Spelling suggestions: "subject:"quantenchromodynamik"" "subject:"quantenelektrodynamik""
1 |
Semiclassical initial value representation for complex dynamicsBuchholz, Max 23 November 2017 (has links) (PDF)
Semiclassical initial value representations (SC-IVRs) are popular methods for an approximate description of the quantum dynamics of atomic and molecular systems. A very efficient special case is the propagator by Herman and Kluk, which will be the basis for the investigations in this work. It consists of a phase space integration over initial conditions of classical trajectories which are guiding Gaussian wavepackets. A complex phase factor in the integrand allows for interference between different trajectories, which leads to soft quantum effects being naturally included in the description. The underlying classical trajectories allow for an approximate description of the dynamics of large quantum systems that are inaccessible for a full quantum propagation. Moreover, they also provide an intuitive understanding of quantum phenomena in terms of classical dynamics.
The main focus of this work is on further approximations to Herman-Kluk propagation whose applicability to complex dynamics is limited by the number of trajectories that are needed for numerical convergence of the phase space integration. The central idea for these approximations is the semiclassical hybrid formalism which utilizes the costly Herman-Kluk propagator only for a small number of system degrees of freedom (DOFs). The remaining environmental DOFs are treated on the level of Heller's thawed Gaussian wavepacket dynamics, a single trajectory method which is exact only for at most harmonic potentials. If the environmental DOFs are weakly coupled and therefore close to their potential minimum, this level of accuracy is sufficient to account for their effect on the system. Thus, the hybrid approximation efficiently combines accuracy and low numerical cost. As a central theoretical result, we apply this hybrid idea to a time-averaging scheme to arrive at a method for the calculation of vibrational spectra of molecules that is both accurate and efficient.
This time-averaged hybrid propagation is then used to study the vibrational dynamics of an iodine-like Morse oscillator bilinearly coupled to a Caldeira-Leggett bath of harmonic oscillators. We first validate the method by comparing it to full quantum and Herman-Kluk propagation for appropriately sized environments. After having established its accuracy, we include more bath DOFs to investigate the influence of the Caldeira-Leggett counter term on the shift of the vibrational levels of the Morse oscillator. As a result, we find out that a redshift, which is observed experimentally for, e.g., iodine in a rare gas matrix, occurs only if the counter term is not included in the Hamiltonian.
We then move away from the model bath and on to a realistic, experimentally relevant environment consisting of krypton atoms. We put the iodine molecule into a cluster of 17 krypton atoms and investigate the loss of coherence of the iodine vibration upon coupling to just a few normal coordinates of the bath. These modes with the same symmetry as the iodine vibration turn out to be sufficient to reproduce the expected qualitative dependence on bath temperature and initial state of the iodine molecule. With these few normal modes, a full quantum calculation yields values for coherence loss rates that are close to experimental results. Furthermore, a comparison to semiclassical calculations with more bath modes included confirms the importance of the few highly symmetric normal coordinates. Then, we apply the time-averaged hybrid formalism once more to calculate the vibrational spectrum of the iodine molecule in this now anharmonic krypton environment. Using a krypton matrix instead of a cluster geometry, we find the correct qualitative and also quite good quantitative agreement for the shift of the iodine potential.
Finally, we will investigate a more fundamental question, namely, if SC-IVRs contain the spin effects due to the Pauli exclusion principle. To this end, we apply a number of SC-IVRs to the scattering of two electrons with initial states corresponding to either parallel or antiparallel spin. We compare the outcome to full quantum results and find that the difference is resolved by those methods that comprise multiple interfering trajectories.
|
2 |
Semiclassical initial value representation for complex dynamicsBuchholz, Max 23 June 2017 (has links)
Semiclassical initial value representations (SC-IVRs) are popular methods for an approximate description of the quantum dynamics of atomic and molecular systems. A very efficient special case is the propagator by Herman and Kluk, which will be the basis for the investigations in this work. It consists of a phase space integration over initial conditions of classical trajectories which are guiding Gaussian wavepackets. A complex phase factor in the integrand allows for interference between different trajectories, which leads to soft quantum effects being naturally included in the description. The underlying classical trajectories allow for an approximate description of the dynamics of large quantum systems that are inaccessible for a full quantum propagation. Moreover, they also provide an intuitive understanding of quantum phenomena in terms of classical dynamics.
