Spelling suggestions: "subject:"quasieindimensionale"" "subject:"quasieindimensionalen""
1 |
Untersuchung metallischer und isolierender amorpher Materialien mit StreumethodenLöser, André 19 September 2005 (has links) (PDF)
In dieser Arbeit wurden elektronische Transporteigenschaften
ungeordneter metallischer und isolierender Materialien untersucht.
Es wurde gezeigt, dass die zugrunde liegende Vielfachstreumethode für Schichten (LKKR) auch
auf isolierende Materialien angewendet werden kann.
Als isolierendes Material wurde amorphes Silizium gewählt.
Für die Strukturmodellierung wurde ein spezieller RMC-Algorithmus für Netzwerke entwickelt.
Um eine Lücke in der elektronischen Zustandsdichte zu erhalten,
wurden diese Strukturen anschließend mit einer MD-Methode relaxiert.
Zur Charakterisierung der dabei auftretenden mittelreichweitigen Strukturänderungen wurde
ein analytisches Modell des Strukturfaktors aufgestellt.
Die Verbindung zwischen elektronischen und strukturellen Defekten beim Übergang von den
metallischen Ausgangsnetzwerken zu den isolierenden amorphen Siliziumstrukturen wurde untersucht.
Die Winkelschwankung, unterkoordinierte Siliziumatome und ein spezieller topologischer Defekt
wurden als Ursache für elektronische Defekte bei der Fermienergie identifiziert.
Für die Widerstandsberechnung wurde vom Stromfluss durch einen quasi-eindimensionalen
Draht ausgegangen (Landauer-Büttiker-Ansatz).
Für ein stark streuendes Modellsystem (amorphes Eisen) wurde gezeigt, dass dieser Ansatz auch bei
kohärenter Vielfachstreuung einen längenproportionalen Widerstand
für kleine Drahtlängen liefert.
Für metallische Materialien kann die Leitfähigkeit aus der Längenabhängigkeit des
Drahtwiderstandes bestimmt werden.
Zwei Erweiterungen dieses Landauer-Büttiker-Ansatzes
für eine unvollständige Berechnung der kohärenten Streuung wurden in dieser Arbeit abgeleitet.
Der direkte Einfluss der Struktur für schwache Streuer wurde in Einfachstreunäherung untersucht.
Im Grenzfall eines Mediums führt die abgeleitete Leitwertformel auf die Zimanformel für den
spezifischen Widerstand.
Die Widerstandsberechnung wurde außerdem auf inkohärente Streuung erweitert,
so dass auch für isolierende
Materialien eine Leitfähigkeit bestimmt werden kann.
Im Gegensatz zu ungeordneten Metallen verschwindet die Leitfähigkeit
bei verschwindender inkohärenter Streuung, so dass
metallische und isolierende Materialien unterschieden werden können.
Der unordnungsinduzierte Metall-Isolator-Übergang (Anderson-Übergang) wurde für amorphes
Nickelsilizid betrachtet.
%Die bestimmte kritische Nickelkonzentration liegt wegen der
%im Vergleich zu amorphen Silizium fehlenden Relaxierung der Strukturen
%unterhalb experimenteller Werte.
Wegen des geringen Querschnitts der Drähte tritt metallisches und isolierendes Verhalten parallel
auf.
Die notwendige Mittelung führt zu einer abnehmenden Leitfähigkeit
bei abnehmender inkohärenter Streuung auch für metallische Proben. Dieses Verhalten wird in
dreidimensionalen Systemen mit schwacher Lokalisierung in Verbindung gebracht.
|
2 |
Untersuchung metallischer und isolierender amorpher Materialien mit StreumethodenLöser, André 01 August 2005 (has links)
In dieser Arbeit wurden elektronische Transporteigenschaften
ungeordneter metallischer und isolierender Materialien untersucht.
Es wurde gezeigt, dass die zugrunde liegende Vielfachstreumethode für Schichten (LKKR) auch
auf isolierende Materialien angewendet werden kann.
Als isolierendes Material wurde amorphes Silizium gewählt.
Für die Strukturmodellierung wurde ein spezieller RMC-Algorithmus für Netzwerke entwickelt.
Um eine Lücke in der elektronischen Zustandsdichte zu erhalten,
wurden diese Strukturen anschließend mit einer MD-Methode relaxiert.
