1 |
R-matrix-Floquet theory of molecular multiphoton processesColgan, James Patrick January 1999 (has links)
No description available.
|
2 |
Study on molecular photoionization in femtosecond laser fieldLi, Hui January 1900 (has links)
Master of Science / Department of Physics / Matthias Kling / This thesis consists of two major parts. The first part concerns studies of the orientation dependence of the ionization of diatomic molecules in intense, femtosecond two-color laser fields. The second part is about studies on the ionization mechanisms of the C[subscript]6[subscript]0 molecule in femtosecond near-infrared and ultraviolet laser fields.
In the first part, experimental and theoretical results on the asymmetric ion emission of the heteronuclear molecules CO and NO in two-color laser fields are discussed. The two-color fields, which can be tailored by a relative phase, are used to ionize and dissociate CO and NO molecules, both of which are molecules with small polarizabilities. The resulting C[superscript]+, C[superscript]2[superscript]+, N[superscript]+ and O[superscript]+ ions are detected by a velocity map imaging (VMI) setup. The photoelectrons from above-threshold ionization (ATI) of Xe are studied under such a two-color field to assign the phase. For both CO and NO we find that enhanced ionization occurs when the molecule is oriented with the electric field pointing from the C or N atom toward the O atom. This is in agreement with the molecular orbital Ammosov-Delone-Krainov (MO-ADK) theory and the Stark-corrected strong-field-approximation (SFA) calculations.
The second part is devoted to the investigation of the ionization mechanism of neutral C[subscript]6[subscript]0 molecules with 30 fs laser pulses at about 800 nm and with 50 fs pulses at about 400 nm. The angular distributions of photoelectrons are measured utilizing VMI. Measurements under different intensities are carried out for the two wavelengths. In our work, thermal electron emission is highly suppressed by the use of short pulses. For near-infrared excitation, photoelectron angular distributions (PADs) that contain six lobes are observed for low energy electrons. This behavior is different from studies for longer pulses of about 120 fs [1]. Further analysis indicates that the PADs might originate from single photon ionization of a super atomic molecular orbital (SAMO), however, a detailed assignment requires further theoretical work. The PADs for the ultraviolet excitation show very similar structures to earlier results [1]. For the near-infrared excitation, we have carried out studies as a function of the chirp of the pulses and find effects on photoelectron spectra and on PADs, which are tentatively explained by sequential multiphoton ionization via “doorway” states.
|
3 |
Έλεγχος της μίξης κυμάτων και της δημιουργίας αργού φωτός υπό συνθήκες ηλεκτρομαγνητικά επαγώμενης διαφάνειας και ενίσχυσης χωρίς αντιστροφή πληθυσμού σε μεταλλικούς ατμούςΠένταρης, Διονύσιος 06 September 2010 (has links)
Στη παρούσα διατριβή μελετούμε την αλληλεπίδραση ατόμων αλκαλίων (νατρίου-Na και καλίου-K) με σύμφωνη πηγή ακτινοβολίας (laser). Συγκεκριμένα
παρουσιάζουμε: i) Την επίδραση της καταστρεπτικής κβαντικής συμβολής (destructive quantum interference), η οποία εμφανίζεται στη διαδρομή-1, του ατομικού K υπό nsec διφωτονική διέγερση. Η καταστρεπτική κβαντική συμβολή οδηγεί στη γραμμική απόκριση των εσωτερικά παραγόμενων
εντάσεων των ακτινοβολιών στις μεταβάσεις των παραγόμενων πεδίων της διαδρομής-1. Το φαινόμενο αυτό μελετάται για διάφορες
τιμές των παραμέτρων: της μέγιστης έντασης της διεγείρουσας ακτινοβολίας
του laser, του διφωτονικού αποσυντονισμού, της ατομικής πυκνότητας και του μήκους διάδοσης των ακτινοβολιών, όταν οι δύο
από τις τρείς αυτές παραμέτρους παραμένουν σταθερές. Επίσης, μελετούμε τις προυποθέσεις του κορεσμού της διαδρομής-1 για
ισχυρότερη ένταση του εξωτερικού πεδίου laser και κατόπιν δείχνουμε ότι η διαδρομή-2,
εμφανίζεται, έχοντας πρώτα κορεσθεί η διαδρομή-1, στις μικρές ατομικές
πυκνότητες. Επιπρόσθετα, παρουσιάζουμε τις προυποθέσεις επαγωγής
ενός είδους ατομικής μνήμης (optical free induction memory) όταν ο παλμός
laser υποστεί απότομη πτώση στο μέγιστο του (truncated pulse).