The main focus of this work is on further approximations to Herman-Kluk propagation whose applicability to complex dynamics is limited by the number of trajectories that are needed for numerical convergence of the phase space integration. The central idea for these approximations is the semiclassical hybrid formalism which utilizes the costly Herman-Kluk propagator only for a small number of system degrees of freedom (DOFs). The remaining environmental DOFs are treated on the level of Heller's thawed Gaussian wavepacket dynamics, a single trajectory method which is exact only for at most harmonic potentials. If the environmental DOFs are weakly coupled and therefore close to their potential minimum, this level of accuracy is sufficient to account for their effect on the system. Thus, the hybrid approximation efficiently combines accuracy and low numerical cost. As a central theoretical result, we apply this hybrid idea to a time-averaging scheme to arrive at a method for the calculation of vibrational spectra of molecules that is both accurate and efficient.
This time-averaged hybrid propagation is then used to study the vibrational dynamics of an iodine-like Morse oscillator bilinearly coupled to a Caldeira-Leggett bath of harmonic oscillators. We first validate the method by comparing it to full quantum and Herman-Kluk propagation for appropriately sized environments. After having established its accuracy, we include more bath DOFs to investigate the influence of the Caldeira-Leggett counter term on the shift of the vibrational levels of the Morse oscillator. As a result, we find out that a redshift, which is observed experimentally for, e.g., iodine in a rare gas matrix, occurs only if the counter term is not included in the Hamiltonian.
We then move away from the model bath and on to a realistic, experimentally relevant environment consisting of krypton atoms. We put the iodine molecule into a cluster of 17 krypton atoms and investigate the loss of coherence of the iodine vibration upon coupling to just a few normal coordinates of the bath. These modes with the same symmetry as the iodine vibration turn out to be sufficient to reproduce the expected qualitative dependence on bath temperature and initial state of the iodine molecule. With these few normal modes, a full quantum calculation yields values for coherence loss rates that are close to experimental results. Furthermore, a comparison to semiclassical calculations with more bath modes included confirms the importance of the few highly symmetric normal coordinates. Then, we apply the time-averaged hybrid formalism once more to calculate the vibrational spectrum of the iodine molecule in this now anharmonic krypton environment. Using a krypton matrix instead of a cluster geometry, we find the correct qualitative and also quite good quantitative agreement for the shift of the iodine potential.
Finally, we will investigate a more fundamental question, namely, if SC-IVRs contain the spin effects due to the Pauli exclusion principle. To this end, we apply a number of SC-IVRs to the scattering of two electrons with initial states corresponding to either parallel or antiparallel spin. We compare the outcome to full quantum results and find that the difference is resolved by those methods that comprise multiple interfering trajectories.
|
3 |
Coherent state-based approaches to quantum dynamics: application to thermalization in finite systemsLoho Choudhury, Sreeja 03 June 2022 (has links)
We investigate thermalization in finite quantum systems using coherent state-based approaches to solve the time-dependent Schr\'odinger equation. Earlier, a lot of work has been done in the quantum realm, to study thermalization in spin systems, but not for the case of continuous systems. Here, we focus on continuous systems. We study the zero temperature thermalization i.e., we consider the ground states of the bath oscillators (environment).
In order to study the quantum dynamics of a system under investigation, we require numerical methods to solve the time-dependent Schr\'odinger equation. We describe different numerical methods like the split-operator fast fourier transform, coupled coherent states, static grid of coherent states, semiclassical Herman-Kluk propagator and the linearized semiclassical initial value representation to study the quantum dynamics. We also give a comprehensive comparison of the most widely used coherent state based methods. Starting from the fully variational coherent states method, after a first approximation, the coupled coherent states method can be derived, whereas an additional approximation leads to the semiclassical Herman-Kluk method. We numerically compare the different methods with another one, based on a static rectangular grid of coherent states, by applying all of them to the revival dynamics in a one-dimensional Morse oscillator, with a special focus on the number of basis states (for the coupled coherent states and Herman-Kluk methods the number of classical trajectories) needed for convergence.
We also extend the Husimi (coherent state) based version of linearized semiclassical theories for the calculation of correlation functions to the case of survival probabilities. This is a case that could be dealt with before only by use of the Wigner version of linearized semiclassical theory. Numerical comparisons of the Husimi and the Wigner case with full quantum results as well as with full semiclassical ones is given for the revival dynamics in a Morse oscillator with and without coupling to an additional harmonic degree of freedom. From this, we see the quantum to classical transition of the system dynamics due to the coupling to the environment (bath harmonic oscillator), which then can lead ultimately to our final goal of thermalization for long-time dynamics. In regard to thermalization in quantum systems, we address the following questions--- is it enough to increase the interaction strength between the different degrees of freedom in order to fully develop chaos which is the classical prerequisite for thermalization, or if, in addition, the number of those degrees of freedom has to be increased (possibly all the way to the thermodynamic limit) in order to observe thermalization.
