• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 11
  • 9
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 133
  • 52
  • 34
  • 33
  • 28
  • 27
  • 26
  • 25
  • 24
  • 16
  • 14
  • 12
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Acoustic wave and bond rupture based biosensor-- principle and development : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University, Palmerston North, New Zealand

Hirst, Evan January 2009 (has links)
Bond rupture is an experimental methodology that is used to augment a conventional mass balance biosensor. A good point-of-care biosensor is fast, reliable, simple, cost-effective, and detects low concentrations of the target analyte. Biosensor development is a multidisciplinary field and bond rupture testing is of technical interest to many groups. The Bond rupture methodology endows a mass probe with the ability to discern bond strength. The recognition of specific bonds by mass loading is separated from erroneous non-specific binding by a probe of the force between the analyte and the transducer. Bond rupture is achieved by acoustic excitation of the point of attachment. The force is incremented gradually until rupture occurs. The advancement of bond rupture biosensors beyond the lab requires improved understanding of the mechanisms of bond rupture by base excitation, the transducers, and the supporting hardware. Bond rupture has traditionally been used in conjunction with the Quartz Crystal Microbalance (QCM). There exists, however, a variety of sensors and transducers to which the bond rupture methodology could be applied. The time, cost and experience required for comprehensive investigation of all avenues is prohibitive. To further the development of bond rupture characteristic experiments are designed and carried out on the QCM platform. Numerical simulations are constructed which model the current bond rupture approach. This work is limited to the simulation of bond rupture by base excitation. From the results of the experimental investigation a number of improvements to the bond rupture technique are proposed. Improvements are tested by simulation and the Surface Acoustic Wave (SAW) device is selected to advance the bond rupture craft. A prototype SAW bond rupture device is designed. The prototype device is manufactured and tested, confirming the principle of SAW bond rupture. Future work is required to progress the SAW bond rupture methodology before possible integration with other sensor systems. Because of this work, and the evaluation of the SAW bond rupture prototype, much is learned about the advancement of SAW device bond rupture.
92

Investigation of the tumour necrosis factor-stimulated gene-6 (TSG-6) interactome : use and development of surface sensitive techniques

Birchenough, Holly January 2014 (has links)
Tumour necrosis factor-stimulated gene-6 (TSG-6) is a protein expressed in a wide range of cell types and tissues, predominantly in response to inflammatory stimuli. The expression of TSG-6 is believed to be associated with the protection of tissues from the damaging effects of inflammation. In animal models treatment with TSG-6 protein has been found to reduce inflammatory damage in myocardial infarction, corneal injury and arthritis. Endogenous TSG-6 production has been suggested to play a protective role in inflammatory arthritis and has been implicated in bone homeostasis. The expression of TSG-6 is also essential in the process of cumulus matrix formation that occurs around the oocyte in the periovulatory period and is necessary for successful ovulation and fertilisation. In many cases the mechanism underlying a particular TSG-6 function is not fully understood. TSG-6 has numerous binding partners including the serum glycoprotein inter-alpha-inhibitor (IαI), the growth factor bone morphogenetic protein-2 (BMP-2) and the extracellular matrix protein fibronectin, as well as glycosaminoglycans (GAGs) such as hyaluronan and heparan sulphate (HS). The TSG-6 protein is mostly composed of contiguous Link and CUB domains, with the majority of ligand binding sites identified within the Link module. The CUB domain of TSG-6 has been less extensively studied. Here biophysical techniques have been used to investigate the TSG-6 interactome including both the Link module and CUB domain. Intrinsic fluorescence spectroscopy was used to establish the metal-ion binding properties of the CUB domain, which was established to have a high affinity Ca2+-binding site. Using surface plasmon resonance (SPR), a novel metal-ion dependent interaction was found for the CUB domain of TSG-6 and the heavy chains (HCs) of IαI. Investigation using mutants of both the CUB domain of TSG-6 and HC of IαI established that the metal-ion binding sites within each protein are involved in the interaction. SPR analysis was also used to define the affinities and binding sites for TSG-6 interactions with fibronectin and BMP-2. High affinity interactions between TSG-6 ligands were also revealed (e.g. BMP-2 and HC, fibronectin and HC) and their binding sites defined. The discovery of the novel interactions between these TSG-6 ligands suggests crosstalk within the TSG-6 interactome, with the potential for ternary complex formation or indeed hierarchical orders of binding. Thus work was undertaken to develop a passivated lipid bilayer platform for use with surface sensitive techniques. This platform was used to investigate the hierarchy of protein and GAG interactions using quartz crystal microbalance with dissipation monitoring (QCM-D) and dual polarisation interferometry (DPI). The investigation revealed a novel role for the Link module of TSG-6 in heparin condensation, potentially via protein dimerisation and/or oligomerisation which could affect heparin/HS functions within the extracellular matrix (ECM). Thus the biophysical analysis of TSG-6 presented here has identified novel interactions and functions of TSG-6 which may provide mechanisms for the protective functioning of TSG-6 in inflammation and its ECM structuring role in ovulation.
93

