• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 8
  • 7
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Une approche générique pour l'analyse et le filtrage des signaux bivariés / A general approach for the analysis and filtering of bivariate signals

Flamant, Julien 27 September 2018 (has links)
Les signaux bivariés apparaissent dans de nombreuses applications (optique, sismologie, océanographie, EEG, etc.) dès lors que l'analyse jointe de deux signaux réels est nécessaire. Les signaux bivariés simples ont une interprétation naturelle sous la forme d'une ellipse dont les propriétés (taille, forme, orientation) peuvent évoluer dans le temps. Cette propriété géométrique correspondant à la notion de polarisation en physique est fondamentale pour la compréhension et l'analyse des signaux bivariés. Les approches existantes n'apportent cependant pas de description directe des signaux bivariés ou des opérations de filtrage en termes de polarisation. Cette thèse répond à cette limitation par l'introduction d'une nouvelle approche générique pour l'analyse et le filtrage des signaux bivariés. Celle-ci repose sur deux ingrédients essentiels : (i) le plongement naturel des signaux bivariés -- vus comme signaux à valeurs complexes -- dans le corps des quaternions H et (ii) la définition d'une transformée de Fourier quaternionique associée pour une représentation spectrale interprétable de ces signaux. L'approche proposée permet de définir les outils de traitement de signal usuels tels que la notion de densité spectrale, de filtrage linéaire ou encore de spectrogramme ayant une interprétation directe en termes d'attributs de polarisation. Nous montrons la validité de l'approche grâce à des garanties mathématiques et une implémentation numériquement efficace des outils proposés. Diverses expériences numériques illustrent l'approche. En particulier, nous démontrons son potentiel pour la caractérisation de la polarisation des ondes gravitationnelles. / Bivariate signals appear in a broad range of applications (optics, seismology, oceanography, EEG, etc.) where the joint analysis of two real-valued signals is required. Simple bivariate signals take the form of an ellipse, whose properties (size, shape, orientation) may evolve with time. This geometric feature of bivariate signals has a natural physical interpretation called polarization. This notion is fundamental to the analysis and understanding of bivariate signals. However, existing approaches do not provide straightforward descriptions of bivariate signals or filtering operations in terms of polarization or ellipse properties. To this purpose, this thesis introduces a new and generic approach for the analysis and filtering of bivariate signals. It essentially relies on two key ingredients: (i) the natural embedding of bivariate signals -- viewed as complex-valued signals -- into the set of quaternions H and (ii) the definition of a dedicated quaternion Fourier transform to enable a meaningful spectral representation of bivariate signals. The proposed approach features the definition of standard signal processing quantities such as spectral densities, linear time-invariant filters or spectrograms that are directly interpretable in terms of polarization attributes. More importantly, the framework does not sacrifice any mathematical guarantee and the newly introduced tools admit computationally fast implementations. Numerical experiments support throughout our theoretical developments. We also demonstrate the potential of the approach for the nonparametric characterization of the polarization of gravitational waves.
62

Contribution à la manipulation à deux bras : des manipulateurs à la collaboration homme-robot

Adorno, Bruno Vilhena 02 October 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude de la manipulation et de la coordination robotique à deux bras ayant pour objectif le développement d'une approche unifiée dont différentes tâches seront décrites dans le même formalisme. Afin de fournir un cadre théorique compact et rigoureux, les techniques présentées utilisent les quaternions duaux afin de représenter les différents aspects de la modélisation cinématique ainsi que de la commande. Une nouvelle représentation de la manipulation à deux bras est proposée - l'espace dual des tâches de coopération - laquelle exploite l'algèbre des quaternions duaux afin d'unifier les précédentes approches présentées dans la littérature. La méthode est étendue pour prendre en compte l'ensemble des chaînes cinématiques couplées incluant la simulation d'un manipulateur mobile. Une application originale de l'espace dual des tâches de coopération est développée afin de représenter de manière intuitive les tâches principales impliquées dans une collaboration homme-robot. Plusieurs expérimentations sont réalisées pour valider les techniques proposées. De plus, cette thèse propose une nouvelle classe de tâches d'interaction homme-robot dans laquelle le robot contrôle tout les aspects de la coordination. Ainsi, au-delà du contrôle de son propre bras, le robot contrôle le bras de l'humain par le biais de la stimulation électrique fonctionnelle (FES) dans le cadre d'applications d'interaction robot / personne handicapée. Grâce à cette approche générique développée tout au long de cette thèse, les outils théoriques qui en résultent sont compacts et capables de décrire et de contrôler un large éventail de tâches de manipulations robotiques complexes.
63