Zur Charakterisierung der dabei auftretenden mittelreichweitigen Strukturänderungen wurde
ein analytisches Modell des Strukturfaktors aufgestellt.
Die Verbindung zwischen elektronischen und strukturellen Defekten beim Übergang von den
metallischen Ausgangsnetzwerken zu den isolierenden amorphen Siliziumstrukturen wurde untersucht.
Die Winkelschwankung, unterkoordinierte Siliziumatome und ein spezieller topologischer Defekt
wurden als Ursache für elektronische Defekte bei der Fermienergie identifiziert.
Für die Widerstandsberechnung wurde vom Stromfluss durch einen quasi-eindimensionalen
Draht ausgegangen (Landauer-Büttiker-Ansatz).
Für ein stark streuendes Modellsystem (amorphes Eisen) wurde gezeigt, dass dieser Ansatz auch bei
kohärenter Vielfachstreuung einen längenproportionalen Widerstand
für kleine Drahtlängen liefert.
Für metallische Materialien kann die Leitfähigkeit aus der Längenabhängigkeit des
Drahtwiderstandes bestimmt werden.
Zwei Erweiterungen dieses Landauer-Büttiker-Ansatzes
für eine unvollständige Berechnung der kohärenten Streuung wurden in dieser Arbeit abgeleitet.
Der direkte Einfluss der Struktur für schwache Streuer wurde in Einfachstreunäherung untersucht.
Im Grenzfall eines Mediums führt die abgeleitete Leitwertformel auf die Zimanformel für den
spezifischen Widerstand.
Die Widerstandsberechnung wurde außerdem auf inkohärente Streuung erweitert,
so dass auch für isolierende
Materialien eine Leitfähigkeit bestimmt werden kann.
Im Gegensatz zu ungeordneten Metallen verschwindet die Leitfähigkeit
bei verschwindender inkohärenter Streuung, so dass
metallische und isolierende Materialien unterschieden werden können.
Der unordnungsinduzierte Metall-Isolator-Übergang (Anderson-Übergang) wurde für amorphes
Nickelsilizid betrachtet.
%Die bestimmte kritische Nickelkonzentration liegt wegen der
%im Vergleich zu amorphen Silizium fehlenden Relaxierung der Strukturen
%unterhalb experimenteller Werte.
Wegen des geringen Querschnitts der Drähte tritt metallisches und isolierendes Verhalten parallel
auf.
Die notwendige Mittelung führt zu einer abnehmenden Leitfähigkeit
bei abnehmender inkohärenter Streuung auch für metallische Proben. Dieses Verhalten wird in
dreidimensionalen Systemen mit schwacher Lokalisierung in Verbindung gebracht.
|
3 |
Ultrafast Dynamics in Quasi-One-Dimensional Organic Molecular Crystals / Self-Assembled Monolayers of Photochromic Molecules / Ultraschnelle Dynamik in quasi-eindimensionalen organischen Molekülkristallen / Selbst-assemblierte Monoschichten photochromer MoleküleCanzler, Tobias W. 16 September 2002 (has links) (PDF)
Der erste Teil der Arbeit beschäftigt sich mit ultraschnellen Relaxationsprozessen in quasi-eindimensionalen organischen Molekülkristallen. Als Modellsystem wird das Perylenderivat MePTCDI untersucht. Mit verschiedenen Methoden der optischen Ultrakurzzeit-Spektroskopie werden Prozesse der Exzitonen- und Phononenrelaxation in der Zeit-Domäne untersucht. Die dafür aufgebauten Experimente erreichen eine Zeitauflösung von 20 Femtosekunden. Durch optische Anregung der niedrigsten elektronischen Übergänge werden in einem organischen Molekülkristall freie Exzitonen mit Wellenvektor k=0 gebildet. Dabei werden gleichzeitig zahlreiche intramolekulare und intermolekulare Schwingungsfreiheitsgrade angeregt. Die Anregung mit fs-Laserpulsen führt zum Aufbau kohärenter Schwingungswellenpakete. Es werden sowohl hochenergetische Oszillationen intramolekularer Vibrationen beobachtet, als auch erstmalig niedrigenergetische Oszillationen, die von Gittervibrationen (Phononen) stammen. Die kohärenten Vibrationen im elektronischen Grundzustand klingen bei Raumtemperatur im Bereich einiger Pikosekunden ab. Durch die optische Anregung mit fs-Laserpulsen wird nicht nur phononische Kohärenz, sondern auch elektronische Kohärenz der optischen Übergänge induziert. Die elektronische Kohärenz klingt mit der Dephasierungszeit T2 ab. Trotz der hohen Zeitauflösung war es letztendlich