• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 40
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Quantized Crystal Plasticity Model for Nanocrystalline Metals: Connecting Atomistic Simulations and Physical Experiments

Li, Lin 21 March 2011 (has links)
No description available.
12

On-line Calibration of Instrument Transformers Using Synchrophasor Measurements

Chatterjee, Paroma 04 February 2016 (has links)
The world of power systems is ever changing; ever evolving. One such evolution was the advent of Phasor Measurement Units (PMUs). With the introduction of PMUs in the field, power system monitoring and control changed for the better. Innovative and efficient algorithms that used synchrophasors came to be written. To make these algorithms robust, it became necessary to remove errors that crept into the power system with time and usage. Thus the process of calibration became essential when practical decisions started being made based on PMU measurements. In the context of this thesis ‘calibration’ is the method used to estimate a correction factor which, when multiplied with the respective measurement, negates the effect of any errors that might have crept into them due to the instrument transformers located at the inputs of a PMU or the PMU device itself. Though this thesis mainly deals with the calibration of instrument transformers, work has been done previously for calibrating other components of a power system. A brief description of those methods have been provided along with a history on instrument transformer calibration. Three new methodologies for instrument transformer calibration have been discussed in details in this thesis. The first method describes how only voltage transformers can be calibrated by placing optimal number of good quality voltage measurements at strategic locations in the grid, in presence of ratio errors in the instrument transformers and Gaussian errors in the PMUs. The second method provides a way to calibrate all instrument transformers (both current and voltage) in presence of only one good quality voltage measurement located at the end of a tie-line. This method assumes that all the instrument transformers have ratio errors and the PMUs have quantization errors. The third method attains the same objective as the second one, with the additional constraint that the data obtained from the field may be contaminated. Thus, the third method shows how calibration of all the instrument transformers can be done with data that is intermittent and is therefore, the most practical approach (of the three) for instrument transformer calibration. / Master of Science
13

Identification of breathing cracks in a beam structure with entropy

Senake Ralalage, Buddhi Wimarshana 14 September 2016 (has links)
During vibration of engineering structures, fatigue cracks may exhibit repetitive crack open-close breathing like phenomenon. In this thesis, the concept of entropy is employed to quantify this bi-linearity/irregularity of the vibration response so as to evaluate crack severity. To increase the sensitivity of the entropy calculation to detect the damage severity, entropy is merged with wavelet transformation (WT). A cantilever beam with a breathing crack is studied to asses proposed crack identification method under two vibration conditions: sinusoidal and random excitations. Through numerical simulations and experimental testing, the breathing crack identification under sinusoidal excitation is studied first and proven to be effective. Then, the crack identification sensitivity under lower excitation frequencies is further improved by parametric optimization of sample entropy and WT. Finally, breathing crack identification under general random excitations are experimentally studied and realized using frequency response functions (FRFs) as an add-in tool with the proposed crack identification technique. / October 2016
14

State Estimation with Unconventional and Networked Measurements

Duan, Zhansheng 14 May 2010 (has links)
This dissertation consists of two main parts. One is about state estimation with two types of unconventional measurements and the other is about two types of network-induced state estimation problems. The two types of unconventional measurements considered are noise-free measurements and set measurements. State estimation with them has numerous real supports. For state estimation with noisy and noise-free measurements, two sequential forms of the batch linear minimum mean-squared error (LMMSE) estimator are obtained to reduce the computational complexity. Inspired by the estimation with quantized measurements developed by Curry [28], under a Gaussian assumption, the minimum mean-squared error (MMSE) state estimator with point measurements and set measurements of any shape is proposed by discretizing continuous set measurements. State estimation under constraints, which are special cases of the more general framework, has some interesting properties. It is found that under certain conditions, although constraints are indispensable in the evolution of the state, update by treating them as measurements is redundant in filtering. The two types of network-induced estimation problems considered are optimal state estimation in the presence of multiple packet dropouts and optimal distributed estimation fusion with transformed data. An alternative form of LMMSE estimation in the presence of multiple packet dropouts, which can overcome the shortcomings of two existing ones, is proposed first. Then under a Gaussian assumption, the MMSE estimation is also obtained based on a hard decision by comparing the measurements at two consecutive time instants. It is pointed out that if this comparison is legitimate, our simple MMSE solution largely nullifies existing work on this problem. By taking linear transformation of the raw measurements received by each sensor, two optimal distributed fusion algorithms are proposed. In terms of optimality, communication and computational requirements, three nice properties make them attractive.
15

