• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrafast Dynamics in Quasi-One-Dimensional Organic Molecular Crystals / Self-Assembled Monolayers of Photochromic Molecules / Ultraschnelle Dynamik in quasi-eindimensionalen organischen Molekülkristallen / Selbst-assemblierte Monoschichten photochromer Moleküle

Canzler, Tobias W. 16 September 2002 (has links) (PDF)
Der erste Teil der Arbeit beschäftigt sich mit ultraschnellen Relaxationsprozessen in quasi-eindimensionalen organischen Molekülkristallen. Als Modellsystem wird das Perylenderivat MePTCDI untersucht. Mit verschiedenen Methoden der optischen Ultrakurzzeit-Spektroskopie werden Prozesse der Exzitonen- und Phononenrelaxation in der Zeit-Domäne untersucht. Die dafür aufgebauten Experimente erreichen eine Zeitauflösung von 20 Femtosekunden. Durch optische Anregung der niedrigsten elektronischen Übergänge werden in einem organischen Molekülkristall freie Exzitonen mit Wellenvektor k=0 gebildet. Dabei werden gleichzeitig zahlreiche intramolekulare und intermolekulare Schwingungsfreiheitsgrade angeregt. Die Anregung mit fs-Laserpulsen führt zum Aufbau kohärenter Schwingungswellenpakete. Es werden sowohl hochenergetische Oszillationen intramolekularer Vibrationen beobachtet, als auch erstmalig niedrigenergetische Oszillationen, die von Gittervibrationen (Phononen) stammen. Die kohärenten Vibrationen im elektronischen Grundzustand klingen bei Raumtemperatur im Bereich einiger Pikosekunden ab. Durch die optische Anregung mit fs-Laserpulsen wird nicht nur phononische Kohärenz, sondern auch elektronische Kohärenz der optischen Übergänge induziert. Die elektronische Kohärenz klingt mit der Dephasierungszeit T2 ab. Trotz der hohen Zeitauflösung war es letztendlich nicht möglich, die Dephasierung des niedrigsten exzitonischen Übergangs zeitlich aufzulösen - sie liegt jedoch im Bereich 17fs < T2 < 52fs. Die energetische Relaxation der freien Exzitonen zu den relaxierten, emittierenden Exzitonenzuständen erfolgt mit einer Zeitkonstante von ca. 50fs. Von diesen relaxierten Zuständen erfolgt die energetische Abregung in den elektronischen Grundzustand im ns-Bereich. Im zweiten Teil der Arbeit werden Untersuchungen an selbst-assemblierten Monoschichten (SAM) photochromer Moleküle vorgestellt. Als Modellsystem dienen Azobenzen-funktionalisierte Thiole auf Gold (111). Es konnten hochgeordnete Monoschichten dieser photochromen Moleküle erzielt werden, allerdings sind die bisherigen Schichten aufgrund der dichten Packung nicht photoaktivierbar. Mit Hilfe von Raster-Mikroskopie und Infrarot-Spektroskopie werden diese ultradünnen Schichten strukturell untersucht. Es wird ein kommensurates Wachstum mit zwei Molekülen in der nahezu rechteckigen Einheitszelle beobachtet, wobei die laubbaumförmigen Moleküle nahezu senkrecht auf der Oberfläche stehen. Als weitere Methode wurde die Generation der zweiten Harmonischen (Second Harmonic Generation, SHG) angewendet. Diese Technik eröffnet prinzipiell die Möglichkeit, photostimuliertes Schalten der Schicht zeitaufgelöst zu untersuchen. / The first part of this thesis is devoted to ultrafast relaxation processes in quasi-one-dimensional organic molecular crystals. Crystalline samples of the perylene derivative MePTCDI are employed as a model system. Processes concerning the excitonic and phononic relaxation are investigated in time domain using various experimental techniques of optical ultrafast spectroscopy. The experimental setups attain a time-resolution of 20 femtoseconds. Free excitons at wavevector k=0 are formed in a molecular crystal by optical excitation of the lowest electronic transitions. Thereby, various intramolecular and intermolecular vibrational degrees of freedom are excited simultaneously. The excitation by fs-laser pulses results in the composition of coherent vibrational wave packets. Both, higher-energetic oscillations caused by intramolecular vibrations (internal phonons) and, for the first time in a quasi-one-dimensional organic system, lower-energetic modulations which are related to coherent lattice phonons (external phonons) are observed. The coherence of both types of phonons in the electronic ground state is damped at room temperature within a few ps. Besides phononic coherence, optical excitation by fs-laser pulses additionally induces electronic coherence of the optical transitions. The electronic coherence decays with the dephasing time T2. In spite of the high time-resolution, finally it was not possible to time resolve the dephasing of the lowest excitonic transition - however, we can estimated it to be in the range of 17fs < T2 < 52fs. The energetic relaxation of free excitons to the relaxed, emitting exciton states takes place with a time constant of approx. 50fs. The subsequent energetic relaxation to the electronic ground state occurs on a ns-time scale. In the second part, investigations of self-assembled monolayers (SAM) of photochromic molecules are presented. Azobenzene-functionalized thiols on gold (111) are employed as a model system. Highly ordered monolayers of these photochromic molecules could be realized. However, these layers are not photoactive because of dense packing. By use of scanning tunneling microscopy and infra-red spectroscopy the structural properties of these ultrathin layers are investigated. A commensurate growth, yielding a lattice with two molecules within the nearly rectangular unit cell is observed. The molecules, shaped like a broad-leafed tree, are found to stand nearly upright on the surface. Second harmonic generation (SHG) is applied as another experimental method. This technique allows to time resolve photo-stimulated conformational changes of the layers in principle.
2

Ab-initio molecular dynamics studies of laser- and collision-induced processes in multielectron diatomics, organic molecules and fullerenes / Ab-initio Molekulardynamik-Studien von laser- und stoßinduzierten Prozessen in Vielelektronen-Dimeren, organischen Molekülen und Fullerenen

Handt, Jan 22 December 2010 (has links) (PDF)
This work presents applications of an ab-initio molecular dynamics method, the so-called nonadiabatic quantum molecular dynamics (NA-QMD), for various molecular systems with many electronic and nuclear degrees of freedom. Thereby, the nuclei will be treated classically and the electrons with time-dependent density functional theory (TD-DFT) in basis expansion. Depending on the actual system and physical process, well suited basis sets for the Kohn-Sham orbitals has to be chosen. For the ionization process a novel absorber acting in the energy space as well as additional basis functions will be used depending on the laser frequency. In the first part of the applications, a large variety of different laser-induced molecular processes will be investigated. This concerns, the orientation dependence of the ionization of multielectronic diatomics (N2, O2), the isomerization of organic molecules (N2H2) and the giant excitation of the breathing mode in fullerenes (C60). In the second part, fullerene-fullerene collisions are investigated, for the first time in the whole range of relevant impact velocities concerning the vibrational and electronic energy transfer (\"stopping~power\"). For low energetic (adiabatic) collisions, it is surprisingly found, that a two-dimensional, phenomenological collision model can reproduce (even quantitatively) the basic features of fusion and scattering observed in the fully microscopic calculations as well as in the experiment. For high energetic (nonadiabatic) collisions, the electronic and vibrational excitation regimes are predicted, leading to multifragmentation up to complete atomization.

Page generated in 0.0218 seconds