen. Weiterhin zeigt die Technologiebewertung, dass ein CZT Pixeldetektor den Anforderungen der Teilchentherapie für die Messung prompter Gammastrahlen stand hält. Der bisher eingesetzte Streifendetektor muss zugunsten einer gesteigerten Effizienz und verbesserter Energieauflösung durch den Pixeldetektor ersetzt werden. Mit der Integration des entwickelten digitalen Detektorsystems in eine Compton-Kamera muss abschließend geprüft werden, ob dieses Verfahren für die Reichweitenkontrolle in der Teilchentherapie anwendbar ist. Auch wenn sich herausstellt, dass ein anderes Verfahren unter klinischen Bedingungen praktikabler ist, so kann auch dieses Detektorsystem von der gezeigten Instrumentierung eines digitalen Signalverarbeitungssystems profitieren.:1. Introduction 1.1. Aim of this work 2. Analog front-end electronics 2.1. State-of-the-art 2.2. Basic design considerations 2.2.1. CZT detector assembly 2.2.2. Electrical characteristics of a CZT pixel detector 2.2.3. High voltage biasing and grounding 2.2.4. Signal formation in CZT detectors 2.2.5. Readout concepts 2.2.6. Operational amplifier 2.3. Circuit design of a charge-sensitive amplifier 2.3.1. Circuit analysis 2.3.2. Charge-to-voltage transfer function 2.3.3. Input coupling of the CSA 2.3.4. Noise 2.4. Implementation and Test 2.5. Results 2.5.1. Test pulse input 2.5.2. Pixel detector 2.6. Conclusion 3. Digital signal processing 3.1. Unfolding-synthesis technique 3.2. Digital deconvolution 3.2.1. Prior work 3.2.2. Discrete-time inverse amplifier transfer function 3.2.3. Application to measured signals 3.2.4. Implementation of a higher order IIR filter 3.2.5. Conclusion 3.3. Digital pulse synthesis 3.3.1. Prior work 3.3.2. FIR filter structures for FPGAs 3.3.3. Optimized fixed-point arithmetic 3.3.4. Conclusion 4. Data interface 4.1. State-of-the-art 4.2. Embedded Gigabit Ethernet protocol stack 4.3. Implementation 4.3.1. System overview 4.3.2. Media Access Control 4.3.3. Embedded protocol stack 4.3.4. Clock synchronization 4.4. Measurements and results 4.4.1. Throughput performance 4.4.2. Synchronization 4.4.3. Resource utilization 4.5. Conclusion 5. Experimental results 5.1. Digital pulse shapers 5.1.1. Spectroscopy application 5.1.2. Timing applications 5.2. Gamma-ray spectroscopy 5.2.1. Energy resolution of scintillation detectors 5.2.2. Energy resolution of a CZT pixel detector 5.3. Gamma-ray timing 5.3.1. Timing performance of scintillation detectors 5.3.2. Timing performance of CZT pixel detectors 5.4. Measurements with a particle beam 5.4.1. Bremsstrahlung Facility at ELBE 6. Discussion 7. Summary 8. Zusammenfassung
73

Centrum prevence, Masarykův onkologický ústav v Brně / Centre for Prevention, Masaryk Oncology Institute in Brno

Tomaschek, Adam Unknown Date (has links)
The aim of the diploma thesis is the location and design of buildings extending the Masaryk Oncology Institute with a ward for mobile patients and a cancer prevention center together with the extension of the spectrum of the radiation clinic with proton irradiation. The proposal envisages the use of the southern slope of the area bounded by Tomešova and Roubalova streets, while a new use of the area is planned according to the new master plan of the City of Brno.
74

Centrum prevence, Masarykův onkologický ústav v Brně / Centre for Prevention, Masaryk Oncology Institute in Brno

Bartlová, Lucie Unknown Date (has links)
The aim of this thesis is to determine a position and a design for a Preventive Care Center at the Masaryk Memorial Cancer Institute in Brno (MOÚ) as well as to expand the existing Clinic of Radiation Oncology building at the same premises. The plot of land is located at a South-facing slope of Žlutý kopec, with the MOÚ land being enclosed by the Roubalova and Tomešova street. At the land, there are two buildings currently not in use which used to house a regional blood transfusion center coupled with a main building of the town library. The Preventive Care Center concept includes an inpatient ward for mobile patients, medical staff facilities, a proton therapy center, and space for rent. The design of the Preventive Care Center and its immediate surroundings should promote a pleasant and welcoming environment which could serve as a sanctuary area for health protection and prevention. This paper follows from the traffic solution and the development planned for the surrounding municipal premises based on the future Brno spatial plan and subsequent spatial and regulatory studies of newly planned residential area on the southern slopes of Žlutý kopec.
75