ii) Τις συνθήκες εκείνες οι οποίες ευθύνονται για την εμφάνιση αξονικής ή/και
κωνικής εκπομπής της διαδρομής-1,
και διαδρομής-2, αντίστοιχα,
για διάφορες ατομικές πυκνότητες, υπό fsec διφωτονική διέγερση του ατομικού K.
iii) Την παραγωγή ακτινοβολιών από σύμφωνη παραμετρική μίξη (parametric
four-wave mixing) ή και μερικώς σύμφωνο μηχανισμό όπως η ενισχυμένη
αυθόρμητη εκπομπή (amplified spontaneous emission) ή υπέρ σκέδαση-
Raman (stimulated hyper-Raman scattering), όταν το nsec πεδίο laser
διεγείρει με δύο φωτόνια την μετάβαση 4S1/2-6S1/2, καθώς και την μετάβαση 4S1/2-7S1/2, αντίστοιχα.
Εστιάζουμε κατά μείζονα λόγο τη μελέτη μας στη διαδρομή-2, στήν
μονόδρομη (unidirectional) και στήν αμφίδρομη (bidirectional) διάδοση της
ακτινοβολίας του πεδίου laser.
iv) Την γέννεση της κωνικής τρίτης αρμονικής (conical third harmonic
generation-THG) σε μεταλλικούς ατμούς Na και K υπό fsec διέγερση.
Στη περίπτωση του Na (μέσο με κανονική διασπορά) βρίσκουμε ότι η
χαρακτηριστική δακτυλοειδή δομή του κώνου της τρίτης αρμονικής
οφείλεται στήν επίδραση κυρίως του τανυστικού όρου πέμπτης τάξης ο οποίος σχετίζεται με
την μίξη έξι κυμάτων.
Ακόμα, δείχνουμε, ότι στη περίπτωση του K (μέσο με αρνητική διασπορά) η
εκπομπή μακρινού πεδίου (far field emission) της κωνικής τρίτης αρμονικής,
παρουσιάζει ορισμένες διαφοροποιήσεις σε σχέση με αυτή του Na. Το όλο
φαινόμενο αντιμετωπίζεται φαινομενολογικά. / In the doctorate dissertation is studied the effect of the wave mixing of laser
light with the internally generated fields of the alkali vapors, such as the sodium (Na)
and the potassium (K) respectively. Specifically it was studied:
ι) The numerical simulation of the four-level system, when a two-photon nsec
field excites the transition 4S1/2-6S1/2 of potassium atom. It is shown
that the destructive quantum interference is responsible for the reduction of
the non-linearity of path-1, in which,
the parameters of the system, such as the two-photon detuning, the atomic density and the laser maximum intensity, play an important
role. Moreover the saturation of the path-1 has as a consequence the passage
of the energy to the atomic path-2,
which activates later than the path-1, in low atomic density of atomic K.
A truncated excitation pulse is able to induced phenomena of atomic memory
in which the providing excitation intensity is able to be stored in the system.
The optical free induction memory (OFIM) is observed in the truncated nsec
excitation of the transition 4S1/2-6S1/2. This type of atomic memory is
studied via the evolution of the density matrix element s12, for specific
selection of the two-photon detuning.
ii) The conditions which are responsible for the axial or/and conical emission of
radiation of path-1 and of path-2, respectively under the fsec two-photon
excitation respectively.
iii) The production of coherent (parametric four-wave mixing) or/and partially
coherent (amplified spontaneous emission or stimulated hyper-Raman
scattering) radiation when the nsec laser field excites with two-photons the
transition 4S1/2-6S1/2, and
the transition 4S1/2-7S1/2, of atomic potassium respectively. It is also studied the emissions of the path-2
in the unidirectional and the bidirectional propagation (counter-propagation)
of the laser field in the nsec 4S1/2-6S1/2 two-photon excitation.
iv) The conical third harmonic generation (THG) in Na and K vapor under the fsec excitation. It is proved that the third harmonic generation of Na, (normally dispersive medium), in the laser wavelength range of 1770-2200 nm, is mainly a result of
six-wave mixing. The fifth order tensor term dominates against the third order term, (which is connected with the four-wave mixing process), as it is shown theoretically. In the case of Κ vapor (negative dispersion medium), in the laser wavelength
range of 1200-2180 nm, the observed conical emission appears similarities
and dissimilarities with the Na one respectively. The THG generation of Κ
interpreted in a phenomenological way.
