• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • Tagged with
  • 11
  • 11
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncertainty Quantification of Thermo-acousticinstabilities in gas turbine combustors / Quantification des incertitudes pour la prédiction des instabilités thermo-acoustiques dans les chambres de combustion

Ndiaye, Aïssatou 18 April 2017 (has links)
Les instabilités thermo-acoustiques résultent de l'interaction entre les oscillations de pression acoustique et les fluctuations du taux de dégagement de chaleur de la flamme. Ces instabilités de combustion sont particulièrement préoccupantes en raison de leur fréquence dans les turbines à gaz modernes et à faible émission. Leurs principaux effets indésirables sont une réduction du temps de fonctionnement du moteur en raison des oscillations de grandes amplitudes ainsi que de fortes vibrations à l'intérieur de la chambre de combustion. La simulation numérique est maintenant devenue une approche clé pour comprendre et prédire ces instabilités dans la phase de conception industrielle. Cependant, la prédiction de ce phénomène reste difficile en raison de sa complexité; cela se confirme lorsque les paramètres physiques du processus de modélisation sont incertains, ce qui est pratiquement toujours le cas pour des systèmes réels.Introduire la quantification des incertitudes pour la thermo-acoustique est le seul moyen d'étudier et de contrôler la stabilité des chambres de combustion qui fonctionnent dans des conditions réalistes; c'est l'objectif de cette thèse.Dans un premier temps, une chambre de combustion académique (avec un seul injecteur et une seule flamme) ainsi que deux chambres de moteurs d'hélicoptère (avec N injecteurs et des flammes) sont étudiés. Les calculs basés sur un solveur de Helmholtz et un outil quasi-analytique de bas ordre fournissent des estimations appropriées de la fréquence et des structures modales pour chaque géométrie. L'analyse suggère que la réponse de la flamme aux perturbations acoustiques joue un rôle prédominant dans la dynamique de la chambre de combustion. Ainsi, la prise en compte des incertitudes liées à la représentation de la flamme apparaît comme une étape nécessaire vers une analyse robuste de la stabilité du système.Dans un second temps, la notion de facteur de risque, c'est-à-dire la probabilité pour un mode thermo-acoustique d'être instable, est introduite afin de fournir une description plus générale du système que la classification classique et binaire (stable / instable). Les approches de modélisation de Monte Carlo et de modèle de substitution sont associées pour effectuer une analyse de quantification d'incertitudes de la chambre de combustion académique avec deux paramètres incertains (amplitude et temps de réponse de la flamme). On montre que l'utilisation de modèles de substitution algébriques réduit drastiquement le nombre de calculs initiales, donc la charge de calcul, tout en fournissant des estimations précises du facteur de risque modal. Pour traiter les problèmes multidimensionnel tels que les deux moteurs d'hélicoptère, une stratégie visant à réduire le nombre de paramètres incertains est introduite. La méthode <<Active Subspace>> combinée à une approche de changement de variables a permis d'identifier trois directions dominantes (au lieu des N paramètres incertains initiaux) qui suffisent à décrire la dynamique des deux systèmes industriels. Dès lors que ces paramètres dominants sont associés à des modèles de substitution appropriés, cela permet de réaliser efficacement une analyse de quantification des incertitudes de systèmes thermo-acoustiques complexes.Finalement, on examine la perspective d'utiliser la méthode adjointe pour analyser la sensibilité des systèmes thermo-acoustiques représentés par des solveurs 3D de Helmholtz. Les résultats obtenus sur des cas tests 2D et 3D sont prometteurs et suggèrent d'explorer davantage le potentiel de cette méthode dans le cas de problèmes thermo-acoustiques encore plus complexes. / Thermoacoustic instabilities result from the interaction between acoustic pressure oscillations and flame heat release rate fluctuations. These combustion instabilities are of particular concern due to their frequent occurrence in modern, low emission gas turbine engines. Their major undesirable consequence is a reduced time of operation due to large amplitude oscillations of the flame position and structural vibrations within the combustor. Computational Fluid Dynamics (CFD) has now become one a key approach to understand and predict these instabilities at industrial readiness level. Still, predicting this phenomenon remains difficult due to modelling and computational challenges; this is even more true when physical parameters of the modelling process are uncertain, which is always the case in practical situations. Introducing Uncertainty Quantification for thermoacoustics is the only way to study and control the stability of gas turbine combustors operated under realistic conditions; this is the objective of this work.First, a laboratory-scale combustor (with only one injector and flame) as well as two industrial helicopter engines (with N injectors and flames) are investigated. Calculations based on a Helmholtz solver and quasi analytical low order tool provide suitable estimates of the frequency and modal structures for each geometry. The analysis suggests that the flame response to acoustic perturbations plays the predominant role in the dynamics of the combustor. Accounting for the uncertainties of the flame representation is thus identified as a key step towards a robust stability analysis.Second, the notion of Risk Factor, that is to say the probability for a particular thermoacoustic mode to be unstable, is introduced in order to provide a more general description of the system than the classical binary (stable/unstable) classification. Monte Carlo and surrogate modelling approaches are then combined to perform an uncertainty quantification analysis of the laboratory-scale combustor with two uncertain parameters (amplitude and time delay of the flame response). It is shown that the use of algebraic surrogate models reduces drastically the number of state computations, thus the computational load, while providing accurate estimates of the modal risk factor. To deal with the curse of dimensionality, a strategy to reduce the number of uncertain parameters is further introduced in order to properly handle the two industrial helicopter engines. The active subspace algorithm used together with a change of variables allows identifying three dominant directions (instead of N initial uncertain parameters) which are sufficient to describe the dynamics of the industrial systems. Combined with appropriate surrogate models construction, this allows to conduct computationally efficient uncertainty quantification analysis of complex thermoacoustic systems.Third, the perspective of using adjoint method for the sensitivity analysis of thermoacoustic systems represented by 3D Helmholtz solvers is examined. The results obtained for 2D and 3D test cases are promising and suggest to further explore the potential of this method on even more complex thermoacoustic problems.
2