We study the ``toppling pencil'' model, i.e., an excited initial state on top of the barrier of a symmetric quartic double well to investigate thermalization. We apply the method of coupled coherent states to study the long-time dynamics of this system. We investigate if the coupling of the central quartic double well to a finite, environmental bath of harmonic oscillators in their ground states will let the central system evolve towards its uncoupled ground state. This amounts to thermalization i.e., a cooling down to the bath ``temperature'' (strictly only defined in the thermodynamic limit) of the central system.
It is shown that thermalization can be achieved in finite quantum system with continuous variables using coherent state-based methods to solve the time-dependent Schr\'odinger equation. Also, here we witness thermalization by coupling the system to a bath of only few oscillators (less than ten), which until now has been seen for more than ten to twenty bath oscillators.
|
4 |
Theory of nonlinear polarization spectroscopy in the frequency domain (NLPF) with applications to photosynthetic antennaeBeenken, Wichard Johann Daniel 21 November 2003 (has links)
In der vorliegenden Arbeit wird eine einheitliche und allumfassende Theorie der Nicht-linearen Polarisationsspektroskopie in der Frequenzdomäne (NLPF) aufgestellt. Dies Methode basiert auf der in einer isotropen Farbstofflösung durch ein polarisiertes, monochromatisches Laserfeldes (pump) erzeugten Anisotropie, die mittels eines weiteren monochromatischen Laserfeldes (probe), mit einer um 45° gegenüber dem Pumpfeld gedrehten Polarisationsrichtung geprobt wird. Ausgehend von den grundlegenden Gleichungen für den nichtlinearen Respons molekularer Systeme auf elektromagnetische Felder wird das zweidimensional NLPF-spektrum hergeleitet, und zwar sowohl in der niedrigsten Ordnung Störungstheorie als auch unter Verwendung eines selbstkonsistenten Ansatzes für beliebige Pumpfeldstärken. In der niedrigsten Ordnung Störungstheorie können drei in ihrer Frequenzabhängigkeit sich unterscheidende Arten von Ausdrücke explizit angegeben werden. Diese sind drei Areten von Peaks im NLPF-spektrum zuzuordnen: Den T2-peaks, dem T1-peaks und den Zweiphotonen-peaks. Letztere sind unter Normalbedingungen im allgemeinen nicht beobachtbar und wurden daher nicht weiter behandelt. Die in dieser Arbeit erstmals gelungene, allgemeine und einheitliche theoretische Beschreibung der T1- und T2-peaks in NLPF-spektren von Mehrniveausystemen stellt einen Durchbruch hin zu einer allumfassenden Subbandenanalyse mittels NLPF dar. Durch Einbeziehung der teilweise bereits bekannten Auswirkungen homogener und inhomogener Linienverbreiterung und spektraler Diffusion auf NLPF-spektren, sowie deren Verallgemeinerung im Ramen der Theorie nichtmarkowscher Dissipationsprozesse, konnte eine Methodik entwickelt werden, die es erlaubt, NLPF-spektren molekularer und supramolekularer Systeme in Bezug auf das ihnen zugrundeliegende Termschema mit Übergangsfrequenzen und -dipolen, die homogenen und inhomogenen Linienbreiten, sowie dem zugeordneten Energierelaxations- und -transferpfad mitsamt zugehörigen Raten zu analysieren. Die in dieser Arbeit vorgestellte und über frühere rudimentäre Ansätze weit hinausgehende Theorie der NLPF bei starken Pumpfeldern, die auf einem selbstkonsistenten Ansatz für den Fourier-transformierten statistischen Operator beruhen, eröffnet ein komplett neues Feld von Anwendungen der NLPF. Für Zweiniveausysteme konnten die selbstkonsistenten Gleichung vollständig analytisch gelöst werden. Dabei konnten die Querverbindungen zur nichtlinearen Absorption und zum optischen Starkeffekt aufgezeigt werden. Aus der resultierenden Sättigungskurve für das NLPF-signal kann die Sättigungsintensität mit hoher Genauigkeit bestimmt werden. Diese kann unter Heranziehen der aus Analyse des T1-peaks bei niedrigen Intensitäten gewonnen Energierelaxationsrate und der analog aus T2-peakanalyse erhaltenen homogenen Linienbreite zur Bestimmung der Dipolstärke des Übergangs ohne Bestimmung der Farbstoffkonzentration verwendet werden. Dies erweist sich insbesondere bei der Analyse molekularer Aggregation als vorteilhaft. Durch Abbildung