• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 21
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modélisation et conduite optimale d'un cycle combiné hybride avec source solaire et stockage / Modeling and control of an hybrid combined cycle with solar power production and storage

Leo, Jessica 10 November 2015 (has links)
Cette thèse s'intéresse à la coordination des sous-systèmes d'un nouveau genre de centrale de production d'énergie : un cycle combiné hybride (HCC - Hybrid Combined Cycle). Cette centrale HCC n'existe pas encore mais combine un cycle combiné gaz (CCG), un moyen de production solaire thermodynamique (miroirs cylindro-paraboliques) et un moyen de stockage thermique (stockage indirect de chaleur sensible utilisant deux réservoirs de sels fondus). Comment coordonner ces trois sous-systèmes de manière optimale lors des variations de demande de puissance ou des prix du gaz ?Dans un premier temps, chacun des trois sous-systèmes est étudié de manière indépendante afin d'obtenir, d'une part, un modèle physique permettant de caractériser le comportement dynamique du sous-système considéré et, d'autre part, un contrôle local qui agit en fonction des objectifs de fonctionnement prédéfinis. Un modèle du système complet interconnecté de l'HCC est ensuite obtenu en couplant les modèles des trois sous-systèmes. Enfin, une coordination des différents sous-systèmes est mise en place pour adapter le fonctionnement de chacun, en fonction des objectifs globaux de la centrale HCC complète, en optimisant les consignes de chaque sous-système. Dans ce travail, une coordination de type linéaire quadratique et une coordination de type optimale prédictive sont étudiées. Les résultats obtenus sont bien prometteurs : ils montrent, tout d'abord, que lors d'un appel de puissance, la commande coordonnée permet au système HCC de répondre plus rapidement, en utilisant plus efficacement la partie solaire. De plus, lorsque la demande subit beaucoup de variations, la partie solaire et la partie stockage absorbent toutes ces variations et la Turbine à Combustion (TAC) du CCG est beaucoup moins sollicitée. Lorsqu'il n'y a plus d'irradiation solaire, la partie stockage prend la relève pour continuer à produire de la vapeur solaire, jusqu'à ce que les stocks se vident. Finalement, le stockage permet d'ajuster la production de la TAC en fonction des prix du gaz. / This work concerns the subsystems coordination of a new type of power plant: a Hybrid Combined Cycle (HCC). This HCC plant is not yet build but consists of a Combined Cycle Power Plant (CCPP), a concentrated solar plant (parabolic trough) and a thermal storage system (a molten-salts two-tank indirect sensible thermal storage). How to coordinate these three subsystems optimally during variations in power demand or in gas price?First, each subsystem is studied independently in order to get on one hand a physical model that reproduces the dynamical behavior of the considered subsystem, and on the other hand, a local control that achieves an operation according to pre-specified objectives. Then, a model of the HCC system is obtained by coupling the models of the three defined subsystems.Eventually, a coordination of the subsystems is set up in order to adapt the behavior of each subsystem according to the global objectives for the full HCC system, by optimizing subsystem setpoints. In this study, a linear quadratic coordination and a model predictive coordination are designed. The obtained results are promising: they first show that during a power demand, the coordination allows the global system to quickly respond, using extensively the solar production. Besides, when the power demand undergoes many fluctuations, the solar and storage parts absorb these variations and the gas turbine of the CCPP is much less stressed. In addition, when there is no more solar radiation, the storage part continues producing solar steam, until storage tanks are empty. At last, the storage part allows to adjust the gas turbine production according to the gas prices.
22

Automatic Parking and Path Following Control for a Heavy-Duty Vehicle

Mörhed, Joakim, Östman, Filip January 2017 (has links)
The interest in autonomous vehicles has never been higher and there are several components that need to function for a vehicle to be fully autonomous; one of which is the ability to perform a parking at the end of a mission. The objective of this thesis work is to develop and implement an automatic parking system (APS) for a heavy-duty vehicle (HDV). A delimitation in this thesis work is that the parking lot has a known structure and the HDV is a truck without any trailer and access to more computational power and sensors than today's commercial trucks. An automatic system for searching the parking lot has been developed which updates an occupancy grid map (OGM) based on measurements from GPS and LIDAR sensors mounted on the truck. Based on the OGM and the known structure of the parking lot, the state of the parking spots is determined and a path can be computed between the current and desired position. Based on a kinematic model of the HDV, a gain-scheduled linear quadratic (LQ) controller with feedforward action is developed. The controller's objective is to stabilize the lateral error dynamics of the system around a precomputed path. The LQ controller explicitly takes into account that there exist an input delay in the system. Due to minor complications with the precomputed path the LQ controller causes the steering wheel turn too rapidly which makes the backup driver nervous. To limit these rapid changes of the steering wheel a controller based on model predictive control (MPC) is developed with the goal of making the steering wheel behave more human-like. A constraint for maximum allowed changes of the controller output is added to the MPC formulation as well as physical restrictions and the resulting MPC controller is smoother and more human-like, but due to computational limitations the controller turns out less effective than desired. Development and testing of the two controllers are evaluated in three different environments of varying complexity; the simplest simulation environment contains a basic vehicle model and serves as a proof of concept environment, the second simulation environment uses a more realistic vehicle model and finally the controllers are evaluated on a full-scale HDV. Finally, system tests of the APS are performed and the HDV successfully parks with the LQ controller as well as the MPC controller. The concept of a self-parking HDV has been demonstrated even though more tuning and development needs to be done before the proposed APS can be used in a commercial HDV.
23