Novel guar crosslinkers for improved ophthalmic solutions

Mafi, Roozbeh 06 1900 (has links)
In-situ chain extension of polymers used in the formulation of artificial tears and mild gelation are techniques to increase the residence time of eye drops on cornea. In-situ chain extension also helps to control the stability of ophthalmic emulsions both in the bottle and in the tear film. In this work, the interaction of hydrophobically modified guar and tear proteins as a method of polymer chain extension and mild gelation has been evaluated. Guar and its derivatives have been found to be very effective for ophthalmic applications. The ideal guar gelation agent is the one that turns on the gelation upon introduction onto the eye and that gelation chemistry is biocompatible and biodegradable. Controllable gelation is desirable to have relatively low viscosity eye drops for easy application and the drops form weak gels in the eye. One recent strategy to cure dry eye disease is to include emulsions in lubricant eye drops. The idea is to supplement the natural lipid layer on the exterior surface of the tear film. Formulating artificial tear emulsions is relatively complicated and must satisfy conflicting criteria. Emulsion droplets should be stable over the period of their shelf life without creaming or aggregate formation. On the other hand, in the tear film the emulsion droplets must cream fast enough and deposit onto the water/lipid film interface on the exterior surface of the tear film. Thus, the emulsion must be stable but not too stable. Initially, science-based design rules were proposed for the development of future generations of lubricant eye drops. The effect of guar molecular weight and concentration on emulsion stability was evaluated. According to the concentration-molecular weight plot, polymer solutions can be divided into stable and unstable regions. They are defined based on the critical flocculation concentration (CFC) and critical viscosity concentration (C*). Inverted QCM-D has been proposed as a simple and fast method to define the stability of oil in water emulsion systems. This technique is a promising alternative for time consuming conventional creaming experiments. Low molecular weight guar can be optimized to out-perform high molecular weight guars without the complications of formulating eye drops with high molecular weight polymers. Hydroxypropyl guar samples were oxidized and modified with linear alkyl amines to give a series of hydrophobically modified guars (MGuars). Lysozyme and human serum albumin (HSA), natural tear proteins, are able to extend the effective chain length of MGuar through polymer/protein complex formation. Hydrophobic modifications on guar enable efficient interaction with proteins, through their mutual hydrophobic characteristics. The interaction of proteins with various alkyl chain lengths, degrees of substitution and a range of molecular weights were examined. Binding and rheological measurements were employed to evaluate the interactions efficiency. Our results suggest that higher degrees of substitution and longer alkyl chain length give higher viscosity values. Lowering molecular weight allows for higher concentration, while keeping the initial viscosity constant. Higher viscosity was achieved as the chain extension occurred. The influence of hydrophobic modification and molecular weight variation on lubrication behavior of MGuars has also been determined. Hydrophobic modification enhanced the lubrication between hydrophobic surfaces. However, saturation of hydrophobes with protein abolished the lubricity. / Thesis / Doctor of Philosophy (PhD)
94