auf das gelöste Zweiniveauproblem konnte die Methodik auch auf spezielle Mehrniveausysteme übertragen werden. Eine analytische Lösung für allgemeine Mehrniveausysteme scheiterte jedoch an der komplizierten Orientierungsmittelung über die isotrope Verteilung der Übergangsdipole. Beide oben beschriebenen Methoden, Subbandanalyse bei niedrigen und Bestimmung der Übergangsdipolstärke bei hohen Pumpintensitäten, wurden in der vorliegenden Arbeit zur Untersuchung der Natur der angeregten Zustände in photosynthetischen Antennen von Purpurbakterien und höheren Pflanzen eingesetzt. Für die periphere lichtsammelnde Antenne LH2 des Purpurbakteriums Rhodobacter sphaeroides ergab die T2-peakanalyse der B850-absorptionsbande überraschenderweise zwei Subbanden, die im Absorptionsspektrum selbst bei tiefsten Temperaturen nicht aufzufinden gewesen wären. Eine Erklärung für die in Bezug auf die Oszilatorstärke asymmetrische Aufspaltung der B850-bande konnte allerdings nicht gefunden werden. Für den LH2 des sehr ähnliche Purpurbakterium Rhodospirillium molischianum konnte keine Aufspaltung der B850-bande festgestellt werden. Vielmehr liegt eine überwiegend homogen verbreiterte Bande mit einer homogener Linienbreite (FWHM) von 474±10 cm-1 und einem oberen limit für die inhomogene Linienbreite von 120 cm-1 vor. Daher wurde Rhodospirillium molischianum ausgewählt, um Delokalisation der Anregung im B850-aggregat mittels pumpintensitätsabhängiger NLPF zu untersuchen. Die Frage nach der Delokalisationslänge im B850-aggregat gab und gibt teilweise immer noch Anlass zu hitzigen Debatten. Das Ergebnis einer Ausdehnung der Anregung über 3-4 Bakteriochlorophylle des B850-aggregats der vorliegenden Arbeit unterstützt die aus Exciton-Exciton gewonnen Resultate. Weder eine vollständig lokalisierte noch vollständig delokalisierte Beschreibung war mit dem hier präsentierten Ergebnis in Übereinstimmung zu bringen. Auch im Hauptlichtsammelkomplex höherer Pflanzen LHC II konnte mittels pumpintensitätsabhängiger NLPF-spektren Delokalisation der Anregung über mindestens ein Chlì¥Á / In the work be presented a standard theory of non-linear polarization spectroscopy in the frequency domain (NLPF) will be established. The NLPF technique based on anisotropy induced in a dye-solution, which is isotropic elsewhere, by a polarized monochromatic pump laser field. This is probed by a second laser field, which polarization direction is turned of 45 degree in respect to that of the pump. From the fundamental equations describing the non-linear response of molecular systems on electromagnetic fields, the two-dimensional NLPF spectrum is deduced for arbitrary pump-intensities. At low pump-intensities a subband analysis by NLPF has been established. This allows one to study the term scheme and energy relaxation path of molecular and supra-molecular systems by their NLPF-spectra. This includes the determination of transition-frequencies and -dipole orientations, homogeneous and inhomogeneous linewidths, as well as energy relaxation rates. Furthermore, using a self-connsistent approach, the pump-fieled dependence of the NLPF-spectrum has been deduced for the two-level system in general and also for specific multi-level systems. This method allows one to determine the oscillator strength without knowledge of the concentration, what is quite useful for studying molecular aggregates. Applications are presented to the peripheral light harvesting antenna LH2 of purple bacteria and the light harvesting complexes LHC II and CP 29 of higher plants.
|
5 |
Numerical studies of electron transfer in systems with dissipationKondov, Ivan Stelyianov 04 February 2003 (has links) (PDF)
Diese Dissertation befasst sich mit Modellrechnungen zur Dynamik vom photoinduzierten Elektrontransfer und Exzitontransfer in Systemen mit vielen Freiheitsgraden. Außerdem trägt diese Arbeit zu einigen theoretischen und numerischen Aspekten der Redfield-Theorie bei. Betrachtet werden der ultraschnelle Elektrontransfer im Farbstoff Betain-30, die Elektroninjektion von einem Chromophormolekül ins Leitungsband von einem Halbleiter, sowie die Exziton-Ausbreitung in einem modellhaften ringförmigen System mit 18 Lokalisierungszentren.