Stabilizing a Single Strut Hydrofoil using Linear-Quadratic Control and Gain Scheduling : An Adaptive Approach to Optimal Control / Stabilisering av Bärplansbåt med Adaptiv Linjär-Kvadratisk Reglering : En Adaptiv Variant på Optimal Reglering

Anderberg, Erik January 2024 (has links)
Hydrofoiling technology has existed for over a hundred years but has seen a significant acceleration in development lately. The lower water resistance significantly increases the propulsion energy efficiency, giving the technology the potential to contribute to global goals of reducing emissions. Fully submerged hydrofoils, in general, and single-strut hydrofoils, in particular, need a control system to maintain stability in flight. It makes for an interesting control system design challenge, with dynamics resembling an inverted pendulum with six degrees of freedom. In this study, two control systems were designed and tested to stabilize a simulated model of the FoilCart prototype while performing turning maneuvers at different velocities and handling changes in altitude and speed. The first controller was a static Linear-Quadratic Integral (LQI) controller with some additions, including anti-windup mechanisms, setpoint step smoothing, symmetric linearization, and error cascading. The second controller was a modified, adaptive version of the LQI controller that used gain scheduling to combine multiple LQI controllers, each designed for coordinated banking turns at different roll angles, interpolating between them at every time step based on the current roll angle setpoint. With one exception, both controllers successfully performed turning maneuvers with 10 and 20° roll angles at 7 and 8 m/s. While the adaptive controller did, in some cases, improve the system’s speed, reducing rise time and overshoot, it was also less reliable and made the boat crash in one case (20° roll angle at 7 m/s). The static controller, however, exceeded all expectations and could perform stable turning maneuvers with roll angles up to 40°. Adding anti-windup measures and setpoint step smoothing improved stability, while error cascading and symmetric linearization had only minor, yet positive, effects. In conclusion, with the mentioned enhancements, LQI control systems have great potential for stabilizing single-strut hydrofoiling vessels. Several openings for future work remain, from validating these results in actual prototype tests to robustness and disturbance rejection studies and exploring other ways of combining LQI control and gain scheduling. / Bärplan har funnits i över hundra år, men dess utveckling och spridning har accelerat ordentligt den senaste tiden. Det minskade vattenmotståndet ökar energieffektiviteten avsevärt och ger tekniken potential att bidra till de globala målen att minska utsläppen. Dränkta bärplan i stort, men speciellt de som bara har en vertikal koppling till skrovet, behöver styrsystem för att bibehålla stabiliteten när de flyger. Utvecklingen av styrsystem för dem är därför en intressant utmaning, med dynamik liknande en inverterad pendel med sex frihetsgrader. I denna studie utvecklades och testades två styrsystem för att stabilisera en simulerad modell av FoilCart-prototypen under svängar i olika hastigheter och förändringar i höjdled. Det första styrsystemet var ett statiskt linjär-kvadratiskt integrerande system med vissa tilläggsfunktioner: anti-windup-mekanismer, utjämning av referenssteg, symmetrisk linjärisering och kaskadkoppling av felet. Det andra styrsystemet var en modifierad, adaptiv version av det första systemet. Det använde gain scheduling för att kombinera flera LQI-kontrollenheter designade för koordinerade svängar med en viss rollvinkel vardera, och interpolerade mellan dem vid varje tidssteg baserat på det aktuella referensvärdet för rollvinkeln. Med ett undantag lyckades båda styrsystemen genomföra koordinerade svängar med rollvinklar på 10 och 20° i 7 och 8 m/s. Medan det adaptiva styrsystemet i vissa fall gav ett snabbare svar med kortare stigtid och mindre översläng, var det även mindre pålitligt och fick båten att välta i ett fall (20° rollvinkel i 7 m/s). Det statiska styrsystemet överträffade dock alla förväntningar, och klarade att genomföra stabila svängar med upp till 40° rollvinkel. Tilläggsfunktionerna med anti-windup-mekanismer och utjämning av referenssteg förbättrade stabiliteten, medan kaskadkoppling av felet och symmetrisk linjärisering hade endast små, men positiva, effekter. Sammanfattningsvis har linjär-kvadratiska integrerande styrsystem med de nämnda tilläggsfunktionerna stor potential inom stabilisering av bärplansbåtar. Flera möjligheter för fortsatt arbete återstår, från validering av resultaten i faktiska prototyptester till utvärdering av robusthet och störningstålighet, samt utforskande av andra kombinationer av linjär-kvadratisk integrerande reglering och gain scheduling.

Page generated in 0.0831 seconds