QCM-baserade kemosensorer av molekyläravgjutna polymerer i nanostruktur (nanoMIPs) med förbestämd selektivitet mot ELPLYR : En biomarkör för småcellig lungcancer

Säfström, Tim January 2022 (has links)
No description available.
95

Enzymatic Degradation Of Fat On Surfaces In Purified Water

Kokrehel, Dorina January 2024 (has links)
This master thesis explored washing with water grades and lipase as environmentally friendly alternatives to conventional detergents containing surfactants. On hydrophilic surfaces, purified water can remove fat through roll-up mechanism, initiated by electrostatic repulsion forces. On hydrophobic surfaces, purified water alone cannot remove fat as there are no electrostatic repulsion forces. However, addition of lipase might promote degreasing through solubilization. Lipases are only activated when encountering an oil-water interface. Once activated, lipases can hydrolyze carboxylic ester bonds in fats. The aim of this project was to evaluate if addition of lipase from Rhizopus niveus (RNL) to water grades (such as ultrapure water, DIRO, and tap water) can enhance their cleaning efficiency to remove fat-based stains from hydrophilic and hydrophobic surfaces. An interesting phenomenon was observed in contact angle measurements. On hydrophilic surface, some solutions with high RNL concentration caused the oil droplet to divide into several droplets. The involved mechanisms are yet unknown. Gravimetric analysis showed a significant increase in cleaning efficiency in most samples (except tap water) after addition of RNL. Also, the effect of interfacial changes became significant. Multiple cycle washing, with repeated interfacial changes and high rate of fat removal, was more efficient than single cycle washing. In the quartz crystal microbalance with dissipation (QCM-D) measurements, RNL had a significant effect on the frequency and dissipation data. Observed changes when washing with RNL, suggest that apart from the cleaning promoted by interfacial changes, also enzymatic cleaning was occurring. Unfortunately, the calculated cleaning efficiencies reveal that addition of RNL did not increase the cleaning efficiency in this specific washing test. To obtain extensive understanding of RNL’s behavior and activity in water grades, as well as the effect of RNL on different surfaces (without or with fats involved), further experiments are necessary.
96

Organic Self-Assembled Films for Nonlinear Optics: Film Structure, Composition and Kinetics of Film Formation

Garg, Akhilesh 12 September 2008 (has links)
Organic materials exhibiting second-order non-linear optical (NLO) properties are a key to the development of advanced electro-optic (EO) modulators used in fiber-optic communications system. This work addresses the fabrication and characterization of organic materials with NLO properties using a self-assembly approach by alternately dipping a charged substrate into positively and negatively charged polymers to build up layer-by-layer (LbL) films. The effect of solution pH on the formation of LbL films fabricated using the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly{1-[p-(3–-carboxy-4–-hydroxyphenylazo)benzenesulfonamido]-1,2-ethandiyl} (PCBS) was studied using a quartz crystal microbalance with dissipation (QCM-D) monitoring, ellipsometry, absorbance, and second harmonic generation (SHG) measurements. PCBS has an azo-benzene chromophore side group that, when sufficiently oriented, results in measurable SHG. Films of PAH/PCBS fabricated at neutral pH where both PAH and PCBS are highly charged led to thin bilayers, ~1 nm, with a 1:1 molar ratio of PCBS:PAH. This molar ratio was found to be important for long-range polar ordering of PCBS in these films. Increasing the rate of convection was found to reduce the time required for complete adsorption of the polyion. This can have a significant impact on fabrication of films with high bilayer numbers. A variation of the above technique, which involves adsorbing one of the constituents electrostatically and another covalently, was studied using PAH and a reactive dye, Procion Brown (PB), which has a significantly higher hyperpolarizability than PCBS. It was found that a high pH, ~10.5, was important for achieving covalent attachment of the PB to the underlying PAH films. This resulted in much higher SHG intensities compared to when PB was deposited pH at 8.5-9.5 where the attachment of PB was due to a combination of electrostatic and covalent interactions. QCM-D results for PAH/PB films revealed the presence of a high percentage of unreacted amine groups in the underlying PAH film. A rate constant value for PB attachment step to the underlying PAH was also calculated. To enhance the SHG intensity of these films, silver nanoprisms were synthesized and deposited onto films using physisorption. An enhancement in the SHG intensity was observed for both PAH/PCBS and PAH/PB films. / Ph. D.
97