nicht möglich, die Dephasierung des niedrigsten exzitonischen Übergangs zeitlich aufzulösen - sie liegt jedoch im Bereich 17fs < T2 < 52fs. Die energetische Relaxation der freien Exzitonen zu den relaxierten, emittierenden Exzitonenzuständen erfolgt mit einer Zeitkonstante von ca. 50fs. Von diesen relaxierten Zuständen erfolgt die energetische Abregung in den elektronischen Grundzustand im ns-Bereich. Im zweiten Teil der Arbeit werden Untersuchungen an selbst-assemblierten Monoschichten (SAM) photochromer Moleküle vorgestellt. Als Modellsystem dienen Azobenzen-funktionalisierte Thiole auf Gold (111). Es konnten hochgeordnete Monoschichten dieser photochromen Moleküle erzielt werden, allerdings sind die bisherigen Schichten aufgrund der dichten Packung nicht photoaktivierbar. Mit Hilfe von Raster-Mikroskopie und Infrarot-Spektroskopie werden diese ultradünnen Schichten strukturell untersucht. Es wird ein kommensurates Wachstum mit zwei Molekülen in der nahezu rechteckigen Einheitszelle beobachtet, wobei die laubbaumförmigen Moleküle nahezu senkrecht auf der Oberfläche stehen. Als weitere Methode wurde die Generation der zweiten Harmonischen (Second Harmonic Generation, SHG) angewendet. Diese Technik eröffnet prinzipiell die Möglichkeit, photostimuliertes Schalten der Schicht zeitaufgelöst zu untersuchen. / The first part of this thesis is devoted to ultrafast relaxation processes in quasi-one-dimensional organic molecular crystals. Crystalline samples of the perylene derivative MePTCDI are employed as a model system. Processes concerning the excitonic and phononic relaxation are investigated in time domain using various experimental techniques of optical ultrafast spectroscopy. The experimental setups attain a time-resolution of 20 femtoseconds. Free excitons at wavevector k=0 are formed in a molecular crystal by optical excitation of the lowest electronic transitions. Thereby, various intramolecular and intermolecular vibrational degrees of freedom are excited simultaneously. The excitation by fs-laser pulses results in the composition of coherent vibrational wave packets. Both, higher-energetic oscillations caused by intramolecular vibrations (internal phonons) and, for the first time in a quasi-one-dimensional organic system, lower-energetic modulations which are related to coherent lattice phonons (external phonons) are observed. The coherence of both types of phonons in the electronic ground state is damped at room temperature within a few ps. Besides phononic coherence, optical excitation by fs-laser pulses additionally induces electronic coherence of the optical transitions. The electronic coherence decays with the dephasing time T2. In spite of the high time-resolution, finally it was not possible to time resolve the dephasing of the lowest excitonic transition - however, we can estimated it to be in the range of 17fs < T2 < 52fs. The energetic relaxation of free excitons to the relaxed, emitting exciton states takes place with a time constant of approx. 50fs. The subsequent energetic relaxation to the electronic ground state occurs on a ns-time scale. In the second part, investigations of self-assembled monolayers (SAM) of photochromic molecules are presented. Azobenzene-functionalized thiols on gold (111) are employed as a model system. Highly ordered monolayers of these photochromic molecules could be realized. However, these layers are not photoactive because of dense packing. By use of scanning tunneling microscopy and infra-red spectroscopy the structural properties of these ultrathin layers are investigated. A commensurate growth, yielding a lattice with two molecules within the nearly rectangular unit cell is observed. The molecules, shaped like a broad-leafed tree, are found to stand nearly upright on the surface. Second harmonic generation (SHG) is applied as another experimental method. This technique allows to time resolve photo-stimulated conformational changes of the layers in principle.