|
4 |
Ionization of diatomic molecules in intense laser fieldsHussien, Abdou Mekky Mousa 06 October 2015 (has links)
In dieser Arbeit wurde die Ionisation einiger zweiatomiger Moleküle (H2, N2 und O2) in intensiven Laserfeldern untersucht. Hierbei wurden verschiedene Modelle zur Beschreibung der Tunnelionisation sowohl untereinander als auch mit der Lösung der zeitabhängigen Schrödingergleichung (TDSE) verglichen. Die kernabstandsabhängige Ionisationswahrscheinlichkeit wurde für verschiedene Intensitäten betrachtet und die Gültigkeit modifizierter atomarer bzw. Molekularer Modelle zur Beschreibung der Tunnelionisation analysiert. Es wurde herausgefunden, dass Modelle, die auf der quasistatischen Näherung beruhen (wo die Ionisation unabhängig von der Frequenz des Laserfeldes ist), nur in einem kleinem Frequenz- und Intensitätsbereich hinreichend genaue Ergebnisse liefern, dem Tunnelregime. Modelle mit einem frequenzabhängigen Faktor stimmen hingegen sowohl im Tunnel- als auch im Mehrphotonenregime mit den genaueren TDSE Ergebnissen überein. Weiterhin wird auch die Abweichung zur Franck-Condon Näherung verdeutlicht. Es wurde ein kleiner Einfluss auf die Revival-Zeit des im Wasserstoffmolekül-Ion gestarteten Wellenpakets gefunden. Die Berücksichtigung von Bond-Softening führt weiterhin zu einer Verringerung der Revival-Zeit mit steigender Spitzenintensität des Lasers. Außerdem wird die Anisotropie der Ionisation von H2 als Funktion der Laserintensität in linear und zirkular polarisiertem Licht mit dem molekularen Tunnelmodell MO-ADK untersucht. Gute Übereinstimmung mit den experimentellen Beobachtungen wurde gefunden, insbesondere wenn der Effekt des Fokusvolumens des Laserfeldes berücksichtigt wird. Die Anwendbarkeit des Zwei-Zentren-Modells auf größere Moleküle, N2 und O2, wird ebenfalls getestet. Es wird beobachtet, dass dies für N2 (symmetrisches HOMO) funktioniert, für O2 (asymmetrisches HOMO) jedoch nicht. / The ionization of some diatomic molecules, H2, N2, and O2, exposed to intense laser fields has been studied by comparing various molecular tunneling–ionization models with each other and with the numerical solution of the time-dependent Schrödinger equation (TDSE). The internuclear-distance dependent ionization yields over a wide range of laser peak intensities are investigated and the validity of the modified atomic and molecular tunneling models is examined. It is found that those models that depend on the quasi-static approximation, where ionization is independent on the oscillation frequency of the applied laser field, are useful for laser-induced ionization processes in only a very small region of the frequency and intensity domain of laser fields, i.e. in the tunneling regime. The models that include a frequency dependent factor are in a good agreement with the accurate TDSE calculations in both the multiphoton and the tunneling ionization regimes. Furthermore, the deviation from Franck-Condon-like distribution is also clarified. A small effect on the revival time of the vibrational wavepacket of hydrogen molecular ion, due to this deviation, has been found. Consideration of the bond-softening effect leads to a decrease in the revival time with increasing laser-peak intensity. The anisotropy of H2 as a function of laser intensity in linear and circular polarized fields using molecular tunneling model (MO-ADK) are also studied and a good agreement with the experimental observations, especially if the focal volume of the laser field is considered, has been obtained. The applicability of the two-center model for larger molecules, N2 and O2, is tested. It is found that it works with N2 (symmetric HOMO) but fails in O2 (ansymmetric HOMO).