Tópicos de álgebras alternativas / Topics in Alternative Algebras

Marcos Munhoz 23 February 2007 (has links)
São estudados alguns aspectos das álgebras alternativas, como o bar-radical de uma álgebra bárica alternativa e as identidades de grau 4 e 5 nas álgebras de Cayley-Dickson. Neste estudo fazemos uso da decomposição de Peirce e de diversas propriedades importantes das álgebras alternativas. Concluímos mostrando que as únicas identidades de grau 4 são as triviais e as de grau 5 são conseqüência de outras duas identidades conhecidas / We studied some aspects of alternative algebras, in special the bar radical of an alternative baric algebra and identities of degree 4 and 5 of Cayley-Dickson algebras. We made significant use of the Peirce decomposition and several properties of the alternative algebras, in order to show that the only identities of degree four are the trivial ones, and the identities of degree five are consequences of other two known identities.
64

Sobre uma classificação dos anéis de inteiros, dos semigrupos finitos e dos RA-loops com a propriedade hiperbólica / On a classification of the integral rings, finite semigroups and RA-loops with the hyperbolic property

Antonio Calixto de Souza Filho 16 November 2006 (has links)
Apresentamos duas construções para unidades de uma ordem em uma classe de álgebras de quatérnios que é anel de divisão: as unidades de Pell e as unidades de Gauss. Classificamos os anéis de inteiros de extensões quadráticas racionais, $R$, cujo grupo de unidades $\\U (R G)$ é hiperbólico para um certo grupo $G$ fixado. Também classificamos os semigrupos finitos $S$, tal que, para a álgebra unitária $\\Q S$ e para toda $\\Z$-ordem $\\Gamma$ de $\\Q S$, o grupo de unidades $\\U (\\Gamma)$ é hiperbólico. Nesse mesmo contexto, classificamos os {\\it RA}-loops $L$ cujo loop de unidades $\\U (\\Z L)$ não contém um subgrupo abeliano livre de posto dois. / For a given division algebra of a quaternion algebra, we construct and define two types of units of its $\\Z$-orders: Pell units and Gauss units. Also, for the quadratic imaginary extensions over the racionals and some fixed group $G$, we classify the algebraic integral rings for which the unit group ring is a hyperbolic group. We also classify the finite semigroups $S$, for which all integral orders $\\Gamma$ of $\\Q S$ have hyperbolic unit group $\\U(\\Gamma)$. We conclude with the classification of the $RA$-loops $L$ for which the unit loop of its integral loop ring does not contain a free abelian subgroup of rank two.
65

Questions d’euclidianité / Questions on euclideanity

Lezowski, Pierre 07 December 2012 (has links)
Nous étudions l'euclidianité des corps de nombres pour la norme et quelques unes de ses généralisations. Nous donnons en particulier un algorithme qui calcule le minimum euclidien d'un corps de nombres de signature quelconque. Cela nous permet de prouver que de nombreux corps sont euclidiens ou non pour la norme. Ensuite, nous appliquons cet algorithme à l'étude des classes euclidiennes pour la norme, ce qui permet d'obtenir de nouveaux exemples de corps de nombres avec une classe euclidienne non principale. Par ailleurs, nous déterminons tous les corps cubiques purs avec une classe euclidienne pour la norme. Enfin, nous nous intéressons aux corps de quaternions euclidiens. Après avoir énoncé les propriétés de base, nous étudions quelques cas particuliers. Nous donnons notamment la liste complète des corps de quaternions euclidiens et totalement définis sur un corps de nombres de degré au plus deux. / We study norm-Euclideanity of number fields and some of its generalizations. In particular, we provide an algorithm to compute the Euclidean minimum of a number field of any signature. This allows us to study the norm-Euclideanity of many number fields. Then, we extend this algorithm to deal with norm-Euclidean classes and we obtain new examples of number fields with a non-principal norm-Euclidean class. Besides, we describe the complete list of pure cubic number fields admitting a norm-Euclidean class. Finally, we study the Euclidean property in quaternion fields. First, we establish its basic properties, then we study some examples. We provide the complete list of Euclidean quaternion fields, which are totally definite over a number field with degree at most two.
66