|
4 |
Electronic excited states in quasi- one- dimensional organic solids with strong coupling of Frenkel and charge-transfer excitons / Anregte elektronische Zustände in quasi-eindimensionalen organischen Festkörpern mit starker Kopplung zwischen Frenkel und Charge-Transfer ExzitonenSchmidt, Karin 26 February 2003 (has links) (PDF)
This work offers a concept to predict and comprehend the electronic excited states in regular aggregates formed of quasi-one-dimensional organic materials. The tight face-to-face stacking of the molecules justifies the idealization of the crystals and clusters as weakly interacting stacks with leading effects taking place within the columnar sub-structures. Thus, the concept of the small radius exciton theory in linear molecular chains was adopted to examine the excitonic states. The excited states are composed of molecular excitations and nearest neighbor charge transfer (CT) excitations. We analyzed the structure and properties of the excited states which result from the coupling of Frenkel and CT excitons of arbitrary strength in finite chains with idealized free ends. With the help of a partially analytical approach to determine the excitonic states of mixed Frenkel CT character by introducing a complex wave vector, two main types of states can be distinguished. The majority of states are bulk states with purely imaginary wavevector. The dispersion relation of these state matches exactly the dispersion relation known from the infinite chain. The internal structure of the excitons in infinite chains is directly transferred to the bulk states in finite chains. TAMM-like surface states belong to the second class of states. Owing to the damping mediated by a a non-vanishing real part of the wavevector, the wave function of the surface states is localized at the outermost molecules. The corresponding decay length is exclusively determined by the parameterization of the coupling and is independent of the system size. It can therefore be assigned as a characteristic quantum length which plays a vital role for the understanding of system-dependent behavior of the states. The number and type of surface states occurring is predicted for any arbitrary coupling situation. The different nature of bulk and surface states leads to distinct quantum confinement effects. Two regimes are distinguished. The first regime, the case of weak confinement, is realized if the chain length is larger than the intrinsic length. Both kinds of states arrange with the system size according to their nature. Derived from the excitonic states of the infinite chain, the bulk states preserve their quasi-particle character in these large systems. Considered as a quasi-particle confined in box, they change their energy with the system size according to the particle-in-a-box picture. The surface states do not react to a change of the chain length at all, since effectively only the outermost molecules contribute to the wavefunction. The second regime holds if the states are strongly confined, i.e., the system is smaller than the intrinsic length. Both types of states give up their typical behavior and adopt similar properties. / Diese Arbeit unterbreitet ein Konzept, um elektronische Anregungszustände in Aggregaten quasi-eindimensionaler organischer Materialien vorherzusagen und zu verstehen. Die dichte Packung der Moleküle rechtfertigt die Idealisierung der Kristalle bzw. Cluster als schwach wechselwirkende Stapel, wobei die führenden Effekte innerhalb der Molekülstapel zu erwarten sind. Zur Beschreibung der exzitonischen Zustände wurde das Konzept der 'small radius'-Exzitonen in linearen Molekülketten angewandt. Die elektronischen Zustände sind dabei aus molekularen (Frenkel) und nächsten Nachbarn 'charge-transfer' (CT) Anregungen zusammengesetzt. Die Struktur und Eigenschaften der Zustände wurden für beliebige Kopplungsstärken zwischen Frenkel- und CT Anregungen in Ketten mit idealisierten freien Enden für beliebiger Längen analysiert. Der entwickelte, überwiegend analytische Zugang, welcher auf der Einführung eines komplexen Wellenvektors beruht, ermöglicht die Unterscheidung zweier grundsätzlicher Zustandstypen. Die Mehrheit der Zustände sind Volumenzustände mit rein imaginärem Wellenvektor. Die zugehörige Dispersionsrelation entspricht exakt der Dispersionsrelation der unendlichen Kette mit äquivalenten Kopplungsverhältnissen. Die interne Struktur der Exzitonen der unendlichen