Dual-Energy Computed Tomography for Accurate Stopping-Power Prediction in Proton Treatment Planning

Wohlfahrt, Patrick 17 October 2018 (has links)
Derzeitige Reichweiteunsicherheiten in der Protonentherapie verhindern das vollständige Ausschöpfen ihrer physikalischen Vorteile. Ein wesentlicher Anteil ist dabei auf die Vorhersage der Reichweite mittels Röntgen-Computertomographie (CT) zurückzuführen. Um die CT-bezogene Unsicherheit zu verringern, wird die Zwei-Spektren-Computertomographie (DECT) als vielversprechend angesehen. Innerhalb dieser Arbeit wurde die Anwendbarkeit von DECT in der Protonentherapie untersucht. Zunächst wurde ein CT-Scanprotokoll für die Strahlentherapie hinsichtlich Bildqualität und Konstanz der CT-Zahlen für verschiedene Körperregionen und -größen optimiert. Anschließend wurde die patientenindividuelle DECT- basierte Reichweitevorhersage kalibriert und ihre Genauigkeit in zwei Experimenten mit bekannter Referenz unter Verwendung eines anthropomorphen Phantoms und von homogenen biologischen Geweben verifiziert. Die klinische Relevanz von DECT wurde in einer retrospektiven Analyse von Krebspatienten mit Tumoren im Kopf, Becken oder Thorax nachgewiesen. Die systematischen Reichweiteunterschiede zwischen DECT und dem klinischen Standardverfahren konnten durch die Optimierung der Standardmethode basierend auf zusätzlichen mit DECT erworbenen Patienteninformationen reduziert werden. Somit wurde DECT erstmalig klinisch genutzt, um die Reichweiteberechnung zu verbessern. Die patientenindividuelle DECT-basierte Reichweitevorhersage kann zusätzlich Gewebevariabilitäten innerhalb eines und zwischen Patienten berücksichtigen, wie für Kopftumorpatienten gezeigt wurde. Dies legt den Grundstein für eine genauere Reichweiteberechnung und eröffnet neue Möglichkeiten für die Reduktion klinischer Sicherheitssäume, in denen die CT-bezogenen Unsicherheiten berücksichtigt sind.:1 Introduction 2 Physical Principles of Computed Tomography 2.1 Image Acquisition 2.2 Image Reconstruction 2.3 Dual-Energy Computed Tomography 3 Physical Principles of Proton Therapy 3.1 Treatment Techniques 3.2 Uncertainties in Proton Therapy 4 Principles of Stopping-Power Prediction from Computed Tomography 4.1 Single-Energy Computed Tomography 4.2 Dual-Energy Computed Tomography 5 Experimental Calibration of Stopping-Power Prediction 5.1 Scan Protocol Optimisation in Computed Tomography 5.2 Characterisation of Pseudo-Monoenergetic CT Calculation 5.3 Determination of Proton Stopping Power 5.4 Calibration of Stopping-Power Prediction Methods 6 Experimental Verification of Stopping-Power Prediction 6.1 Anthropomorphic Head Phantom 6.2 Homogeneous Biological Tissue Samples 7 Clinical Translation and Validation of Dual-Energy Computed Tomography 7.1 Feasibility of Dual-Spiral Dual-Energy CT 7.2 Range Prediction in Cerebral and Pelvic Tumour Patients 7.3 Tissue Variability in Brain-Tumour Patients 7.4 Feasibility of 4D Dual-Spiral Dual-Energy CT 7.5 DECT-Based Refinement of the Hounsfield Look-Up Table 8 Summary 9 Zusammenfassung / Range uncertainty in proton therapy currently hampers the full exploitation of its physical advantages. A substantial amount of this uncertainty arises from proton range prediction based on X-ray computed tomography (CT). Dual-energy CT (DECT) has often been suggested as a promising imaging modality to reduce this CT-related range uncertainty. Within this thesis, the translation of DECT into application in proton therapy was evaluated. First, a CT scan protocol was optimised for radiotherapy considering the image quality and CT number stability for various body regions and sizes. The patient-specific DECT-based range prediction was then calibrated and its accuracy validated in two ground-truth experiments using an anthropomorphic phantom and homogeneous biological tissues. Subsequently, the clinical relevance of DECT was demonstrated in a retrospective cohort analysis of cerebral, pelvic and thoracic tumour patients. The systematic range deviations between the DECT and state-of-the-art approach were then reduced by adapting the standard method utilizing additional patient information obtained from DECT. Hence, DECT was clinically applied for the first time to refine proton range calculation. As a further step, the use of patient-specific DECT-based range prediction also considers intra- and inter-patient tissue variabilities as quantified in brain-tumour patients. A future implementation will be an important cornerstone to improve proton range calculation and might open up the possibility to reduce clinical safety margins accounting for the CT-related range uncertainty.:1 Introduction 2 Physical Principles of Computed Tomography 2.1 Image Acquisition 2.2 Image Reconstruction 2.3 Dual-Energy Computed Tomography 3 Physical Principles of Proton Therapy 3.1 Treatment Techniques 3.2 Uncertainties in Proton Therapy 4 Principles of Stopping-Power Prediction from Computed Tomography 4.1 Single-Energy Computed Tomography 4.2 Dual-Energy Computed Tomography 5 Experimental Calibration of Stopping-Power Prediction 5.1 Scan Protocol Optimisation in Computed Tomography 5.2 Characterisation of Pseudo-Monoenergetic CT Calculation 5.3 Determination of Proton Stopping Power 5.4 Calibration of Stopping-Power Prediction Methods 6 Experimental Verification of Stopping-Power Prediction 6.1 Anthropomorphic Head Phantom 6.2 Homogeneous Biological Tissue Samples 7 Clinical Translation and Validation of Dual-Energy Computed Tomography 7.1 Feasibility of Dual-Spiral Dual-Energy CT 7.2 Range Prediction in Cerebral and Pelvic Tumour Patients 7.3 Tissue Variability in Brain-Tumour Patients 7.4 Feasibility of 4D Dual-Spiral Dual-Energy CT 7.5 DECT-Based Refinement of the Hounsfield Look-Up Table 8 Summary 9 Zusammenfassung
76