|
5 |
Dynamics of diatomic molecules in intense laser fields / Alignment, Ionization and Fragmentation of dimers / Die Dynamik zweiatomiger Moleküle in intensiven LaserfeldernUhlmann, Mathias 16 May 2006 (has links) (PDF)
A realistic description of ionization in intense laser fields is implemented into the Non-Adiabatic Quantum Molecular Dynamics (NA-QMD) formalism. First, the error of a finite basis expansion is considered and a new measure is proposed for time-dependent calculations. This is used to investigate systematically the influence of the used basis set in calculations on the hydrogen atom in intense laser fields. Second, absorbing boundary conditions in basis expansion are introduced via an imaginary potential into the effective one-particle Hamiltonian. It is shown that the used form of the absorber potential is valid in many-electron time-dependent density functional theory calculations, i.e. that only ionized states are affected by the absorbing potential. The absorber is then tested on reference calculations that exist for H and aligned H+2 in intense laser fields. Excellent agreement is found. Additionally, an approximative treatment of the missing electron-nuclear correlations is proposed. It is found in calculations on H+2 that a qualitative improvement of the description of nuclear dynamics results. The extension of the NA-QMD formalism is then used to investigate the alignment behavior of diatomic molecules. Recent experiments on H+2 and H2 are reviewed and explained. It is found that dynamic alignment, i.e. the laser induced rotation of the molecule, plays a central role. The alignment behavior of H+2 and H2 and its intensity dependence is investigated after that. A drastic difference between H+2 and H2 is found in NA-QMD as well as model calculations. Then, the focus is on an astonishing new effect that has been found in N2 calculations. This effect which is called "rotational destabilization" is studied on the model system H+2. Yet, it might be observable only in heavy dimers and might have already been found in an experiment on I2.
|
6 |
Etude théorique des processus électroniques ayant lieu au cours de collisions atomiques et moléculaires : approches non perturbatives / Theoretical studies of electronic processes in atomic and molecular collisions : non perturbative approachesAgueny, Hicham 03 April 2014 (has links)
Deux domaines différents de la physique des collisions ont fait l’objet de mes travaux de thèse réalisés dans le cadre d'une cotutelle entre l'Université Moulay Ismail, Meknes-Maroc et l'Université Pierre et Marie Curie, Paris-France: le premier concerne les collisions ion-atome/molécule dans le régime des énergies intermédiaires (keV), alors que le second vise le domaine des collisions électron-atome assistées par un champ laser intense. Bien que distincts, les deux thèmes sont interconnectés puisqu'il s'agit principalement d'étudier, dans des approches non-perturbatives, les phénomènes de diffusion et la dynamique électronique des collisions de cibles atomiques et moléculaires soumis à de fortes et très courtes perturbations. La première partie porte spécifiquement sur la modélisation des processus de transfert électronique et d'ionisation induits lors de collisions d'ions et de cibles atomiques et moléculaires. L'étude porte particulièrement sur les phénomènes d'interférences de type Young, de multi-diffusion et de diffraction Fraunhofer observés au cours de ces processus. La deuxième partie de thèse repose sur une étude des processus de diffusion élastiques et inélastiques induits lors de collisions assistées par un champ laser intense. L'étude s’appuie sur l’analyse spécifique des transitions "libre-libre" au cours lesquelles la cible reste dans son état fondamental après la collision, et des phénomènes de résonance dans le processus d'excitation simultanée électron-photon de la cible. / This work has been performed as a joint PhD between Université Moulay Ismail, Meknes-Morocco, and Université Pierre et Marie Curie, Paris-France. It concerns two different areas of collision physics: the first part of my research covers the study of ion-atom/molecule collisions in the intermediate energies (keV) , while the second deals with laser-assisted electron-atom scattering. The two subjects are interconnected since both concern the description of electronic processes occurring in scattering events and the study of highly non linear response of atomic and molecular targets to high or short time-dependent perturbations. The first part of the thesis focuses specifically on the modeling of electron transfer and ionization processes induced in collisions of ions and atomic/molecular targets. My work concentrates mainly on the phenomena of Young-type interferences, multi-scattering and Fraunhofer diffraction observed during these processes. The second part concerns the study of elastic and inelastic processes induced in electron-atom collisions in the presence of a strong laser field. The investigations focus on free, free transitions, in which the target remains in its initial state after the collision, and resonance phenomena in more complex processes where the target is simultaneously excited by the the electron-projectile and the radiation and when collisional and radiative interactions are strong enough to concurrently modify the internal state of the target
|
7 |
Dynamics of diatomic molecules in intense laser fields: Alignment, Ionization and Fragmentation of dimers: Die Dynamik zweiatomiger Moleküle in intensiven LaserfeldernUhlmann, Mathias 16 June 2006 (has links)
A realistic description of ionization in intense laser fields is implemented into the Non-Adiabatic Quantum Molecular Dynamics (NA-QMD) formalism. First, the error of a finite basis expansion is considered and a new measure is proposed for time-dependent calculations. This is used to investigate systematically the influence of the used basis set in calculations on the hydrogen atom in intense laser fields. Second, absorbing boundary conditions in basis expansion are introduced via an imaginary potential into the effective one-particle Hamiltonian. It is shown that the used form of the absorber potential is valid in many-electron time-dependent density functional theory calculations, i.e. that only ionized states are affected by the absorbing potential. The absorber is then tested on reference calculations that exist for H and aligned H+2 in intense laser fields. Excellent agreement is found. Additionally, an approximative treatment of the missing electron-nuclear correlations is proposed. It is found in calculations on H+2 that a qualitative improvement of the description of nuclear dynamics results. The extension of the NA-QMD formalism is then used to investigate the alignment behavior of diatomic molecules. Recent experiments on H+2 and H2 are reviewed and explained. It is found that dynamic alignment, i.e. the laser induced rotation of the molecule, plays a central role. The alignment behavior of H+2 and H2 and its intensity dependence is investigated after that. A drastic difference between H+2 and H2 is found in NA-QMD as well as model calculations. Then, the focus is on an astonishing new effect that has been found in N2 calculations. This effect which is called "rotational destabilization" is studied on the model system H+2. Yet, it might be observable only in heavy dimers and might have already been found in an experiment on I2.