Kette wird auf die Volumenzustände der endlichen Kette direkt übertragen. Der zweite grundlegende Zustandstyp umfaßt Tamm-artige Oberflächenzustände. Aufgrund der durch einen nichtverschwindenden reellen Anteil des Wellenvektors hervorgerufenen Dämpfung sind die Wellenfunktionen der Oberflächenzustände an den Randmolekülen lokalisiert. Die entsprechende Dämpfungslänge ist ausschließlich durch die Parametrisierung der Kopplungen bestimmt und ist somit unabhängig von der Kettenlänge. Sie kann daher als intrinische Quantenlänge interpretiert werden, welche von essentieller Bedeutung für das Verständnis systemgrößenabhängigen Verhaltens ist. Sowohl die Anzahl als auch die Art der Oberflächenzustände kann für jede Kopplungssituation vorhergesagt werden. Die unterschiedliche Natur der Volumen- und Oberflächenzustände führt auf ausgeprägte 'Quantum confinement' Effekte. Zwei Regime sind zu unterscheiden. Im Falle des ersten Regimes, dem schwachen 'Confinement', ist die Kettenlänge größer als die intrinsische Länge. Beide Zustandarten reagieren auf eine Veränderung der Kettenlänge gemäß ihrer Natur. Aufgrund ihrer Verwandschaft mit den Bandzuständen der unendlichen Kette bewahren die Volumenzustände ihren Quasiteilchen-Charakter. Aufgefaßt als Quasiteilchen, erfahren sie in endlichen Systemen eine energetische Verschiebung gemäß dem Potentialtopf-Modell. Oberflächenzustände zeigen keine Reaktion auf veränderte Kettenlängen, da effektiv nur die Randmoleküle zur Wellenfunktion beitragen. Es findet ein Übergang zum zweiten Regime (starkes 'Confinement') statt, sobald die Kettenlänge kleiner als intrinsische Quantenlänge wird. Beide Zustandsarten geben ihr typisches Verhalten auf und werden mit abnehmender Kettenlänge zunehmend ähnlicher.
|
5 |
Ultrafast Dynamics in Quasi-One-Dimensional Organic Molecular Crystals: Self-Assembled Monolayers of Photochromic MoleculesCanzler, Tobias W. 26 September 2002 (has links)
Der erste Teil der Arbeit beschäftigt sich mit ultraschnellen Relaxationsprozessen in quasi-eindimensionalen organischen Molekülkristallen. Als Modellsystem wird das Perylenderivat MePTCDI untersucht. Mit verschiedenen Methoden der optischen Ultrakurzzeit-Spektroskopie werden Prozesse der Exzitonen- und Phononenrelaxation in der Zeit-Domäne untersucht. Die dafür aufgebauten Experimente erreichen eine Zeitauflösung von 20 Femtosekunden. Durch optische Anregung der niedrigsten elektronischen Übergänge werden in einem organischen Molekülkristall freie Exzitonen mit Wellenvektor k=0 gebildet. Dabei werden gleichzeitig zahlreiche intramolekulare und intermolekulare Schwingungsfreiheitsgrade angeregt. Die Anregung mit fs-Laserpulsen führt zum Aufbau kohärenter Schwingungswellenpakete. Es werden sowohl hochenergetische Oszillationen intramolekularer Vibrationen beobachtet, als auch erstmalig niedrigenergetische Oszillationen, die von Gittervibrationen (Phononen) stammen. Die kohärenten Vibrationen im elektronischen Grundzustand klingen bei Raumtemperatur im Bereich einiger Pikosekunden ab. Durch die optische Anregung mit fs-Laserpulsen wird nicht nur phononische Kohärenz, sondern auch elektronische Kohärenz der optischen Übergänge induziert. Die elektronische Kohärenz klingt mit der Dephasierungszeit T2 ab. Trotz der hohen Zeitauflösung war es letztendlich nicht möglich, die Dephasierung des niedrigsten exzitonischen Übergangs zeitlich aufzulösen - sie liegt jedoch im Bereich 17fs < T2 < 52fs. Die energetische Relaxation der freien Exzitonen zu den relaxierten, emittierenden Exzitonenzuständen erfolgt mit einer Zeitkonstante von ca. 50fs. Von diesen relaxierten Zuständen erfolgt die energetische Abregung in den elektronischen Grundzustand im ns-Bereich. Im zweiten Teil der Arbeit werden Untersuchungen an selbst-assemblierten Monoschichten (SAM) photochromer Moleküle vorgestellt. Als Modellsystem dienen Azobenzen-funktionalisierte Thiole auf Gold (111). Es konnten hochgeordnete Monoschichten dieser photochromen Moleküle erzielt werden, allerdings sind die bisherigen Schichten aufgrund der dichten Packung nicht photoaktivierbar. Mit Hilfe von Raster-Mikroskopie und Infrarot-Spektroskopie werden diese ultradünnen Schichten strukturell untersucht. Es wird ein kommensurates Wachstum mit zwei Molekülen in der nahezu rechteckigen Einheitszelle beobachtet, wobei die laubbaumförmigen Moleküle nahezu senkrecht auf der Oberfläche stehen. Als weitere Methode wurde die Generation der zweiten Harmonischen (Second Harmonic Generation, SHG) angewendet. Diese Technik eröffnet prinzipiell die Möglichkeit, photostimuliertes Schalten der Schicht zeitaufgelöst zu untersuchen. / The first part of this thesis is devoted to ultrafast relaxation processes in quasi-one-dimensional organic molecular crystals. Crystalline samples of the perylene derivative MePTCDI are employed as a model system. Processes concerning the excitonic and phononic relaxation are investigated in time domain using various experimental techniques of optical ultrafast spectroscopy. The experimental setups attain a time-resolution of 20 femtoseconds. Free excitons at wavevector k=0 are formed in a molecular crystal by optical excitation of the lowest electronic transitions. Thereby, various intramolecular and intermolecular vibrational degrees of freedom are excited simultaneously. The excitation by fs-laser pulses results in the composition of coherent vibrational wave packets. Both, higher-energetic oscillations caused by intramolecular vibrations (internal phonons) and, for the first time in a quasi-one-dimensional organic system, lower-energetic modulations which are related to coherent lattice phonons (external phonons) are observed. The coherence of both types of phonons in the electronic ground state is damped at room temperature within a few ps. Besides phononic coherence, optical excitation by fs-laser pulses additionally induces electronic coherence of the optical transitions. The electronic coherence decays with the dephasing time T2. In spite of the high time-resolution, finally it was not possible to time resolve the dephasing of the lowest excitonic transition - however, we can estimated it to be in the range of 17fs < T2 < 52fs. The energetic relaxation of free excitons to the relaxed, emitting exciton states takes place with a time constant of approx. 50fs. The subsequent energetic relaxation to the electronic ground state occurs on a ns-time scale. In the second part, investigations of self-assembled monolayers (SAM) of photochromic molecules are presented. Azobenzene-functionalized thiols on gold (111) are employed as a model system. Highly ordered monolayers of these photochromic molecules could be realized. However, these layers are not photoactive because of dense packing. By use of scanning tunneling microscopy and infra-red spectroscopy the structural properties of these ultrathin layers are investigated. A commensurate growth, yielding a lattice with two molecules within the nearly rectangular unit cell is observed. The molecules, shaped like a broad-leafed tree, are found to stand nearly upright on the surface. Second harmonic generation (SHG) is applied as another experimental method. This technique allows to time resolve photo-stimulated conformational changes of the layers in principle.
|
6 |
Electronic excited states in quasi- one- dimensional organic solids with strong coupling of Frenkel and charge-transfer excitonsSchmidt, Karin 03 March 2003 (has links)
This work offers a concept to predict and comprehend the electronic excited states in regular aggregates formed of quasi-one-dimensional organic materials. The tight face-to-face stacking of the molecules justifies the idealization of the crystals and clusters as weakly interacting stacks with leading effects taking place within the columnar sub-structures. Thus, the concept of the small radius exciton theory in linear molecular chains was adopted to examine the excitonic states. The excited states are composed of molecular excitations and nearest neighbor charge transfer (CT) excitations. We analyzed the structure and properties of the excited states which result from the coupling of Frenkel and CT excitons of arbitrary strength in finite chains with idealized free ends. With the help of a partially analytical approach to determine the excitonic states of mixed Frenkel CT character by introducing a complex wave vector, two main types of states can be distinguished. The majority of states are bulk states with purely imaginary wavevector. The dispersion relation of these state matches exactly the dispersion relation known from the infinite chain. The internal structure of the excitons in infinite chains is directly transferred to the bulk states in finite chains. TAMM-like surface states belong to the second class of states. Owing to the damping mediated by a a non-vanishing real part of the wavevector, the wave function of the