Résolution de problème inverse et propagation d'incertitudes : application à la dynamique des gaz compressibles / Inverse problem and uncertainty quantification : application to compressible gas dynamics

Birolleau, Alexandre 30 April 2014 (has links)
Cette thèse porte sur la propagation d'incertitudes et la résolution de problème inverse et leur accélération par Chaos Polynomial. L'objectif est de faire un état de l'art et une analyse numérique des méthodes spectrales de type Chaos Polynomial, d'en comprendre les avantages et les inconvénients afin de l'appliquer à l'étude probabiliste d'instabilités hydrodynamiques dans des expériences de tubes à choc de type Richtmyer-Meshkov. Le second chapitre fait un état de l'art illustré sur plusieurs exemples des méthodes de type Chaos Polynomial. Nous y effectuons son analyse numérique et mettons en évidence la possibilité d'améliorer la méthode, notamment sur des solutions irrégulières (en ayant en tête les difficultés liées aux problèmes hydrodynamiques), en introduisant le Chaos Polynomial généralisé itératif. Ce chapitre comporte également l'analyse numérique complète de cette nouvelle méthode. Le chapitre 3 a fait l'objet d'une publication dans Communication in Computational Physics, celle-ci a récemment été acceptée. Il fait l'état de l'art des méthodes d'inversion probabilistes et focalise sur l'inférence bayesienne. Il traite enfin de la possibilité d'accélérer la convergence de cette inférence en utilisant les méthodes spectrales décrites au chapitre précédent. La convergence théorique de la méthode d'accélération est démontrée et illustrée sur différents cas-test. Nous appliquons les méthodes et algorithmes des deux chapitres précédents à un problème complexe et ambitieux, un écoulement de gaz compressible physiquement instable (configuration tube à choc de Richtmyer-Meshkov) avec une analyse poussée des phénomènes physico-numériques en jeu. Enfin en annexe, nous présentons quelques pistes de recherche supplémentaires rapidement abordées au cours de cette thèse. / This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developping shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis.
3