Variable Relative Biological Effectiveness in Proton Treatment Planning

Hahn, Christian 17 August 2023 (has links)
Protonen töten Zellen wirksamer ab als Photonen. Die klinisch verwendete konstante relative biologische Wirksamkeit (RBW) für Protonen vernachlässigt jedoch erste klinische Evidenz einer RBW-Variabilität, die vom linearen Energietransfer (LET) abhängt. Diese Arbeit trägt dazu bei, die RBW-Variabilität in Protonen-Bestrahlungsplänen zu berücksichtigen, um potenzielle Nebenwirkungen zu vermindern. Zuerst wurde ein erhöhtes Risiko für RBW-induzierte Nebenwirkungen bei Hirntumorpatienten festgestellt. Dies konnte jedoch nicht systematisch durch klinische Planungsstrategien reduziert werden. Zweitens ergab eine multizentrische europäische Studie, dass die zentrums-spezifischen, nicht standardisierten LET-Berechnungen erheblich voneinander abweichen. Eine harmonisierte LET-Definition wurde vorgeschlagen und reduzierte die Variabilität zwischen den Zentren auf ein klinisch akzeptables Niveau, was künftig eine einheitliche Dokumentation des Therapieergebnisses ermöglicht. Abschließend wurden vier Strategien zur RBW-Reduktion in der Planoptimierung bei Hirntumorpatienten angewandt, die das Risiko für Nekrose und Erblindung erheblich reduzierten. LET-Optimierung in Hochdosisregionen erscheint besonders geeignet, um die Sicherheit der Patientenbehandlung künftig weiter zu verbessern.:List of Figures vii List of Tables viii List of Acronyms and Abbreviations ix 1 Introduction 1 2 Theoretical background 3 2.1 Proton interactions with matter 4 2.2 Biological effect of radiation 8 2.2.1 Linear-quadratic model 8 2.2.2 Relative biological effectiveness 9 2.3 Proton beam delivery and field formation 13 2.4 Treatment planning 14 2.4.1 Patient modelling and structure definition 15 2.4.2 Treatment plan optimisation 16 2.4.3 Treatment plan evaluation 19 2.5 Proton therapy uncertainties and mitigation strategies 22 2.5.1 Clinical mitigation strategies 23 2.5.2 Optimisation approaches beyond absorbed dose 26 3 Variable biological effectiveness in PBS treatment plans 29 3.1 LET and RBE recalculations of proton treatment plans with RayStation 30 3.1.1 Monte Carlo dose engine 30 3.1.2 Monte Carlo scoring extensions 32 3.1.3 Graphical user interface 33 3.2 LET assessment and the role of range uncertainties 36 3.2.1 Patient cohort and treatment plan creation 37 3.2.2 Simulation of range deviations 38 3.2.3 Treatment plan recalculation settings 39 3.2.4 Resulting impact of range deviations 40 3.3 Patient recalculations in case of side effects 46 3.3.1 Image registration and range prediction 48 3.3.2 Retrospective treatment plan assessment 49 3.4 Benefit of an additional treatment field 50 3.4.1 Patient and treatment plan information 50 3.4.2 Results of variable RBE recalculations 51 3.5 Discussion 51 3.6 Summary 59 4 Status of LET and RBE calculations in European proton therapy 61 4.1 Study design 62 4.1.1 Treatment planning information 64 4.1.2 Data processing and treatment plan evaluation 67 4.2 Treatment plan comparisons in the water phantom 68 4.2.1 Absorbed dose evaluation 69 4.2.2 Centre-specific LET calculations 69 4.2.3 Harmonised LET calculations 71 4.3 Treatment plan comparisons in patient cases 72 4.3.1 Dose-averaged linear energy transfer for protons 73 4.3.2 Centre-specific RBE models and parameters 76 4.4 Discussion 77 4.5 Summary 82 5 Biological treatment plan optimisation 83 5.1 Treatment plan design 84 5.1.1 Clinical goals 86 5.1.2 Novel treatment plan optimisation approaches 87 5.2 Treatment plan quality assessment with a constant RBE 90 5.3 Assessment of NTCP reductions with a