Zuerst wird der Einfluss der elektronischen Kopplung auf die Dissipationsterme der Redfield-Gleichung untersucht. Es wird gezeigt, dass bei bestimmten Potenzialkonfigurationen die Vernachlässigung der elektronischen Kopplung (die soganannte diabatische Dämpfungsnäherung) dazu führt, dass das System nicht in das thermische Gleichgewicht mit dem Wärmebad relaxiert. Jedoch verliert diese Näherung ihre Gültigkeit nicht für kleine elektronische Kopplung in einer ganzen Reihe von Fällen, z.B. im Marcus-invertierten Bereich. Die Transfermechanismen, welche jenseits dieser Näherung auftreten, werden mit Hilfe der Störungstheorie erster Ordnung in der elektronischen Kopplung detailliert untersucht. Weiterhin werden direkte Verfahren zur genauen numerischen Lösung zeitlokaler Mastergleichungen implementiert und getestet. Die Effizienz dieser Methoden wird am Beispiel von einem eindimensionalen Elektrontransfer-Modell bestimmt. Desweiteren wird noch ein neues stochastisches Verfahren zur Propagation von Dichtematrizen entwickelt und in den Simulationen verwendet. Der ultraschnelle photoinduzierte Elektrontransfer in Betain-30 wird sowohl mit einer einzelnen Reaktionsmode als auch mit zwei Reaktionsmoden modelliert. Anhand der reduzierten Dichtematrix lässt sich die Gesamtpolarisation berechnen und somit ist es möglich, ein Pump-Probe-Experiment zu simulieren. Die Rechenergebnisse werden mit experimentellen Daten verglichen.
|
6 |
Numerical studies of electron transfer in systems with dissipationKondov, Ivan Stelyianov 31 January 2003 (has links)
Diese Dissertation befasst sich mit Modellrechnungen zur Dynamik vom photoinduzierten Elektrontransfer und Exzitontransfer in Systemen mit vielen Freiheitsgraden. Außerdem trägt diese Arbeit zu einigen theoretischen und numerischen Aspekten der Redfield-Theorie bei. Betrachtet werden der ultraschnelle Elektrontransfer im Farbstoff Betain-30, die Elektroninjektion von einem Chromophormolekül ins Leitungsband von einem Halbleiter, sowie die Exziton-Ausbreitung in einem modellhaften ringförmigen System mit 18 Lokalisierungszentren.
Zuerst wird der Einfluss der elektronischen Kopplung auf die Dissipationsterme der Redfield-Gleichung untersucht. Es wird gezeigt, dass bei bestimmten Potenzialkonfigurationen die Vernachlässigung der elektronischen Kopplung (die soganannte diabatische Dämpfungsnäherung) dazu führt, dass das System nicht in das thermische Gleichgewicht mit dem Wärmebad relaxiert. Jedoch verliert diese Näherung ihre Gültigkeit nicht für kleine elektronische Kopplung in einer ganzen Reihe von Fällen, z.B. im Marcus-invertierten Bereich. Die Transfermechanismen, welche jenseits dieser Näherung auftreten, werden mit Hilfe der Störungstheorie erster Ordnung in der elektronischen Kopplung detailliert untersucht. Weiterhin werden direkte Verfahren zur genauen numerischen Lösung zeitlokaler Mastergleichungen implementiert und getestet. Die Effizienz dieser Methoden wird am Beispiel von einem eindimensionalen Elektrontransfer-Modell bestimmt. Desweiteren wird noch ein neues stochastisches Verfahren zur Propagation von Dichtematrizen entwickelt und in den Simulationen verwendet. Der ultraschnelle photoinduzierte Elektrontransfer in Betain-30 wird sowohl mit einer einzelnen Reaktionsmode als auch mit zwei Reaktionsmoden modelliert. Anhand der reduzierten Dichtematrix lässt sich die Gesamtpolarisation berechnen und somit ist es möglich, ein Pump-Probe-Experiment zu simulieren. Die Rechenergebnisse werden mit experimentellen Daten verglichen.
|
Page generated in 0.0773 seconds