Quantum turbulence and multicharged vortices in trapped atomic superfluids / Turbulência quântica e vórtices multicarregados em superfluidos atômicos aprisionados

Santos, André Cidrim 22 November 2017 (has links)
In this thesis, we numerically investigate quantum turbulence in trapped atomic Bose-Einstein condensates (BECs). We first discuss the appropriate qualitative characterization of turbulence in these systems, showing the limitation of analogies with classical hydrodynamics and turbulence in large superfluid Helium experiments. Due to their lack of available length scales, our investigated systems can only fit the ultraquantum (or Vinen) type of quantum turbulence. Secondly, we propose experimentally feasible schemes for more controlled investigations of turbulence making use of dynamical instability of multicharged vortices as an onset for complex vortex dynamics. In two dimensions, our suggested scheme allows control over vortex polarization in the harmonically trapped system. This setup is then used to study how turbulence decays in such a scenario, through the phenomenological modeling of a vortex-number rate equation. As a consequence, we were able to identify that vortex annihilation in these trapped systems happens through a four-vortex process. For three dimensions, we have first provided a study on the decay of a quadruply-charged vortex, also in a harmonically trapped BEC. Having this setting as a comparison point, we propose a quasi-isotropic turbulent system, starting from a phase-imprinted initial state of two doubly-charged, anti-parallel vortices. The vortex turbulence arisen from such configuration was shown to agree with the Vinen turbulent regime, after we characterized specific features of its decay, such as the energy spectrum [E(k) ∼ k1] and the time evolution of the vortex-line density [L(t) ∼ t1]. Although these features have been frequently verified in the context of superfluid Helium turbulence, here this identification was for the first time done for realistic, trapped atomic BECs. / Nesta tese, investigamos numericamente a turbulência quântica em condensados de Bose- Einstein (BECs) aprisionados. Discutimos, inicialmente, a caracterização qualitativa apropriada para estes sistemas, mostrando a limitação de analogias tipicamente feitas com hidrodinâmica clássica e turbulência em grandes sistemas com Hélio superfluido. Devido às suas limitadas escalas espaciais, os sistemas investigados somente podem exibir o tipo de turbulência conhecida como ultra-quântica (ou de Vinen). Em seguida, propomos sistemas experimentalmente factíveis que permitem investigações mais controladas da turbulência, fazendo uso da instabilidade dinâmica de vórtices multi-carregados como ponto de partida para geração de dinâmicas complexas. Em duas dimensões, nossa proposta permite controle sobre a polarização de vórtices em sistemas aprisionados em potencial harmônico. Este arranjo é então utilizado no estudo do decaimento da turbulência nesse contexto, através de um modelo fenomenológico para equação que descreve a taxa de variação do número de vórtices. Como consequência, pudemos verificar que a aniquilação de vórtices dá-se através de um processo que envolve quatro vórtices. Em três dimensões, apresentamos um estudo do decaimento de um vórtice de carga topológica quatro, também em potencial harmônico. Mantendo em mente esse sistema a título de comparação, propomos um cenário turbulento, quase-isotrópico, partindo de um estado inicial formado por dois vórtices duplamente carregados, mas orientados anti-paralelamente. Verificamos que a turbulência decorrente desse arranjo coincide com a regime de Vinen analisando características do seu decaimento, especificamente obtendo o espectro de energia [E(k) ∼ k1] e evolução temporal da densidade de linhas de vórtices [L(t) ∼ t1]. Apesar de que essas características são comumente encontradas no contexto de Hélio superfluido, apresentamos pela primeira vez essa identificação no cenário realístico de BEC aprisionados.
16

Quantum turbulence and multicharged vortices in trapped atomic superfluids / Turbulência quântica e vórtices multicarregados em superfluidos atômicos aprisionados

