• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • 5
  • Tagged with
  • 29
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Experimente mit einer linearen Ionenkette zur Realisierung eines Quantencomputers

Ludsteck, Volker Hans. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--München.
22

A neutral atom quantum register

Schrader, Dominik. Unknown Date (has links) (PDF)
University, Diss., 2004--Bonn.
23

Complexity bounds on some fundamental computational problems for quantum branching programs

Khasianov, Airat. Unknown Date (has links) (PDF)
University, Diss., 2005--Bonn.
24

Characterizing and measuring properties of continuous-variable quantum states

Ohliger, Matthias January 2012 (has links)
We investigate properties of quantum mechanical systems in the light of quantum information theory. We put an emphasize on systems with infinite-dimensional Hilbert spaces, so-called continuous-variable systems'', which are needed to describe quantum optics beyond the single photon regime and other Bosonic quantum systems. We present methods to obtain a description of such systems from a series of measurements in an efficient manner and demonstrate the performance in realistic situations by means of numerical simulations. We consider both unconditional quantum state tomography, which is applicable to arbitrary systems, and tomography of matrix product states. The latter allows for the tomography of many-body systems because the necessary number of measurements scales merely polynomially with the particle number, compared to an exponential scaling in the generic case. We also present a method to realize such a tomography scheme for a system of ultra-cold atoms in optical lattices. Furthermore, we discuss in detail the possibilities and limitations of using continuous-variable systems for measurement-based quantum computing. We will see that the distinction between Gaussian and non-Gaussian quantum states and measurements plays an crucial role. We also provide an algorithm to solve the large and interesting class of naturally occurring Hamiltonians, namely frustration free ones, efficiently and use this insight to obtain a simple approximation method for slightly frustrated systems. To achieve this goals, we make use of, among various other techniques, the well developed theory of matrix product states, tensor networks, semi-definite programming, and matrix analysis. / Die stürmische Entwicklung der Quanteninformationstheorie in den letzten Jahren brachte einen neuen Blickwinkel auf quantenmechanische Probleme. Insbesondere die fundamentale Eigenschaft der Verschränkung von Quantenzuständen spielt hierbei eine Schlüsselrolle. Einstein, Podolsky und Rosen haben 1935 versucht die Unvollständigkeit der Quantenmechanik zu demonstrieren, indem sie zeigten, dass sie keine lokale, realistische Therie ist und der Ausgang einer Messung an einem Ort von Messungen abhängen kann, die an beliebig weit entfernten Orten gemacht wurden. John Bell stellte 1964 eine, später nach ihm benannte, Ungleichung auf, die eine Grenze an mögliche Korrelationen von Messergebnissen in lokalen, realistischen Theorien gibt. Die Vorhersagen der Quatenmechanik verletzen diese Ungleichung, eine Tatsache, die 1981 von Alain Aspect und anderen auch experimentell bestätigt wurde. Solche nicht-lokalen Quantenzustände werden verschränkt'' genannt. In neuerer Zeit wurde Verschränkung nicht mehr nur als mysteriöse Eigenschaft der Quantenmechanik sondern auch als Resource für Aufgaben der Informationsverarbeitung gesehen. Ein Computer, der sich diese Eigenschaften der Quantenmechanik zu nutze macht, ein sogenannter Quantencomputer, würde es erlauben gewisse Aufgaben schnell zu lösen für die normale'' Computer zu lange brauchen. Das wichtigste Beispiel hierfür ist die Zerlegung von großen Zahlen in ihre Primfaktoren, für die Shor 1993 einen Quantenalgorithmus präsentierte. In dieser Arbeit haben wir uns mit den Eigenschaften von Quantensystemen, die durch sogenannte kontinuierliche Variablen beschrieben werden, beschäftigt. Diese sind nicht nur theoretisch sonder auch experimentell von besonderem Interesse, da sie quantenoptische Systeme beschreiben, die sich verhältnismäßig leicht im Labor präparieren, manipulieren und messen lassen. Wenn man eine vollständige Beschreibung eines Quantenzustandes erhalten will, braucht man, auf Grund der Heisenberg'schen Unschärferelation, mehrere Kopien von ihm an denen man dann Messungen durchführt. Wir haben eine Methode, compressed-sensing genannt, eingeführt um die Anzahl der nötigen Messungen substantiell zu reduzieren. Wir haben die theoretische Effizienz dieser Methode bewiesen und durch numerische Simulationen auch ihre Praktikabilität demonstriert. Desweiteren haben wir beschrieben, wie man compressed-sensing für die schon erwähnten optischen Systemen sowie für ultrakalte Atome experimentell realisieren kann. Ein zweites Hauptthema dieser Arbeit war messbasiertes Quantenrechnen. Das Standardmodell des Quantenrechnens basiert auf sogenannten Gattern, die eine genaue Kontrolle der Wechselwirkung zwischen den Bestandteilen des Quantencomputers erfordern. Messbasiertes Quantenrechnen hingegen kommt mit der Präparation eines geeigneten Quantenzustands, Resource genannt, gefolgt von einfachen Messungen auf diesem Zustand aus. Wir haben gezeigt, dass Systeme mit kontinuierlichen Variablen eine vorteilhafte Realisierung eines Quantencomputers in diesem Paradigma erlauben, es jedoch auch wichtige Beschränkungen gibt, die kompliziertere Zustandspräparationen und Messungen nötig machen.
25