variable RBE 90 5.4 Discussion 95 5.5 Conclusion 100 6 Summary 103 7 Zusammenfassung 107 Bibliography 111 Danksagung 137 / Protons are more effective in cell killing than photons. However, the clinically applied constant proton relative biological effectiveness (RBE) neglects emerging clinical evidence for RBE variability driven by the linear energy transfer (LET). This thesis aims to safely account for RBE variability in proton treatment plans to mitigate potential side effects. First, an elevated risk for RBE induced overdosage was found in brain tumour patients. However, this could not be mitigated systematically by clinical planning strategies. Second, a multicentric European study revealed that centre-specific non-standardised LET calculations differed substantially. A harmonised LET definition was proposed which reduced the inter-centre variability to a clinically acceptable level and allows for future consistent outcome reporting. Finally, four strategies to include RBE variability in treatment plan optimisation were applied to brain tumour patients, which considerably reduced the estimated risk for necrosis and blindness. Of these, LET optimisation in high dose regions may be suited for clinical practice to further enhance patient safety in view of a variable RBE.:List of Figures vii List of Tables viii List of Acronyms and Abbreviations ix 1 Introduction 1 2 Theoretical background 3 2.1 Proton interactions with matter 4 2.2 Biological effect of radiation 8 2.2.1 Linear-quadratic model 8 2.2.2 Relative biological effectiveness 9 2.3 Proton beam delivery and field formation 13 2.4 Treatment planning 14 2.4.1 Patient modelling and structure definition 15 2.4.2 Treatment plan optimisation 16 2.4.3 Treatment plan evaluation 19 2.5 Proton therapy uncertainties and mitigation strategies 22 2.5.1 Clinical mitigation strategies 23 2.5.2 Optimisation approaches beyond absorbed dose 26 3 Variable biological effectiveness in PBS treatment plans 29 3.1 LET and RBE recalculations of proton treatment plans with RayStation 30 3.1.1 Monte Carlo dose engine 30 3.1.2 Monte Carlo scoring extensions 32 3.1.3 Graphical user interface 33 3.2 LET assessment and the role of range uncertainties 36 3.2.1 Patient cohort and treatment plan creation 37 3.2.2 Simulation of range deviations 38 3.2.3 Treatment plan recalculation settings 39 3.2.4 Resulting impact of range deviations 40 3.3 Patient recalculations in case of side effects 46 3.3.1 Image registration and range prediction 48 3.3.2 Retrospective treatment plan assessment 49 3.4 Benefit of an additional treatment field 50 3.4.1 Patient and treatment plan information 50 3.4.2 Results of variable RBE recalculations 51 3.5 Discussion 51 3.6 Summary 59 4 Status of LET and RBE calculations in European proton therapy 61 4.1 Study design 62 4.1.1 Treatment planning information 64 4.1.2 Data processing and treatment plan evaluation 67 4.2 Treatment plan comparisons in the water phantom 68 4.2.1 Absorbed dose evaluation 69 4.2.2 Centre-specific LET calculations 69 4.2.3 Harmonised LET calculations 71 4.3 Treatment plan comparisons in patient cases 72 4.3.1 Dose-averaged linear energy transfer for protons 73 4.3.2 Centre-specific RBE models and parameters 76 4.4 Discussion 77 4.5 Summary 82 5 Biological treatment plan optimisation 83 5.1 Treatment plan design 84 5.1.1 Clinical goals 86 5.1.2 Novel treatment plan optimisation approaches 87 5.2 Treatment plan quality assessment with a constant RBE 90 5.3 Assessment of NTCP reductions with a variable RBE 90 5.4 Discussion 95 5.5 Conclusion 100 6 Summary 103 7 Zusammenfassung 107 Bibliography 111 Danksagung 137
77