Development of a novel high resolution and high throughput biosensing technology based on a Monolithic High Fundamental Frequency Quartz Crystal Microbalance (MHFF-QCM). Validation in food control

Calero Alcarria, María del Señor 02 May 2022 (has links)
Tesis por compendio / [ES] La sociedad actual demanda un mayor control en la seguridad y calidad de los alimentos que se consumen. Esta preocupación se ve reflejada en los diferentes planes estatales y europeos de investigación científica, los cuales, plantean la necesidad de innovar y desarrollar nuevas técnicas analíticas que cubran los requerimientos actuales. En el presente documento se aborda el problema de la presencia de residuos químicos en la miel. El origen de los mismos se debe, fundamentalmente, a los tramientos veterinarios con los que se tratan enfermedades y parásitos en las abejas, y a los tratamientos agrícolas con los que las abejas se ponen en contacto cuando recolectan el néctar en cultivos próximos a las colmenas. La Agencia Europea de Seguridad Alimentaria (EFSA) confirma esta realidad al notificar numerosas alertas sanitarias en la miel. En los últimos años, los métodos de análisis basados en inmunosensores piezoeléctricos se han posicionado como la base de una técnica de cribado muy prometedora, la cual puede ser empleada como técnica complementaria a las clásicas de cromatografía, gracias a su sencillez, rapidez y bajo coste. La tecnología de resonadores High-Fundamental Frequency Quartz Crystal Microbalance with Dissipation (HFF-QCMD) combina la detección directa en tiempo real, alta sensibilidad y selectividad con un fácil manejo y coste reducido en comparación con otras técnicas. Además, está tecnología permite aumentar el rendimiento del análisis mediante el diseño de arrays de resonadores en un mismo sustrato (Monolithic HFF-QCMD). En este documento se presenta el diseño de un array de 24 sensores HFF-QCMD, junto con un cartucho de micro-fluídica que traza diversos microcanales sobre los diferentes elementos sensores, a los que hace llegar la muestra de miel diluida a analizar. El cartucho actúa también como interfaz para realizar la conexión entre el array de resonadores y el instrumento de caracterización de los mismos. Para obtener el máximo partido del array diseñado, se desarrolla un método de medida robusto y fiable que permite elevar la tasa de adquisición de datos para facilitar la toma de registros eléctricos de un elevado número de resonadores de forma simultánea, e incluso en varios armónicos del modo fundamental de resonancia. La gran sensibilidad de la tecnología HFF-QCMD a los eventos bioquímicos a caracterizar se extiende también a otro tipo eventos externos, como son los cambios de temperatura o presión, lo que es necesario minimizar con el fin de reducir el impacto que estas perturbaciones no deseadas provocan en la estabilidad y fiabilidad de la medida. Con este fin, se desarrolla un algoritmo de procesado de señal basado en la Discrete Transform Wavelet (DTW). Finalmente, todos los desarrollos tecnológicos realizados se validan mediante la implementación de un inmunoensayo para la detección simultánea, en muestras de mieles reales, de residuos químicos de naturaleza química muy diferente, a saber, el fungicida tiabendazol y el antibiótico sulfatiazol. / [CA] La societat actual demanda un major control en la seguretat i qualitat dels aliments que es consumeixen. Aquesta preocupació es veu reflectida en els diferents plans estatals i europeus d'investigació científica, els quals, plantegen la necessitat d'innovar i desenvolupar noves tècniques analítiques que cobrisquen els requeriments actuals. En el present document s'aborda el problema de la presència de residus químics en la mel. L'origen dels mateixos es deu, fonamentalment, als tractaments veterinaris amb els quals es tracten malalties i paràsits en les abelles, i als tractaments agrícoles amb els quals les abelles es posen en contacte quan recol·lecten el nèctar en cultius pròxims als ruscos. L'Agència Europea de Seguretat Alimentària (EFSA) confirma aquesta realitat notificant nombroses alertes sanitàries en la mel. En els últims anys, els mètodes d'anàlisis basades en immunosensors piezoelèctrics s'han posicionat com la base d'una tècnica de garbellat molt prometedora, la qual pot ser emprada com a tècnica complementària a les clàssiques de cromatografia, gràcies a la seua senzillesa, rapidesa i baix cost. La tecnologia de ressonadors High-Fundamental Frequency Quartz Crystal Microbalance with Dissipation (HFF-QCMD) combina la detecció directa en temps real, alta sensibilitat i selectivitat amb un fàcil maneig i cost reduït en comparació amb altres tècniques. A més, està tecnologia permet augmentar el rendiment del anàlisi mitjançant el disseny d'arrays de ressonadors en un mateix substrat (Monolithic HFF-QCMD). En aquest document es presenta el disseny d'un array de 24 sensors HFF-QCMD, juntament amb un cartutx de microfluídica que estableix diversos microcanals sobre els diferents elements sensors, als quals fa arribar la mostra de mel diluïda a analitzar. El cartutx actua també com a interfície per a realitzar la connexió entre l'array de ressonadors i l'instrument de caracterització d'aquests. Per a traure el màxim partit a l'array dissenyat, es desenvolupa un mètode de mesura robust i fiable que permet elevar la taxa d'adquisició de dades per a facilitar la presa de registres elèctrics d'un elevat nombre de