Inversion de modèles probabilistes de structures à partir de fonctions<br />de transfert expérimentales

Arnst, Maarten 03 April 2007 (has links) (PDF)
L'objectif de la thèse est de développer une méthodologie d'identification expérimentale de modèles probabilistes qui prédisent le comportement dynamique de structures. Nous focalisons en particulier sur l'inversion de modèles probabilistes à paramétrage minimal, introduits par Soize, à partir de fonctions de transfert expérimentales. Nous montrons d'abord que les méthodes classiques d'estimation de la théorie des statistiques mathématiques, telle que la méthode du maximum de vraisemblance, ne sont pas bien adaptées pour aborder ce problème. En particulier, nous montrons que des difficultés numériques, ainsi que des problèmes conceptuels dus au risque d'une mauvaise spécification des modèles, peuvent entraver l'application des méthodes classiques. Ces difficultés nous motivent à formuler l'inversion de modèles probabilistes alternativement comme la minimisation, par rapport aux paramètres recherchés, d'une fonction objectif, mesurant une distance entre les données expérimentales et le modèle probabiliste. Nous proposons deux principes de construction pour la définition de telles distances, basé soit sur la fonction de logvraisemblance, soit l'entropie relative. Nous montrons comment la limitation de ces distances aux lois marginales d'ordre bas permet de surmonter les difficultés mentionnées plus haut. La méthodologie est appliquée à des exemples avec des données simulées et à un problème en ingénierie civile et environnementale avec des mesures réelles.
4

Uncertainty quantification and calibration of a photovoltaic plant model : warranty of performance and robust estimation of the long-term production. / Quantification des incertitudes et calage d'un modèle de centrale photovoltaïque : garantie de performance et estimation robuste de la production long-terme

Carmassi, Mathieu 21 December 2018 (has links)
Les difficultés de mise en œuvre d'expériences de terrain ou de laboratoire, ainsi que les coûts associés, conduisent les sociétés industrielles à se tourner vers des codes numériques de calcul. Ces codes, censés être représentatifs des phénomènes physiques en jeu, entraînent néanmoins tout un cortège de problèmes. Le premier de ces problèmes provient de la volonté de prédire la réalité à partir d'un modèle informatique. En effet, le code doit être représentatif du phénomène et, par conséquent, être capable de simuler des données proches de la réalité. Or, malgré le constant développement du réalisme de ces codes, des erreurs de prédiction subsistent. Elles sont de deux natures différentes. La première provient de la différence entre le phénomène physique et les valeurs relevées expérimentalement. La deuxième concerne l'écart entre le code développé et le phénomène physique. Pour diminuer cet écart, souvent qualifié de biais ou d'erreur de modèle, les développeurs complexifient en général les codes, les rendant très chronophages dans certains cas. De plus, le code dépend de paramètres à fixer par l'utilisateur qui doivent être choisis pour correspondre au mieux aux données de terrain. L'estimation de ces paramètres propres au code s'appelle le calage. Cette thèse propose dans un premier temps une revue des méthodes statistiques nécessaires à la compréhension du calage Bayésien. Ensuite, une revue des principales méthodes de calage est présentée accompagnée d'un exemple comparatif basé sur un code de calcul servant à prédire la puissance d'une centrale photovoltaïque. Le package appelé CaliCo qui permet de réaliser un calage rapide de beaucoup de codes numériques est alors présenté. Enfin, un cas d'étude réel d'une grande centrale photovoltaïque sera introduit et le calage réalisé pour effectuer un suivi de performance de la centrale. Ce cas de code industriel particulier introduit des spécificités de calage numériques qui seront abordées et deux modèles statistiques y seront exposés. / Field experiments are often difficult and expensive to make. To bypass these issues, industrial companies have developed computational codes. These codes intend to be representative of the physical system, but come with a certain amount of problems. The code intends to be as close as possible to the physical system. It turns out that, despite continuous code development, the difference between the code outputs and experiments can remain significant. Two kinds of uncertainties are observed. The first one comes from the difference between the physical phenomenon and the values recorded experimentally. The second concerns the gap between the code and the physical system. To reduce this difference, often named model bias, discrepancy, or model error, computer codes are generally complexified in order to make them more realistic. These improvements lead to time consuming codes. Moreover, a code often depends on parameters to be set by the user to make the code as close as possible to field data. This estimation task is called calibration. This thesis first proposes a review of the statistical methods necessary to understand Bayesian calibration. Then, a review of the main calibration methods is presented with a comparative example based on a numerical code used to predict the power of a photovoltaic plant. The package called CaliCo which allows to quickly perform a Bayesian calibration on a lot of numerical codes is then presented. Finally, a real case study of a large photovoltaic power plant will be introduced and the calibration carried out as part of a performance monitoring framework. This particular case of industrial code introduces numerical calibration specificities that will be discussed with two statistical models.
5