surface states is localized at the outermost molecules. The corresponding decay length is exclusively determined by the parameterization of the coupling and is independent of the system size. It can therefore be assigned as a characteristic quantum length which plays a vital role for the understanding of system-dependent behavior of the states. The number and type of surface states occurring is predicted for any arbitrary coupling situation. The different nature of bulk and surface states leads to distinct quantum confinement effects. Two regimes are distinguished. The first regime, the case of weak confinement, is realized if the chain length is larger than the intrinsic length. Both kinds of states arrange with the system size according to their nature. Derived from the excitonic states of the infinite chain, the bulk states preserve their quasi-particle character in these large systems. Considered as a quasi-particle confined in box, they change their energy with the system size according to the particle-in-a-box picture. The surface states do not react to a change of the chain length at all, since effectively only the outermost molecules contribute to the wavefunction. The second regime holds if the states are strongly confined, i.e., the system is smaller than the intrinsic length. Both types of states give up their typical behavior and adopt similar properties. / Diese Arbeit unterbreitet ein Konzept, um elektronische Anregungszustände in Aggregaten quasi-eindimensionaler organischer Materialien vorherzusagen und zu verstehen. Die dichte Packung der Moleküle rechtfertigt die Idealisierung der Kristalle bzw. Cluster als schwach wechselwirkende Stapel, wobei die führenden Effekte innerhalb der Molekülstapel zu erwarten sind. Zur Beschreibung der exzitonischen Zustände wurde das Konzept der 'small radius'-Exzitonen in linearen Molekülketten angewandt. Die elektronischen Zustände sind dabei aus molekularen (Frenkel) und nächsten Nachbarn 'charge-transfer' (CT) Anregungen zusammengesetzt. Die Struktur und Eigenschaften der Zustände wurden für beliebige Kopplungsstärken zwischen Frenkel- und CT Anregungen in Ketten mit idealisierten freien Enden für beliebiger Längen analysiert. Der entwickelte, überwiegend analytische Zugang, welcher auf der Einführung eines komplexen Wellenvektors beruht, ermöglicht die Unterscheidung zweier grundsätzlicher Zustandstypen. Die Mehrheit der Zustände sind Volumenzustände mit rein imaginärem Wellenvektor. Die zugehörige Dispersionsrelation entspricht exakt der Dispersionsrelation der unendlichen Kette mit äquivalenten Kopplungsverhältnissen. Die interne Struktur der Exzitonen der unendlichen Kette wird auf die Volumenzustände der endlichen Kette direkt übertragen. Der zweite grundlegende Zustandstyp umfaßt Tamm-artige Oberflächenzustände. Aufgrund der durch einen nichtverschwindenden reellen Anteil des Wellenvektors hervorgerufenen Dämpfung sind die Wellenfunktionen der Oberflächenzustände an den Randmolekülen lokalisiert. Die entsprechende Dämpfungslänge ist ausschließlich durch die Parametrisierung der Kopplungen bestimmt und ist somit unabhängig von der Kettenlänge. Sie kann daher als intrinische Quantenlänge interpretiert werden, welche von essentieller Bedeutung für das Verständnis systemgrößenabhängigen Verhaltens ist. Sowohl die Anzahl als auch die Art der Oberflächenzustände kann für jede Kopplungssituation vorhergesagt werden. Die unterschiedliche Natur der Volumen- und Oberflächenzustände führt auf ausgeprägte 'Quantum confinement' Effekte. Zwei Regime sind zu unterscheiden. Im Falle des ersten Regimes, dem schwachen 'Confinement', ist die Kettenlänge größer als die intrinsische Länge. Beide Zustandarten reagieren auf eine Veränderung der Kettenlänge gemäß ihrer Natur. Aufgrund ihrer Verwandschaft mit den Bandzuständen der unendlichen Kette bewahren die Volumenzustände ihren Quasiteilchen-Charakter. Aufgefaßt als Quasiteilchen, erfahren sie in endlichen Systemen eine energetische Verschiebung gemäß dem Potentialtopf-Modell. Oberflächenzustände zeigen keine Reaktion auf veränderte Kettenlängen, da effektiv nur die Randmoleküle zur Wellenfunktion beitragen. Es findet ein Übergang zum zweiten Regime (starkes 'Confinement') statt, sobald die Kettenlänge kleiner als intrinsische Quantenlänge wird. Beide Zustandsarten geben ihr typisches Verhalten auf und werden mit abnehmender Kettenlänge zunehmend ähnlicher.
|
Page generated in 0.0923 seconds