ressonadors de manera simultània, i fins i tot en diversos harmònics del mode fonamental de ressonància. La gran sensibilitat de la tecnologia HFF-QCMD als esdeveniments bioquímics a caracteritzar s'estén també a un altre tipus esdeveniments externs, com són els canvis de temperatura o pressió, la qual cosa és necessari minimitzar amb la finalitat de reduir l'impacte que aquestes pertorbacions no desitjades provoquen en l'estabilitat i fiabilitat de la mesura. A aquest efecte, es desenvolupa un algorisme de processament de senyal basat en la Discrete Transform Wavelet (DTW). Finalment, tots els desenvolupaments tecnològics realitzats es validen mitjançant la implementació d'un immunoassaig per a la detecció simultània, en mostres de mel reals, de residus químics de naturalesa química molt diferent, a saber, el fungicida tiabendazol i l'antibiòtic sulfatiazol. / [EN] Currently, society demands greater control over the safety and quality of the food consumed. This concern is reflected in the different states and European plans for scientific research, which establish the necessity to innovate and develop new analytical techniques that meet current requirements. This document addresses the problem of the presence of chemical residues in honey. Its origin is fundamentally due to the veterinary treatments against diseases and parasites in bees, and also to the agricultural treatments with which the bees come into contact when they collect the nectar in crops close to the hives. The European Food Safety Agency (EFSA) confirms this reality by notifying numerous health alerts in honey. In recent years, analysis methods based on piezoelectric immunosensors have been positioned as the basis of a very promising screening technique, which can be used as a complementary technique to the classic chromatography, thanks to its simplicity, speed and low cost. High-Fundamental Frequency Quartz Crystal Microbalance with Dissipation (HFF-QCMD) resonator technology combines direct real-time detection, high sensitivity and selectivity with easy handling and low cost compared to other techniques. In addition, this technology allows increasing the performance of the analysis through the design of resonator arrays on the same substrate (Monolithic HFF-QCMD). This document presents the design of an array of 24 HFF-QCMD sensors, together with a microfluidic cartridge that establish various microchannels on the different sensor elements, to provide them the diluted honey sample to be analyzed. The cartridge also acts as an interface to make the connection between the array of resonators and the characterization instrument. To get the most out of the designed array, a robust and reliable measurement method has been developed that allows increasing the data acquisition rate to facilitate electrical parameters readout from a high number of resonators simultaneously, and even in several harmonics of the fundamental resonance mode. The great sensitivity of the HFF-QCMD technology to the biochemical events to be characterized also is extended to other types of external events, such as changes in temperature or pressure, which must be minimized in order to reduce the impact that these unwanted disturbances cause in the stability and reliability of the measurement. To this end, a signal processing algorithm based on the Discrete Transform Wavelet (DTW) is developed. Finally, all the technological developments carried out are validated through the implementation of an immunoassay for the simultaneous detection, in real honey samples, of chemical residues of very different chemical nature, namely, the fungicide thiabendazole and the antibiotic sulfathiazole. / The authors would also like to thank Jorge Martínez from the Laboratory of High Frequency Circuits (LCAF) of the Universitat Politècnica de València (UPV) for assistance with profilometry, and Manuel Planes, José Luis Moya, Mercedes Tabernero, Alicia Nuez and Joaquin Fayos from the Electron Microscopy Services of the UPV for helping with the AFM, and SEM measurements. M.Calero is the recipient of the doctoral fellowship BES-2017-080246 from the Spanish Ministry of Economy, Industry and Competitiveness (Madrid, Spain). This research was funded by Spanish Ministry of Economy and Competitiveness with FEDER funds (AGL 2016-77702-R) and European Commission Horizon 2020 Programme (Grant Agreement number H2020-FETOPEN-2016-2017/737212-CATCH-U-DNA - Capturing non-Amplified Tumor Circulating DNA with Ultrasound Hydrodynamics) for which the authors are grateful. Román Fernández is with the Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, València, Spain and with Advanced Wave Sensors S.L., Paterna, València, Spain. (e-mail: rfernandez@awsensors.com); Yolanda Jiménez, Antonio Arnau and María Calero are with the Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, València, Spain; Ilya Reiviakine is with Advanced Wave Sensors S.L., Paterna, Valencia, Spain and with the Department of Bioengineering, University of Washington, Seattle, WA, 98150 USA; María Isabel Rocha-Gaso and José Vicente García are with Advanced Wave Sensors S.L., Paterna, València, Spain. / Calero Alcarria, MDS. (2022). Development of a novel high resolution and high throughput biosensing technology based on a Monolithic High Fundamental Frequency Quartz Crystal Microbalance (MHFF-QCM). Validation in food control [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182652 / TESIS / Compendio
98