Fiabilité et évaluation des incertitudes pour la simulation numérique de la turbulence : application aux machines hydrauliques / Reliability and uncertainty assessment for the numerical simulation of turbulence : application to hydraulic machines

Brugière, Olivier 14 January 2015 (has links)
La simulation numérique fiable des performances de turbines hydrauliques suppose : i) de pouvoir inclure dans les calculs RANS (Reynolds-Averaged Navier-Stokes) traditionnellement mis en œuvre l'effet des incertitudes qui existent en pratique sur les conditions d'entrée de l'écoulement; ii) de pouvoir faire appel à une stratégie de type SGE (Simulation des Grandes Echelles) pour améliorer la description des effets de la turbulence lorsque des écarts subsistent entre calculs RANS et résultats d'essai de référence même après prise en compte des incertitudes. Les présents travaux mettent en oeuvre une démarche non intrusive de quantification d'incertitude (NISP pour Non-Intrusive Spectral Projection) pour deux configurations d'intérêt pratique : un distributeur de turbine Francis avec débit et angle d'entrée incertains et un aspirateur de turbine bulbe avec conditions d'entrée (profils de vitesse,en particulier en proche paroi, et grandeurs turbulentes) incertaines. L'approche NISP est utilisée non seulement pour estimer la valeur moyenne et la variance de quantités d'intérêt mais également pour disposer d'une analyse de la variance qui permet d'identifier les incertitudes les plus influentes. Les simulations RANS, vérifiées par une démarche de convergence en maillage, ne permettent pas pour la plupart des configurations analysées d'expliquer les écarts calcul / expérience grâce à la prise en compte des incertitudes d'entrée.Nous mettons donc également en ouvre des simulations SGE en faisant appel à une stratégie originale d'évaluation de la qualité des maillages utilisés dans le cadre d'une démarche de vérification des calculs SGE. Pour une majorité des configurations analysées, la combinaison d'une stratégie SGE et d'une démarche de quantification des incertitudes permet de produire des résultats numériques fiables. La prise en compte des incertitudes d'entrée permet également de proposer une démarche d'optimisation robuste du distributeur de turbine Francis étudié. / The reliable numerical simulation of hydraulic turbines performance requires : i) to includeinto the conventional RANS computations the effect of the uncertainties existing in practiceon the inflow conditions; ii) to rely on a LES (Large Eddy Simulation) strategy to improve thedescription of turbulence effects when discrepancies between RANS computations and experimentskeep arising even though uncertainties are taken into account. The present workapplies a non-intrusive Uncertainty Quantification strategy (NISP for Non-Intrusive SpectralProjection) to two configurations of practical interest : a Francis turbine distributor, with uncertaininlet flow rate and angle, and a draft-tube of a bulb-type turbine with uncertain inflowconditions (velocity distributions, in particular close to the wall boundaries, and turbulentquantities). The NISP method is not only used to compute the mean value and variance ofquantities of interest, it is also applied to perform an analysis of the variance and identify inthis way the most influential uncertainties. The RANS simulations, verified through a gridconvergence approach, are such the discrepancies between computation and experimentcannot be explained by taking into account the inflow uncertainties for most of the configurationsunder study. Therefore, LES simulations are also performed and these simulations areverified using an original methodology for assessing the quality of the computational grids(since the grid-convergence concept is not relevant for LES). For most of the flows understudy, combining a SGE strategy with a UQ approach yields reliable numerical results. Takinginto account inflow uncertainties also allows to propose a robust optimization strategy forthe Francis turbine distributor under study.
6