André Cidrim Santos 22 November 2017 (has links)
In this thesis, we numerically investigate quantum turbulence in trapped atomic Bose-Einstein condensates (BECs). We first discuss the appropriate qualitative characterization of turbulence in these systems, showing the limitation of analogies with classical hydrodynamics and turbulence in large superfluid Helium experiments. Due to their lack of available length scales, our investigated systems can only fit the ultraquantum (or Vinen) type of quantum turbulence. Secondly, we propose experimentally feasible schemes for more controlled investigations of turbulence making use of dynamical instability of multicharged vortices as an onset for complex vortex dynamics. In two dimensions, our suggested scheme allows control over vortex polarization in the harmonically trapped system. This setup is then used to study how turbulence decays in such a scenario, through the phenomenological modeling of a vortex-number rate equation. As a consequence, we were able to identify that vortex annihilation in these trapped systems happens through a four-vortex process. For three dimensions, we have first provided a study on the decay of a quadruply-charged vortex, also in a harmonically trapped BEC. Having this setting as a comparison point, we propose a quasi-isotropic turbulent system, starting from a phase-imprinted initial state of two doubly-charged, anti-parallel vortices. The vortex turbulence arisen from such configuration was shown to agree with the Vinen turbulent regime, after we characterized specific features of its decay, such as the energy spectrum [E(k) ∼ k1] and the time evolution of the vortex-line density [L(t) ∼ t1]. Although these features have been frequently verified in the context of superfluid Helium turbulence, here this identification was for the first time done for realistic, trapped atomic BECs. / Nesta tese, investigamos numericamente a turbulência quântica em condensados de Bose- Einstein (BECs) aprisionados. Discutimos, inicialmente, a caracterização qualitativa apropriada para estes sistemas, mostrando a limitação de analogias tipicamente feitas com hidrodinâmica clássica e turbulência em grandes sistemas com Hélio superfluido. Devido às suas limitadas escalas espaciais, os sistemas investigados somente podem exibir o tipo de turbulência conhecida como ultra-quântica (ou de Vinen). Em seguida, propomos sistemas experimentalmente factíveis que permitem investigações mais controladas da turbulência, fazendo uso da instabilidade dinâmica de vórtices multi-carregados como ponto de partida para geração de dinâmicas complexas. Em duas dimensões, nossa proposta permite controle sobre a polarização de vórtices em sistemas aprisionados em potencial harmônico. Este arranjo é então utilizado no estudo do decaimento da turbulência nesse contexto, através de um modelo fenomenológico para equação que descreve a taxa de variação do número de vórtices. Como consequência, pudemos verificar que a aniquilação de vórtices dá-se através de um processo que envolve quatro vórtices. Em três dimensões, apresentamos um estudo do decaimento de um vórtice de carga topológica quatro, também em potencial harmônico. Mantendo em mente esse sistema a título de comparação, propomos um cenário turbulento, quase-isotrópico, partindo de um estado inicial formado por dois vórtices duplamente carregados, mas orientados anti-paralelamente. Verificamos que a turbulência decorrente desse arranjo coincide com a regime de Vinen analisando características do seu decaimento, especificamente obtendo o espectro de energia [E(k) ∼ k1] e evolução temporal da densidade de linhas de vórtices [L(t) ∼ t1]. Apesar de que essas características são comumente encontradas no contexto de Hélio superfluido, apresentamos pela primeira vez essa identificação no cenário realístico de BEC aprisionados.
17