Polymers in Aqueous Lubrication

An, Junxue January 2017 (has links)
The main objective of this thesis work was to gain understanding of the layer properties and polymer structures that were able to aid lubrication in aqueous media. To this end, three types of polyelectrolytes: a diblock copolymer, a train-of-brushes and two brush-with-anchor mucins have been utilized. Their lubrication ability in the boundary lubrication regime has been examined by Atomic Force Microscopy with colloidal probe. The interfacial behavior of the thermoresponsive diblock copolymer, PIPOZ60-b-PAMPTAM17,on silica was studied in the temperature interval 25-50 ˚C. The main finding is that adsorption hysteresis, due to the presence of trapped states, is important when the adsorbed layers are in contact with a dilute polymer solution. The importance of trapped states was also demonstrated in the measured friction forces, where significantly lower friction forces, at a given temperature, were encountered on cooling than on the preceding heating stage, which was attributed to increased adsorbed amount. On the heating stage the friction force decreased with increasing temperature despite the worsening of the solvent condition, and the opposite trend was observed when using pre-adsorbed layers (constant adsorbed amount) as a consequence of increased segment-segment attraction. The second part of the studies was devoted to the interfacial properties of mucins on PMMA. The strong affinity provided by the anchoring group of C-PSLex and C-P55 together with their more extended layer structure contribute to the superior lubrication of PMMA compared to BSM up to pressures of 8-9 MPa. This is a result of minor bridging and lateral motion of molecules along the surface during shearing. We further studied the influence of glycosylation on interfacial properties of mucin by utilizing the highly purified mucins, C-P55 and C-PSLex. Our data suggest that the longer and more branched carbohydrate side chains on C-PSLex provide lower interpenetration and better hydration lubrication at low loads compared to the shorter carbohydrate chains on C-P55. However, the longer carbohydrates appear to counteract disentanglement less efficiently, giving rise to a higher friction force at high loads. / <p>QC 20170407</p>
99