Résolution de problème inverse et propagation d'incertitudes : application à la dynamique des gaz compressibles

Birolleau, Alexandre 30 April 2014 (has links) (PDF)
Cette thèse porte sur la propagation d'incertitudes et la résolution de problème inverse et leur accélération par Chaos Polynomial. L'objectif est de faire un état de l'art et une analyse numérique des méthodes spectrales de type Chaos Polynomial, d'en comprendre les avantages et les inconvénients afin de l'appliquer à l'étude probabiliste d'instabilités hydrodynamiques dans des expériences de tubes à choc de type Richtmyer-Meshkov. Le second chapitre fait un état de l'art illustré sur plusieurs exemples des méthodes de type Chaos Polynomial. Nous y effectuons son analyse numérique et mettons en évidence la possibilité d'améliorer la méthode, notamment sur des solutions irrégulières (en ayant en tête les difficultés liées aux problèmes hydrodynamiques), en introduisant le Chaos Polynomial généralisé itératif. Ce chapitre comporte également l'analyse numérique complète de cette nouvelle méthode. Le chapitre 3 a fait l'objet d'une publication dans Communication in Computational Physics, celle-ci a récemment été acceptée. Il fait l'état de l'art des méthodes d'inversion probabilistes et focalise sur l'inférence bayesienne. Il traite enfin de la possibilité d'accélérer la convergence de cette inférence en utilisant les méthodes spectrales décrites au chapitre précédent. La convergence théorique de la méthode d'accélération est démontrée et illustrée sur différents cas-test. Nous appliquons les méthodes et algorithmes des deux chapitres précédents à un problème complexe et ambitieux, un écoulement de gaz compressible physiquement instable (configuration tube à choc de Richtmyer-Meshkov) avec une analyse poussée des phénomènes physico-numériques en jeu. Enfin en annexe, nous présentons quelques pistes de recherche supplémentaires rapidement abordées au cours de cette thèse.
7

Fiabilité et évaluation des incertitudes pour la simulation numérique de la turbulence : application aux machines hydrauliques / Reliability and uncertainty assessment for the numerical simulation of turbulence : application to hydraulic machines