Development of a prompt γ-ray timing system including a proton bunch monitor for range verification in proton therapy

Permatasari, Felicia Fibiani 19 June 2023 (has links)
Treatment verification is demanded to mitigate the range uncertainties in proton therapy and, hence, to enhance treatment precision and outcomes. As a non-invasive approach for range verification, the prompt γ-ray timing (PGT) measures the time distribution of the promptly produced γ-rays using fast uncollimated scintillation detectors. However, the measured time spectra of the prompt γ-rays (PGs) are sensitive to phase instabilities between the accelerator radiofrequency (RF) used as the reference time and the actual arrival time of the therapeutic particles at the patient and require online monitoring of the arrival time of the proton bunches. Within this thesis, the development of a PGT system including an appropriate proton bunch monitor (PBM) for range verification in proton therapy was studied. In the first part of the work, two PBM options were explored and characterized under near-to-clinical beam conditions to find a suitable PBM satisfying the prerequisites and constraints for the application in the PGT-based range verification. The selected PBM prototype comprises scintillating fibers read out on both ends with silicon photomultipliers (SiPMs). By placing the PBM at the beam halo, sufficient counting statistics and processable trigger rates could be achieved for the monitoring of the proton bunch periodicity with reasonable statistical precision, while minimizing the interference to the clinical beam delivery. In the second part of the work, a proof-of-principle experiment of the PGT-based range verification with a heterogeneous target was performed together with online monitoring of the proton bunch instabilities. The sensitivity and the overall uncertainty of the PGT technique were evaluated for two proton energies, different thicknesses of air cavity inserts, various tissue-equivalent material inserts, different selections of the PG energy window, and other PGT parameters. The experimental results confirmed that real-time monitoring of the proton range during treatment using the PGT technique is feasible with millimeter precision and submillimeter accuracy at close-to-clinical beam currents and clinically relevant proton energies. The integration of the PBM to the PGT-based range verification marks another important step toward the clinical application of the PGT technique for in vivo verification and qualitative assessment of the proton range during treatment.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography / Die Verifikation der Behandlung ist erforderlich, um die Reichweiteunsicherheiten in der Protonentherapie zu verringern und damit die Behandlungspräzision und die Behandlungsergebnisse zu verbessern. Das Prompt-γ-Ray-Timing (PGT) ist eine nicht-invasive Methode zur Reichweitenverifizierung, bei der die Zeitverteilung der prompt erzeugten γ-Strahlung mit schnellen, nicht-kollimierten Szintillationsdetektoren detektiert wird. Die gemessenen Zeitspektren der prompten γ-Strahlung (PGs) sind jedoch empfindlich gegenüber Phaseninstabilitäten zwischen der als Referenzzeit verwendeten Radiofrequenz (RF) des Beschleunigers und der tatsächlichen Ankunftszeit der therapeutischen Teilchen am Patienten und erfordern eine Online-Überwachung der Ankunftszeit der Protonenmikropulse. Im Rahmen dieser Arbeit wurde die Entwicklung eines PGT-Systems einschließlich eines geeigneten Proton-Bunch-Monitors (PBMs) für die Reichweitenverifikation in der Protonentherapie untersucht. Im ersten Teil der Arbeit wurden zwei PBM-Optionen untersucht und unter kliniknahen Strahlbedingungen charakterisiert, um einen PBM, der die Voraussetzungen und Einschränkungen für die Anwendung in der PGT-basierten Reichweitenverifikation erfüllt, auszuwählen. Der ausgewählte PBM-Prototyp besteht aus szintillierenden Fasern, die an beiden Enden mit Silizium-Photomultipliern (SiPMs) ausgelesen werden. Durch die Platzierung des PBMs im Strahlhalo konnten ausreichende Zählstatistiken und verarbeitbare Triggerraten für die Überwachung der Periodizität der Protonenmikropulse mit einer angemessenen statistischen Genauigkeit erreicht werden, während gleichzeitig die Beeinträchtigung der klinischen Strahlapplikation minimiert wird. Im zweiten Teil der Arbeit wurde der experimentelle Machbarkeitsnachweis für die PGT-basierte Reichweitenverifikation in einem heterogenen Target zusammen mit der Online-Überwachung der Instabilitäten der Protonenmikropulse erbracht. Die Empfindlichkeit und die Gesamtunsicherheit der PGT-Technik wurden für zwei Protonenenergien, unterschiedliche Dicken der Lufthohlraumeinsätze, verschiedene gewebeäquivalente Materialeinsätze, andere Auswahlen der PG-Energiefenster und weitere PGT-Parameter quantifiziert. Die experimentellen Ergebnisse bestätigten, dass die Echtzeitüberwachung der Protonenreichweite während der Behandlung mit Hilfe der PGT-Technik mit Millimeterpräzision und Submillimetergenauigkeit bei kliniknahen Strahlströmen und klinisch relevanten Protonenenergien möglich ist. Die Integration des PBMs in die PGT-basierten Reichweitenverifizierung ist ein weiterer wichtiger Schritt auf dem Weg zur klinischen Anwendung der PGT-Technik für die In-vivo-Reichweitenüberprüfung und die qualitative Bewertung der Protonenreichweite während der Behandlung.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography
78