|
8 |
Ab-initio molecular dynamics studies of laser- and collision-induced processes in multielectron diatomics, organic molecules and fullerenes / Ab-initio Molekulardynamik-Studien von laser- und stoßinduzierten Prozessen in Vielelektronen-Dimeren, organischen Molekülen und FullerenenHandt, Jan 22 December 2010 (has links) (PDF)
This work presents applications of an ab-initio molecular dynamics method, the so-called nonadiabatic quantum molecular dynamics (NA-QMD), for various molecular systems with many electronic and nuclear degrees of freedom. Thereby, the nuclei will be treated classically and the electrons with time-dependent density functional theory (TD-DFT) in basis expansion. Depending on the actual system and physical process,
well suited basis sets for the Kohn-Sham orbitals has to be chosen. For the ionization process a novel absorber acting in the energy space as well as additional basis functions will be used depending on the laser frequency.
In the first part of the applications, a large variety of different laser-induced molecular processes will be investigated. This concerns, the orientation dependence of the ionization of multielectronic diatomics (N2, O2), the isomerization of organic molecules (N2H2) and the giant excitation of the breathing mode in fullerenes (C60).
In the second part, fullerene-fullerene collisions are investigated, for the first time in the whole range of relevant impact velocities concerning the vibrational and electronic energy transfer (\"stopping~power\").
For low energetic (adiabatic) collisions, it is surprisingly found, that a two-dimensional, phenomenological collision model can reproduce (even quantitatively) the basic features of fusion and scattering observed in the fully microscopic calculations as well as in the experiment.
For high energetic (nonadiabatic) collisions, the electronic and vibrational excitation regimes are predicted, leading to multifragmentation up to complete atomization.
|
9 |
Ab-initio molecular dynamics studies of laser- and collision-induced processes in multielectron diatomics, organic molecules and fullerenesHandt, Jan 18 October 2010 (has links)
This work presents applications of an ab-initio molecular dynamics method, the so-called nonadiabatic quantum molecular dynamics (NA-QMD), for various molecular systems with many electronic and nuclear degrees of freedom. Thereby, the nuclei will be treated classically and the electrons with time-dependent density functional theory (TD-DFT) in basis expansion. Depending on the actual system and physical process,
well suited basis sets for the Kohn-Sham orbitals has to be chosen. For the ionization process a novel absorber acting in the energy space as well as additional basis functions will be used depending on the laser frequency.
In the first part of the applications, a large variety of different laser-induced molecular processes will be investigated. This concerns, the orientation dependence of the ionization of multielectronic diatomics (N2, O2), the isomerization of organic molecules (N2H2) and the giant excitation of the breathing mode in fullerenes (C60).
In the second part, fullerene-fullerene collisions are investigated, for the first time in the whole range of relevant impact velocities concerning the vibrational and electronic energy transfer (\"stopping~power\").
For low energetic (adiabatic) collisions, it is surprisingly found, that a two-dimensional, phenomenological collision model can reproduce (even quantitatively) the basic features of fusion and scattering observed in the fully microscopic calculations as well as in the experiment.
For high energetic (nonadiabatic) collisions, the electronic and vibrational excitation regimes are predicted, leading to multifragmentation up to complete atomization.
|
Page generated in 0.0564 seconds