Brugière, Olivier 14 January 2015 (has links)
La simulation numérique fiable des performances de turbines hydrauliques suppose : i) de pouvoir inclure dans les calculs RANS (Reynolds-Averaged Navier-Stokes) traditionnellement mis en œuvre l'effet des incertitudes qui existent en pratique sur les conditions d'entrée de l'écoulement; ii) de pouvoir faire appel à une stratégie de type SGE (Simulation des Grandes Echelles) pour améliorer la description des effets de la turbulence lorsque des écarts subsistent entre calculs RANS et résultats d'essai de référence même après prise en compte des incertitudes. Les présents travaux mettent en oeuvre une démarche non intrusive de quantification d'incertitude (NISP pour Non-Intrusive Spectral Projection) pour deux configurations d'intérêt pratique : un distributeur de turbine Francis avec débit et angle d'entrée incertains et un aspirateur de turbine bulbe avec conditions d'entrée (profils de vitesse,en particulier en proche paroi, et grandeurs turbulentes) incertaines. L'approche NISP est utilisée non seulement pour estimer la valeur moyenne et la variance de quantités d'intérêt mais également pour disposer d'une analyse de la variance qui permet d'identifier les incertitudes les plus influentes. Les simulations RANS, vérifiées par une démarche de convergence en maillage, ne permettent pas pour la plupart des configurations analysées d'expliquer les écarts calcul / expérience grâce à la prise en compte des incertitudes d'entrée.Nous mettons donc également en ouvre des simulations SGE en faisant appel à une stratégie originale d'évaluation de la qualité des maillages utilisés dans le cadre d'une démarche de vérification des calculs SGE. Pour une majorité des configurations analysées, la combinaison d'une stratégie SGE et d'une démarche de quantification des incertitudes permet de produire des résultats numériques fiables. La prise en compte des incertitudes d'entrée permet également de proposer une démarche d'optimisation robuste du distributeur de turbine Francis étudié. / The reliable numerical simulation of hydraulic turbines performance requires : i) to includeinto the conventional RANS computations the effect of the uncertainties existing in practiceon the inflow conditions; ii) to rely on a LES (Large Eddy Simulation) strategy to improve thedescription of turbulence effects when discrepancies between RANS computations and experimentskeep arising even though uncertainties are taken into account. The present workapplies a non-intrusive Uncertainty Quantification strategy (NISP for Non-Intrusive SpectralProjection) to two configurations of practical interest : a Francis turbine distributor, with uncertaininlet flow rate and angle, and a draft-tube of a bulb-type turbine with uncertain inflowconditions (velocity distributions, in particular close to the wall boundaries, and turbulentquantities). The NISP method is not only used to compute the mean value and variance ofquantities of interest, it is also applied to perform an analysis of the variance and identify inthis way the most influential uncertainties. The RANS simulations, verified through a gridconvergence approach, are such the discrepancies between computation and experimentcannot be explained by taking into account the inflow uncertainties for most of the configurationsunder study. Therefore, LES simulations are also performed and these simulations areverified using an original methodology for assessing the quality of the computational grids(since the grid-convergence concept is not relevant for LES). For most of the flows understudy, combining a SGE strategy with a UQ approach yields reliable numerical results. Takinginto account inflow uncertainties also allows to propose a robust optimization strategy forthe Francis turbine distributor under study.
8

Simulation en présence d'incertitude d'un gazosiphon de grande échelle. Application à l'optimisation d'un nouveau système géothermique urbain / Simulation of a large-scale airlift pump taking into account uncertainties. Application to the optimization of a new urban geothermal system

Monmarson, Bastien 22 October 2015 (has links)
Cette thèse s’inscrit dans le cadre du projet ANR « Uncertain flow optimization » (UFO) consacré au développement et à l’application de méthodes efficaces de quantification d’incertitudes pour l’analyse et l’optimisation d’écoulements. Dans ce contexte, ces méthodes sont appliquées à des gazosiphons de grande échelle utilisés comme pompe. Plus particulièrement, on s’intéresse à de tels gazosiphons choisis pour constituer l’organe central d’un système géothermique innovant,  compatible avec un environnement urbain. On souhaite en quantifier le potentiel énergétique par voie numérique avec la recherche d’un compromis entre justesse des résultats et efficacité optimale. La simulation de l’écoulement diphasique produit dans le gazosiphon est fondée sur un modèle quasi-1D à flux de dérive et s’appuie sur une démarche de résolution implicite. Les résultats sont validés sur les études expérimentales les plus pertinents de la littérature, dont aucune toutefois n’atteint les longueurs requises de l'ordre du kilomètre. Le code de simulation du gazosiphon fait ensuite l’objet d’une démarche de prise en compte d’incertitudes physiques et de modélisation, précédée par une analyse de deux méthodes de quantification d’incertitude : une méthode non-intrusive de type chaos polynomial, et une méthode plus récente dite semi-intrusive qui fut développée en amont du projet UFO. Cet outil est intégré dans une modélisation simplifiée du système géothermique urbain dans son ensemble impliquant les composants en surface, notamment le compresseur d'air. Il en résulte une optimisation énergétique robuste préliminaire de deux variantes du système géothermique urbain proposé, respectivement de récupération de chaleur et de production d’électricité. / This PhD thesis is part of the ANR project « Uncertain Flow Optimization » (UFO). The project is devoted to the development and application of efficient uncertainty quantification methods for flow analysis and optimization. In this framework, these methods are applied to the study of a large-scale airlift pump. The airlift pump is selected to be part of an innovative geothermal system, which can be exploited within an urban environment. We wish to quantify and optimize the energy potential of this new system with numerical tools. They provide both good accuracy and efficiency properties. The airlift two-phase flow simulation is based on a quasi one-dimensional drift flux model, which is implicitly solved. The solver is validated by comparison with relevant experimental airlift studies from the literature. However, these studies remain below the kilometric-targeted pipe length. Thanks to the analysis of two uncertainty quantification methods, a non-intrusive approach relying on polynomial chaos expansion and a new semi-intrusive method developed ahead of the UFO project, we perform airlift pump simulations taking into account physical and modelling uncertainties. This numerical tool is inserted into a simplified model of the complete urban geothermal system that involves surface devices, such as an air compressor. Finally, a robust preliminary optimization process is performed for two versions of the proposed geothermal urban system. They are designed respectively for heat recovery and electricity production.
9