Image Performance Characterization of an In-Beam Low-Field Magnetic Resonance Imaging System During Static Proton Beam Irradiation

Gantz, Sebastian, Schellhammer, Sonja M., Hoffmann, Aswin L. 20 January 2023 (has links)
Image guidance using in-beam real-time magnetic resonance (MR) imaging is expected to improve the targeting accuracy of proton therapy for moving tumors, by reducing treatment margins, detecting interfractional and intrafractional anatomical changes and enabling beam gating. The aim of this study is to quantitatively characterize the static magnetic field and image quality of a 0.22T open MR scanner that has been integrated with a static proton research beamline. The magnetic field and image quality studies are performed using high-precision magnetometry and standardized diagnostic image quality assessment protocols, respectively. The magnetic field homogeneity was found to be typical of the scanner used (98ppm). Operation of the beamline magnets changed the central resonance frequency and magnetic field homogeneity by a maximum of 16Hz and 3ppm, respectively. It was shown that the in-beam MR scanner features sufficient image quality and influences of simultaneous irradiation on the images are restricted to a small sequence-dependent image translation (0.1–0.7mm) and a minor reduction in signal-to-noise ratio (1.3%–5.6%). Nevertheless, specific measures have to be taken to minimize these effects in order to achieve accurate and reproducible imaging which is required for a future clinical application of MR integrated proton therapy.
79

Entwicklung eines Multi-Leaf Faraday Cups zur Strahldiagnose in der Augentumortherapie