Zur Lösung von zahlentheoretischen Problemen mit klassischen und Quantencomputern

Schmidt, Arthur. Unknown Date (has links)
Techn. Universiẗat, Diss., 2007--Darmstadt.
26

Practical lattice basis sampling reduction

Ludwig, Christoph. Unknown Date (has links)
Techn. University, Diss., 2005--Darmstadt.
27

Matched instances of Quantum Sat (QSat): Product state solutions of restrictions

Goerdt, Andreas 18 January 2019 (has links)
Matched instances of the quantum satisfiability problem have an interesting property: They always have a product state solution. However, it is not clear how to find such a solution efficiently. Recenttly some progress on this question has been made by considering restricted instances of this problem. In this note we consider a different restriction of the problem which turns out to be solvable by techniques of linear algebra.
28

Isogeniebasierte Post-Quanten-Kryptographie

Prochaska, Juliane 12 August 2019 (has links)
Die fortschreitende Entwicklung immer leistungsstärkerer Quantencomputer bedroht die Informationssicherheit kryptographischer Anwendungen, die auf dem Faktorisierungsproblem oder dem Problem des diskreten Logarithmus beruhen. Die US-amerikanische Standardisierungsbehörde NIST startete 2017 ein Projekt mit dem Ziel, Kryptographiestandards zu entwickeln, die gegen Angriffe von Quantenrechnern resistent sind. Einer der Kandidaten ist SIKE (Supersingular Isogeny Key Encapsulation), der einzige Vertreter isogeniebasierter Kryptographie im Standardisierungsverfahren. Diese Diplomarbeit enthält eine weitgehend in sich abgeschlossene Beschreibung der SIKE-Protokolle, Sicherheitsbetrachtungen sowie eine einfache Implementierung des Kryptosystems.:1. Einleitung 2. Grundlegende Definitionen 2.1. Elliptische Kurven 2.2. Punktaddition 2.3. Montgomery-Kurven 2.4. Isogenien 2.5. Der Diffie-Hellman-Schlüsselaustausch 2.6. Das Elgamal-Kryptosystem 3. Supersingular Isogeny Key Encapsulation 3.1. Supersingular Isogeny Diffie-Hellman Key Exchange 3.2. Erzeugung der Systemparameter 3.3. Erzeugung der Schlüsselpaare 3.4. Berechnung der gemeinsamen Kurve 3.5. Vom Schlüsselaustausch zum Kryptosystem 3.6. Schlüsseleinschluss (Key Encapsulation) 3.7. Implementierungen 4. Sicherheitsbetrachtungen 4.1. Ciphertext indistinguishability 4.2. Größe der Parameter 4.3. Weitere Aspekte 5. Zusammenfassung A. Implementierung
29