Etude de l'impact des incertitudes dans l'évaluation du risque NRBC provoqué en zone urbaine / A study on the impact of uncertainties in the risk assessment of CBRN scenarios in urban areas

Margheri, Luca 13 November 2015 (has links)
La dispersion d'agents biologiques hautement pathogène dans une zone urbanisée après un acte terroriste est l'une des situations que les agences de sécurité nationales ont besoin d'évaluer en termes des risques et de la prise de décision. La simulation numérique des écoulements turbulents dans les zones urbaines, y compris la surveillance de la dispersion des polluants, a atteint un niveau de maturité suffisant pour faire des prédictions sur les zones urbaines réalistes jusqu'à 4 km2. Les simulations existantes sont déterministes dans le sens que tous les paramètres qui définissent le cas étudié (l'intensité et la direction du vent, la stratification atmosphérique, l'emplacement de la source des émissions, etc.) devraient être bien connu. Cette précision ne peut être atteint dans la pratique en raison d'un manque de connaissances sur la source d'émissions et de l'incertitude aléatoire intrinsèque des conditions météorologiques.Pour augmenter la contribution de la simulation numérique pour l'évaluation des risques et la prise de décision, il est essentiel de mesurer quantitativement l'impact d'un manque de connaissances en termes de résolution spatiale et temporelle des zones de danger.L'objet de cette thèse est d'appliquer des méthodes de quantification d'incertitude pour quantifier l'impact de ces incertitudes dans l'évaluation des zones de danger à moyenne portée dans des scénarios de dispersion de gaz toxiques. Une méthode hybride c-ANOVA et POD/Krigeage permet d'envisager jusqu'à 5 paramètres incertains dans une simulation 3D-CFD haute fidélité non-stationnaire de la dispersion d'un gaz toxique provenant d'une source type flaque dans une zone urbaine de 1km2. / The dispersion of highly pathogenic biological agents in an urbanized area following a terrorist act is one of the situations that national security agencies need to evaluate in terms of risk assessment and decision-making. The numerical simulation of turbulent flows in urban areas, including monitoring the dispersion of pollutants, has reached a sufficient level of maturity to make predictions on realistic urban zones up to 4 square kilometers. However, the existing simulations are deterministic in the sense that all the parameters that define the case studied (intensity and wind direction, atmospheric stratification, source of emissions location, quantity of injected toxic agent, etc.) should be well known. Such precision cannot be achieved in practice due to a lack of knowledge about the source of emission and the intrinsic aleatoric uncertainty of the meteorological conditions. To significantly increase the contribution of numerical simulation for risk assessment and decision-making, it is essential to quantitatively measure the impact of a lack of knowledge especially in terms of spatial and temporal resolution of the danger zones. The object of this thesis is to apply uncertainty quantification methods to quantify the impact of these uncertainties in the evaluation of the danger zones in medium range toxic gas dispersion scenarios. A hybrid method merging c-ANOVA and POD/Kriging allows to consider up to 5 uncertain parameters in a high-fidelity unsteady 3D-CFD simulation of the dispersion of a toxic gas from a pond-like source in an urban area of 1km2.
10

Stratégies numériques innovantes pour l’assimilation de données par inférence bayésienne / Development of innovative numerical strategies for Bayesian data assimilation