Kunert, Christoph 11 March 2015 (has links)
Die Protonentherapie von Aderhautmelanomen wird vor allem für die Behandlung von Tumoren nahe kritischer Strukturen (Sehnerv) und bei großen Tumoren angewandt. Dabei ist die begrenzte Reichweite der Protonen vorteilhaft, die scharf begrenzte Dosisfelder im Auge ermöglicht, und das an den Tumor grenzende gesunde Gewebe bestmöglich schont. Daher erfolgt die Positionierung der Patienten und der Strahlenfelder in der Augentumortherapie, wie auch die regelmäßigen Konstanzprüfungen, mit einer Reichweitengenauigkeit in Wasser von 0,1 mm. Mit einem Multi-Leaf Faraday Cup (MLFC) kann die Reichweite der Protonen in kurzer Zeit sehr genau gemessen werden. Dabei misst der MLFC die differentielle Fluenz der Protonenstrahlen, also das Reichweitenprofil. Er besteht aus einem Stapel Folien, abwechselnd leitend und isolierend. Eindringende Protonen deponieren eine zusätzliche Ladung in der Folie in der sie stoppen. Durch eine gleichzeitige Strommessung an allen Folien misst der MLFC relativ schnell die Reichweite der Protonen. Aufgabe dieser Arbeit ist es, einen MLFC entsprechend den Anforderungen der Augentumortherapie zu entwickeln, aufzubauen und mögliche Anwendungspotentiale zu untersuchen. Dafür wurden Monte-Carlo-Rechnungen mit MCNPX 2.6 und SRIM durchgeführt, verschiedene Folienstapel an Luft und im Vakuum untersucht, verschiedene Messelektroniken zur gleichzeitigen Messung von Strömen im pA-Bereich in vielen Kanälen getestet, ein Absorbersystem für einen variablen Messbereich von 30 MeV bis 70 MeV aufgebaut und die entsprechende Mess- und Steuersoftware in LabVIEW 2011 entwickelt. Es wurde die Genauigkeit der Reichweitenmessungen untersucht und gezeigt, dass der MLFC durch seine Mobilität eine schnelle Energiebestimmung an unterschiedlichen Experimentierplätzen erlaubt. In der Therapie ist neben der einfachen Bestimmung der maximalen Reichweite der Protonen auch die regelmäßige Kontrolle der Modulation der ausgedehnten Bragg-Kurven möglich. / Proton therapy of uveal melanomas is primarily used for the treatment of tumors near critical structures (optic nerve) and in large tumors. The great advantage of protons is their sharply limited range in tissue, which leads to sharp defined dose fields in the eye and the dose absorbed by the healthy tissue around the tumor can be reduced. Therefore, the positioning of the patient and the radiation fields, as well as the regular control measurements in the eye tumor therapy requires an accuracy of 0.1 mm in water. A Multi-Leaf Faraday Cup (MLFC) gives the opportunity to measure the proton range relatively fast and accurate. The MLFC measures the differential fluence, which means the range profile of the proton beam. It consists of a stack of sheets, alternating conductive and insulating, and the penetrating protons bring their additional charge into the sheet in which they stop. By measuring the corresponding current in each conducting sheet at the same time, the MLFC can quickly measure the range of the protons. The task of this work is to develop a MLFC with respect to the requirements of the eye tumor therapy and to explore possible application potentials. Therefore, Monte Carlo calculations with MCNPX 2.6 and SRIM were conducted, various foil stacks were studied in air and in vacuum, different measurement electronics for measuring currents in the pA range in many channels simultaneously were tested, a system of degraders for a variable measuring range from 30 MeV to 70 MeV was developed and the corresponding measurement and control software was written in LabVIEW 2011. The accuracy of the range measurements was examined and it was shown that a quick energy measurement at different target stations can be made by the MLFC due to its mobility. In therapy, in addition to the determination of the maximum range of the proton beam, the regular monitoring of the modulation of the extended Bragg-curves is in principle possible.
80

Příprava a realizace Protonového terapeutického centra v Praze / Implementation of Proton Therapy Center in Prague

Halanič, Daniel January 2019 (has links)
The diploma thesis deals with the construction technological project of carcass SO – 001 Proton Therapy Center. The thesis is focused on part B (gantry) of hospital building Proton Therapy Center in Bulovka Hospital area in Prague. The thesis is being processed vertical and horizontal massive monolithic reinforced concrete skeleton realization. The thesis is report, budget, time schedule, technological specification, design of site equipment, design of machinery, design of road construction and next text and drawing documentation processed by assignment of diploma thesis.

Page generated in 0.0537 seconds