Multilayer Structures for Biomaterial Applications : Biomacromolecule-based Coatings

Halthur, Tobias January 2005 (has links)
The cellular response to a biomaterial, such as a dental implant, is mainly governed by the surface properties, and can thus be altered by the introduction of a surface coating. In this thesis the buildup of a biomacromolecule-based coating formed by layerby-layer (LbL) deposition of the charged polypeptides poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) has been studied. In an attempt to make these coatings bioactive and useful for bone-anchored implants, an amelogenin protein mixture (EMD), has been immobilized in these thin polyelectrolyte multilayer (PEM) films. Multilayers were also built by LbL deposition of the natural biomacromolecules collagen (Col) and hyaluronic acid (HA). Multilayer films of these two extra-cellular biomacromolecules should be of interest for use as a scaffold for tissue engineering. The buildup of the multilayer films has been followed in situ, using ellipsometry, quartz crystal microbalance with dissipation (QCM-D), and dual polarization interferometry (DPI). The studied PLL/PGA multilayers were found to be highly hydrated, and to exhibit a two-regime buildup behavior, with an initial “slow-growing” regime, and a second “fast-growing” regime with a linear growth in film thickness and more than linear growth in mass. A net diffusion of polypeptides into the film during the buildup led to an increase in density of the films for each layer adsorbed. A change in density was also observed in the Col/HA film, where HA penetrated and diffused into the porous fibrous Col network. The formed PLL/PGA films were further found to be rather stable during drying, and post-buildup changes in temperature and pH, not losing any mass as long as the temperature was not raised too rapidly. The film thickness responded to changes in the ambient media and collapsed reversibly when dried. A swelling/de-swelling behavior of the film was also observed for changes in the temperature and pH. The EMD protein adsorbed to silica surfaces as nanospheres, and could by itself form multilayers. The adsorption of EMD onto PLL/PGA multilayer films increased at lower pH (5.0), and EMD could be immobilized in several layers by alternate deposition of EMD and PGA. / QC 20101019
100

Multilayer Structures for Biomaterial Applications : Biomacromolecule-based Coatings

Halthur, Tobias January 2005 (has links)
<p>The cellular response to a biomaterial, such as a dental implant, is mainly governed by the surface properties, and can thus be altered by the introduction of a surface coating. In this thesis the buildup of a biomacromolecule-based coating formed by layerby-layer (LbL) deposition of the charged polypeptides poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) has been studied. In an attempt to make these coatings bioactive and useful for bone-anchored implants, an amelogenin protein mixture (EMD), has been immobilized in these thin polyelectrolyte multilayer (PEM) films. Multilayers were also built by LbL deposition of the natural biomacromolecules collagen (Col) and hyaluronic acid (HA). Multilayer films of these two extra-cellular biomacromolecules should be of interest for use as a scaffold for tissue engineering.</p><p>The buildup of the multilayer films has been followed in situ, using ellipsometry, quartz crystal microbalance with dissipation (QCM-D), and dual polarization interferometry (DPI). The studied PLL/PGA multilayers were found to be highly hydrated, and to exhibit a two-regime buildup behavior, with an initial “slow-growing” regime, and a second “fast-growing” regime with a linear growth in film thickness and more than linear growth in mass. A net diffusion of polypeptides into the film during the buildup led to an increase in density of the films for each layer adsorbed. A change in density was also observed in the Col/HA film, where HA penetrated and diffused into the porous fibrous Col network.</p><p>The formed PLL/PGA films were further found to be rather stable during drying, and post-buildup changes in temperature and pH, not losing any mass as long as the temperature was not raised too rapidly. The film thickness responded to changes in the ambient media and collapsed reversibly when dried. A swelling/de-swelling behavior of the film was also observed for changes in the temperature and pH.</p><p>The EMD protein adsorbed to silica surfaces as nanospheres, and could by itself form multilayers. The adsorption of EMD onto PLL/PGA multilayer films increased at lower pH (5.0), and EMD could be immobilized in several layers by alternate deposition of EMD and PGA.</p>

Page generated in 0.0445 seconds