Rubio, Paul-Baptiste 15 October 2019 (has links)
Ce travail se place dans le cadre de l'assimilation de données en mécanique des structures. Il vise à développer de nouveaux outils numériques pour l'assimilation de données robuste et en temps réel afin d'être utilisés dans diverses activités d'ingénierie. Une activité cible est la mise en œuvre d'applications DDDAS (Dynamic Data Driven Application System) dans lesquelles un échange continu entre les outils de simulation et les mesures expérimentales est requis dans le but de créer une boucle de contrôle rétroactive sur des systèmes mécaniques connectés. Dans ce contexte, et afin de prendre en compte les différentes sources d'incertitude (erreur de modélisation, bruit de mesure,...), une méthodologie stochastique puissante est considérée dans le cadre général de l’inférence bayésienne. Cependant, un inconvénient bien connu d'une telle approche est la complexité informatique qu’elle engendre et qui rend les simulations en temps réel et l'assimilation séquentielle des données difficiles.Le travail de thèse propose donc de coupler l'inférence bayésienne avec des techniques numériques attrayantes et avancées afin d'envisager l’assimilation stochastique de données de façon séquentielle et en temps réel. Premièrement, la réduction de modèle PGD est introduite pour faciliter le calcul de la fonction de vraisemblance, la propagation des incertitudes dans des modèles complexes et l'échantillonnage de la densité a posteriori. Ensuite, l'échantillonnage par la méthode des Transport Maps est étudiée comme un substitut aux procédures classiques MCMC pour l'échantillonnage de la densité a posteriori. Il est démontré que cette technique conduit à des calculs déterministes, avec des critères de convergence clairs, et qu'elle est particulièrement adaptée à l'assimilation séquentielle de données. Là encore, l'utilisation de la réduction de modèle PGD facilite grandement le processus en utilisant les informations des gradients et hessiens d'une manière simple. Enfin, et pour accroître la robustesse, la correction à la volée du biais du modèle est abordée à l'aide de termes d'enrichissement fondés sur les données. Aussi, la sélection des données les plus pertinentes pour l’objectif d’assimilation est abordée.Cette méthodologie globale est appliquée et illustrée sur plusieurs applications académiques et réelles, comprenant par exemple le recalage en temps réel de modèles pour le contrôle des procédés de soudage, ou l’étude d'essais mécaniques impliquant des structures endommageables en béton instrumentées par mesures de champs. / The work is placed into the framework of data assimilation in structural mechanics. It aims at developing new numerical tools in order to permit real-time and robust data assimilation that could then be used in various engineering activities. A specific targeted activity is the implementation of DDDAS (Dynamic Data Driven Application System) applications in which a continuous exchange between simulation tools and experimental measurements is envisioned to the end of creating retroactive control loops on mechanical systems. In this context, and in order to take various uncertainty sources (modeling error, measurement noise,..) into account, a powerful and general stochastic methodology with Bayesian inference is considered. However, a well-known drawback of such an approach is the computational complexity which makes real-time simulations and sequential assimilation some difficult tasks.The PhD work thus proposes to couple Bayesian inference with attractive and advanced numerical techniques so that real-time and sequential assimilation can be envisioned. First, PGD model reduction is introduced to facilitate the computation of the likelihood function, uncertainty propagation through complex models, and the sampling of the posterior density. Then, Transport Map sampling is investigated as a substitute to classical MCMC procedures for posterior sampling. It is shown that this technique leads to deterministic computations, with clear convergence criteria, and that it is particularly suited to sequential data assimilation. Here again, the use of PGD model reduction highly facilitates the process by recovering gradient and Hessian information in a straightforward manner. Eventually, and to increase robustness, on-the-fly correction of model bias is addressed using data-based enrichment terms.The overall cost-effective methodology is applied and illustrated on several academic and real-life test cases, including for instance the real-time updating of models for the control of welding processes, or that of mechanical tests involving damageable concrete structures with full-field measurements.

Page generated in 0.1275 seconds