Algebraic methods for constructing blur-invariant operators and their applications

Pedone, M. (Matteo) 09 August 2015 (has links)
Abstract Image acquisition devices are always subject to physical limitations that often manifest as distortions in the appearance of the captured image. The most common types of distortions can be divided into two categories: geometric and radiometric distortions. Examples of the latter ones are: changes in brightness, contrast, or illumination, sensor noise and blur. Since image blur can have many different causes, it is usually not convenient and also computationally expensive to develop ad hoc algorithms to correct each specific type of blur. Instead, it is often possible to extract a blur-invariant representation of the image, and utilize such information to make algorithms that are insensitive to blur. The work presented here mainly focuses on developing techniques for the extraction and the application of blur-invariant operators. This thesis contains several contributions. First, we propose a generalized framework based on group theory to constructively generate complete blur-invariants. We construct novel operators that are invariant to a large family of blurs occurring in real scenarios: namely, those blurs that can be modeled by a convolution with a point-spread function having rotational symmetry, or combined rotational and axial symmetry. A second important contribution is represented by the utilization of such operators to develop an algorithm for blur-invariant translational image registration. This algorithm is experimentally demonstrated to be more robust than other state-of-the-art registration techniques. The blur-invariant registration algorithm is then used as pre-processing steps to several restoration methods based on image fusion, like depth-of-field extension, and multi-channel blind deconvolution. All the described techniques are then re-interpreted as a particular instance of Wiener deconvolution filtering. Thus, the third main contribution is the generalization of the blur-invariants and the registration techniques to color images, by using respectively a representation of color images based on quaternions, and the quaternion Wiener filter. This leads to the development of a blur-and-noise-robust registration algorithm for color images. We observe experimentally a significant increase in performance in both color texture recognition, and in blurred color image registration. / Tiivistelmä Kuvauslaitteet ovat aina fyysisten olosuhteiden rajoittamia, mikä usein ilmenee tallennetun kuvan ilmiasun vääristyminä. Yleisimmät vääristymätyypit voidaan jakaa kahteen kategoriaan: geometrisiin ja radiometrisiin distortioihin. Jälkimmäisestä esimerkkejä ovat kirkkauden, kontrastin ja valon laadun muutokset sekä sensorin kohina ja kuvan sumeus. Koska kuvan sumeus voi johtua monista tekijöistä, yleensä ei ole tarkoitukseen sopivaa eikä laskennallisesti kannattavaa kehittää ad hoc algoritmeja erityyppisten sumeuksien korjaamiseen. Sitä vastoin on mahdollista erottaa kuvasta sumeuden invariantin edustuma ja käyttää tätä tietoa sumeudelle epäherkkien algoritmien tuottamiseen. Tässä väitöskirjassa keskitytään esittämään, millaisia eri tekniikoita voidaan käyttää sumeuden invarianttien operaattoreiden muodostamiseen ja sovellusten kehittämiseen. Tämä opinnäyte sisältää useammanlaista tieteellistä vaikuttavuutta. Ensiksi, väitöskirjassa esitellään ryhmäteoriaan perustuva yleinen viitekehys, jolla voidaan generoida sumeuden invariantteja. Konstruoimme uudentyyppisiä operaattoreita, jotka ovat monenlaiselle kuvaustilanteessa ilmenevälle sumeudelle invariantteja. Kyseessä ovat ne rotationaalisesti (ja/tai aksiaalisesti) symmetrisen sumeuden lajit, jotka voidaan mallintaa pistelähteen hajaantumisen funktion (PSF) konvoluutiolla. Toinen tämän väitöskirjan tärkeä tutkimuksellinen anti on esitettyjen sumeuden invarianttien operaattoreiden hyödyntäminen algoritmin kehittelyssä, joka on käytössä translatorisen kuvan rekisteröinnissä. Tällainen algoritmi on tässä tutkimuksessa osoitettu kokeellisesti johtavia kuvien rekisteröintitekniikoita robustimmaksi. Sumeuden invariantin rekisteröinnin algoritmia on käytetty esiprosessointina tässä tutkimuksessa useissa kuvien restaurointimenetelmissä, jotka perustuvat kuvan fuusioon, kuten syväterävyysaluelaajennus ja monikanavainen dekonvoluutio. Kaikki kuvatut tekniikat ovat lopulta uudelleen tulkittu erityistapauksena Wienerin dekonvoluution suodattimesta. Näin ollen tutkimuksen kolmas saavutus on sumeuden invarianttien ja rekisteröintiteknikoiden yleistäminen värikuviin käyttämällä värikuvien kvaternion edustumaa sekä Wienerin kvaternion suodatinta. Havaitsemme kokeellisesti merkittävän parannuksen sekä väritekstuurin tunnistuksessa että sumean kuvan rekisteröinnissä.
67