Theoretical description of strongly correlated ultracold atoms in external confinement

Schneider, Philipp-Immanuel 21 October 2013 (has links)
Heutzutage können ultrakalte Atome in unterschiedlichsten optischen Fallenpotenzialen eingefangen werden, während sich ihre Wechselwirkung durch die Ausnutzung von magnetischen Feshbachresonanzen kontrollieren lässt. Der Einschluss und die resonante Wechselwirkung können zu einer starken Korrelation der Atome führen, welche es erlaubt, mit ihnen physikalische Phänomene zu simulieren, deren Simulation mit heutigen Computern nicht durchführbar wäre. Eine maßgeschneiderte Kontrolle der Korrelationen könnte es schließlich ermöglichen, mit ultrakalten Atomen einen Quantencomputer zu implementieren. Um die Flexibilität und gute Kontrollierbarkeit ultrakalter Atome voll ausnutzen zu können, ist das Ziel dieser Dissertation die präzise theoretische Beschreibung stark korrelierter, eingeschlossener Atome an einer Feshbachresonanz. Das Wechselspiel zwischen dem Einschluss der Atome und einer Feshbachresonanz wird in dieser Arbeit zunächst anhand eines von Grund auf hergeleiteten analytischen Modells einer Feshbachresonanz zwischen Atomen in einer harmonischen Falle untersucht. Basierend auf diesem Modell wird ein Ansatz entwickelt, wechselwirkende Atome an einer Feshbachresonanz in einem optischen Gitter über ein Bose-Hubbard-Modell zu beschreiben. Im Gegensatz zu aufwendigeren numerischen Methoden erlaubt das Bose-Hubbard-Modell mit der Einbeziehung nur weniger Blochbänder die präzise Vorhersage der Eigenenergien und des dynamischen Verhaltens der Atome im optischen Gitter. Weiterhin wird eine Methode zur Lösung der zeitabhängingen Schrödingergleiung für zwei wechselwirkende Atome in einem dynamischen optischen Gitter entwickelt. Schließlich wird ein Ansatz vorgestellt, wie sich mit ultrakalten Atomen in einem dynamischen optischen Gitter ein Quantencomputer implementieren ließe. Als Quantenregister dient der korrelierte Mott-Zustand von repulsiv wechselwirkenden Atomen. Quantenoperationen werden durch periodisches Wackeln des optischen Gitters getrieben. / Today, ultracold atoms can be confined in various optical trapping potentials, while their mutual interaction can be controlled by magnetic Feshbach resonances. The confinement and resonant interaction can lead to a strong correlation of the atoms, which allows for the quantum simulation of physical phenomena whose classical simulation is computationally intractable. A tailored control of these correlations might eventually enable the implementation of a quantum computer with ultracold atoms. In order to take advantage of the flexibility and precise control of ultracold atoms, this thesis aims to provide a precise theoretical description of strongly correlated, confined atoms at a magnetic Feshbach resonance. The interplay between the confinement of the atoms and the Feshbach resonance is investigated by deriving from first principles a model that enables the complete analytic description of harmonically trapped ultracold atoms at a Feshbach resonance. This model is subsequently used to develop a Bose-Hubbard model of atoms in an optical lattice at a Feshbach resonance. In contrast to more elaborate numerical calculations, the model can predict the eigenenergies and the dynamical behavior of atoms in an optical lattice with high accuracy including only a small number of Bloch bands. Furthermore, a method id developed that solves the time-dependent Schrödinger equation for two interacting atoms in a dynamic optical lattice. Finally, a proposal for the implementation of a quantum computer with ultracold atoms in a dynamic optical lattice is presented. It utilizes the correlated Mott-insulator state of repulsively interacting atoms as a quantum register. Quantum operations are driven by a periodic shaking of the optical lattice.

Page generated in 0.1002 seconds