Target localization using RSS measurements in wireless sensor networks

Li, Zeyuan January 2018 (has links)
The subject of this thesis is the development of localization algorithms for target localization in wireless sensor networks using received signal strength (RSS) measurements or Quantized RSS (QRSS) measurements. In chapter 3 of the thesis, target localization using RSS measurements is investigated. Many existing works on RSS localization assumes that the shadowing components are uncorrelated. However, here, shadowing is assumed to be spatially correlated. It can be shown that localization accuracy can be improved with the consideration of correlation between pairs of RSS measurements. By linearizing the corresponding Maximum Likelihood (ML) objective function, a weighted least squares (WLS) algorithm is formulated to obtain the target location. An iterative technique based on Newtons method is utilized to give a solution. Numerical simulations show that the proposed algorithms achieves better performance than existing algorithms with reasonable complexity. In chapter 4, target localization with an unknown path loss model parameter is investigated. Most published work estimates location and these parameters jointly using iterative methods with a good initialization of path loss exponent (PLE). To avoid finding an initialization, a global optimization algorithm, particle swarm optimization (PSO) is employed to optimize the ML objective function. By combining PSO with a consensus algorithm, the centralized estimation problem is extended to a distributed version so that can be implemented in distributed WSN. Although suboptimal, the distributed approach is very suitable for implementation in real sensor networks, as it is scalable, robust against changing of network topology and requires only local communication. Numerical simulations show that the accuracy of centralized PSO can attain the Cramer Rao Lower Bound (CRLB). Also, as expected, there is some degradation in performance of the distributed PSO with respect to the centralized PSO. In chapter 5, a distributed gradient algorithm for RSS based target localization using only quantized data is proposed. The ML of the Quantized RSS is derived and PSO is used to provide an initial estimate for the gradient algorithm. A practical quantization threshold designer is presented for RSS data. To derive a distributed algorithm using only the quantized signal, the local estimate at each node is also quantized. The RSS measurements and the local estimate at each sensor node are quantized in different ways. By using a quantization elimination scheme, a quantized distributed gradient method is proposed. In the distributed algorithm, the quantization noise in the local estimate is gradually eliminated with each iteration. Simulations show that the performance of the centralized algorithm can reach the CRLB. The proposed distributed algorithm using a small number of bits can achieve the performance of the distributed gradient algorithm using unquantized data.
18

Robust Speed Control of Brushless DC Motor Drive Using Quantized Current Regulator

Chan, Wei-Chun 24 August 2009 (has links)
Based on sliding-mode control theory, this thesis proposes an integrated design of robust speed controller and quantized current regulator to achieve the control of inverter for BLDC motor. Moreover, using Digital Signal Processor (DSP) as well as the proposed inverter technology as the control kernel, a fully digital drive module of Brushless DC motor (BLDC) is robustly designed to achieve the high-performance speed control. Under the influence of system disturbances, the designed drive module can obtain a good tracking response for speed and current control. According to the simulation and experimental studies, the proposed hybrid control strategy can simultaneously achieve the objective for the speed and current control of BLDC motor. Compared with traditional pulse-width modulation (PWM) based PID control, the better speed control performance can be conducted by the provided approach.
19

Thermoelectric Effects In Mesoscopic Physics

Cipiloglu, Mustafa Ali 01 January 2004 (has links) (PDF)
The electrical and thermal conductance and the Seebeck coefficient are calculated for one-dimensional systems, and their behavior as a function of temperature and chemical potential is investigated. It is shown that the conductances are proportional to an average of the transmission probability around the Fermi level with the average taken for the thermal conductance being over a wider range. This has the effect of creating less well-defined plateaus for thermal-conductance quantization experiments. For weak non-linearities, the charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. Also, it is shown that the linear thermal conductance of a quantum point contact displays a half-plateau structure, almost flat regions appearing around half-integer multiples of the conductance quantum. This structure is investigated for the saddle-potential model.
20

Efficient Simulation and Rendering of Sub-surface Scattering

Tsirikoglou, Apostolia January 2013 (has links)
In this thesis, a new improved V-Ray subsurface scattering shader based on the improved diffusion theory is proposed. The new shader supports the better dipole and the quantized diffusion reflectance model for layered translucent materials. These new implemented models build on previous diffusion BSSRDFs and in the case of quantized diffusion uses an extended source function for the material layer. One of the main contributions and significant improvement over V-Ray’s existing subsurface scattering shader is the front and back subsurface scattering separation. This was achieved by dividing the illumination map that is used to calculate each shading’s point color, in two parts: the front part that comes of front lighting and the back one that comes of back lighting. Thus, the subsurface scattering layer can be divided in its consisting parts and each of them can be controlled, weighted and used independently. Finally, the project’s outcome is a new V-Ray material that provides all the above improvements in an intuitive, practical and efficient shader with several intuitive algorithm and light map controls, where artists can create subsurface scattering effects through three subsurface scattering layers.

Page generated in 0.0639 seconds