Kosterní animace pro GPUengine / Skeletal Animation for GPUengine

Minařík, Antonín January 2019 (has links)
This paper deals with studying skeletal animation techniques, and the subsequent design and implementation of skeletal animation extension for the GPUEngine library. The theoretical part describes the techniques of animation, skeletal animation and skinning. The following is an analysis of existing skeletal animation systems. The proposed solution seeks to reduce the data redundancy in the memory while rendering more skeletal models. According to the design a basic skeletal animation system has been implemented. Furthermore, a demonstration application has been created showing the skeletal system's use. The resulting skeletal system can be used in simple 3D applications and can serve as a basis for further works.
68

Diskrétně normované řády kvaternionových algeber / Discretely normed orders of quaternionic algebras

Horníček, Jan January 2014 (has links)
Tato práce shrnuje autorův výzkum v oblasti teorie kvaternionových algeber, jejich izomorfismů a maximálních řádů. Nový úhel pohledu na tuto problematiku je umožněn využitím pojmu diskrétní normy. Za hlavní výsledky práce je možná považovat důkaz jednoznačnosti diskrétní normy pro celá čísla, kvadratická rozšíření těles a řády kvaternionových algeber. Dále větu, která umožňuje mezi dvěma kvaternionovými algebrami konstruovat izomorfismy explicitně vyjádřené v maticovém tvaru. A v neposlední řadě důkaz existence nekonečně mnoha různých maximálních řádů kvaternionové algebry. Výsledky uvedené v této diplomové práci budou dále publikovány ve vědeckém článku.
69

Jednotka pro analýzu pohybu závodních plavců / Measuring unit for race swimmers motion analysis

Kumpán, Pavel January 2016 (has links)
The master’s thesis deals with a design of the computational method for the analysis of swimmers training with the use of an inertial measurement unit. The developed algorithm uses quaternion-based Unscented Kalman filter and merges accelerometer and gyroscope measurements. The proposed method enables analysis of velocity, acceleration and inclination of a swimmer. Verification of the method was based on an underwater video camera capturing and a tethered velocity meter.
70

3D animace postavy v počítačové grafice / Animation of 3D Character in Computer Graphics

Pečenka, Michal January 2008 (has links)
The main goal of this project was to familiarize readers with the techniques used in real-time animation of 3D characters. This work is focused on two types of animation: keyframe animation and skeletal animation. There are described algorithms for software and hardware accelerated model deformations, keyframe interpolations, animation blending, inverse kinematics and ragdoll. The result of this project is a framework, which consists of an animation library, examples demonstrating library functions and tools for export animations from 3D Studio Max and MilkShape 3D.

Page generated in 0.0796 seconds