Spelling suggestions: "subject:"réduction dde dimension"" "subject:"réduction dee dimension""
11 |
Analyse de sensibilité et réduction de dimension. Application à l'océanographie / Sensitivity analysis and model reduction : application to oceanographyJanon, Alexandre 15 November 2012 (has links)
Les modèles mathématiques ont pour but de décrire le comportement d'un système. Bien souvent, cette description est imparfaite, notamment en raison des incertitudes sur les paramètres qui définissent le modèle. Dans le contexte de la modélisation des fluides géophysiques, ces paramètres peuvent être par exemple la géométrie du domaine, l'état initial, le forçage par le vent, ou les coefficients de frottement ou de viscosité. L'objet de l'analyse de sensibilité est de mesurer l'impact de l'incertitude attachée à chaque paramètre d'entrée sur la solution du modèle, et, plus particulièrement, identifier les paramètres (ou groupes de paramètres) og sensibles fg. Parmi les différentes méthodes d'analyse de sensibilité, nous privilégierons la méthode reposant sur le calcul des indices de sensibilité de Sobol. Le calcul numérique de ces indices de Sobol nécessite l'obtention des solutions numériques du modèle pour un grand nombre d'instances des paramètres d'entrée. Cependant, dans de nombreux contextes, dont celui des modèles géophysiques, chaque lancement du modèle peut nécessiter un temps de calcul important, ce qui rend inenvisageable, ou tout au moins peu pratique, d'effectuer le nombre de lancements suffisant pour estimer les indices de Sobol avec la précision désirée. Ceci amène à remplacer le modèle initial par un emph{métamodèle} (aussi appelé emph{surface de réponse} ou emph{modèle de substitution}). Il s'agit d'un modèle approchant le modèle numérique de départ, qui nécessite un temps de calcul par lancement nettement diminué par rapport au modèle original. Cette thèse se centre sur l'utilisation d'un métamodèle dans le cadre du calcul des indices de Sobol, plus particulièrement sur la quantification de l'impact du remplacement du modèle par un métamodèle en terme d'erreur d'estimation des indices de Sobol. Nous nous intéressons également à une méthode de construction d'un métamodèle efficace et rigoureux pouvant être utilisé dans le contexte géophysique. / Mathematical models seldom represent perfectly the reality of studied systems, due to, for instance, uncertainties on the parameters that define the system. In the context of geophysical fluids modelling, these parameters can be, e.g., the domain geometry, the initial state, the wind stress, the friction or viscosity coefficients. Sensitivity analysis aims at measuring the impact of each input parameter uncertainty on the model solution and, more specifically, to identify the ``sensitive'' parameters (or groups of parameters). Amongst the sensitivity analysis methods, we will focus on the Sobol indices method. The numerical computation of these indices require numerical solutions of the model for a large number of parameters' instances. However, many models (such as typical geophysical fluid models) require a large amount of computational time just to perform one run. In these cases, it is impossible (or at least not practical) to perform the number of runs required to estimate Sobol indices with the required precision. This leads to the replacement of the initial model by a emph{metamodel} (also called emph{response surface} or emph{surrogate model}), which is a model that approximates the original model, while having a significantly smaller time per run, compared to the original model. This thesis focuses on the use of metamodel to compute Sobol indices. More specifically, our main topic is the quantification of the metamodeling impact, in terms of Sobol indices estimation error. We also consider a method of metamodeling which leads to an efficient and rigorous metamodel, which can be used in the geophysical context.
|
12 |
Contribution to dimension reduction techniques : application to object tracking / Contribution aux techniques de la réduction de dimension : application au suivi d'objetLu, Weizhi 16 July 2014 (has links)
Cette thèse étudie et apporte des améliorations significatives sur trois techniques répandues en réduction de dimension : l'acquisition parcimonieuse (ou l'échantillonnage parcimonieux), la projection aléatoire et la représentation parcimonieuse. En acquisition parcimonieuse, la construction d’une matrice de réduction possédant à la fois de bonnes performances et une structure matérielle adéquate reste un défi de taille. Ici, nous proposons explicitement la matrice binaire optimale, avec éléments zéro-Un, en recherchant la meilleure propriété d’isométrie restreinte (RIP). Dans la pratique, un algorithme glouton efficace est successivement développé pour construire la matrice binaire optimale avec une taille arbitraire. Par ailleurs, nous étudions également un autre problème intéressant pour l'acquisition parcimonieuse, c'est celui de la performance des matrices d'acquisition parcimonieuse avec des taux de compression élevés. Pour la première fois, la limite inférieure de la performance des matrices aléatoires de Bernoulli pour des taux de compression croissants est observée et estimée. La projection aléatoire s'utilise principalement en classification mais la construction de la matrice de projection aléatoire s'avère également critique en termes de performance et de complexité. Cette thèse présente la matrice de projection aléatoire, de loin, la plus éparse. Celle-Ci est démontrée présenter la meilleure performance en sélection de caractéristiques, comparativement à d’autres matrices aléatoires plus denses. Ce résultat théorique est confirmé par de nombreuses expériences. Comme nouvelle technique pour la sélection de caractéristiques ou d’échantillons, la représentation parcimonieuse a récemment été largement appliquée dans le domaine du traitement d'image. Dans cette thèse, nous nous concentrons principalement sur ses applications de suivi d'objets dans une séquence d'images. Pour réduire la charge de calcul liée à la représentation parcimonieuse, un système simple mais efficace est proposé pour le suivi d'un objet unique. Par la suite, nous explorons le potentiel de cette représentation pour le suivi d'objets multiples. / This thesis studies three popular dimension reduction techniques: compressed sensing, random projection and sparse representation, and brings significant improvements on these techniques. In compressed sensing, the construction of sensing matrix with both good performance and hardware-Friendly structure has been a significant challenge. In this thesis, we explicitly propose the optimal zero-One binary matrix by searching the best Restricted Isometry Property. In practice, an efficient greedy algorithm is successively developed to construct the optimal binary matrix with arbitrary size. Moreover, we also study another interesting problem for compressed sensing, that is the performance of sensing matrices with high compression rates. For the first time, the performance floor of random Bernoulli matrices over increasing compression rates is observed and effectively estimated. Random projection is mainly used in the task of classification, for which the construction of random projection matrix is also critical in terms of both performance and complexity. This thesis presents so far the most sparse random projection matrix, which is proved holding better feature selection performance than other more dense random matrices. The theoretical result is confirmed with extensive experiments. As a novel technique for feature or sample selection, sparse representation has recently been widely applied in the area of image processing. In this thesis, we mainly focus our attention on its applications to visual object tracking. To reduce the computation load related to sparse representation, a simple but efficient scheme is proposed for the tracking of single object. Subsequently, the potential of sparse representation to multiobject tracking is investigated.
|
13 |
Apprentissage de structures dans les valeurs extrêmes en grande dimension / Discovering patterns in high-dimensional extremesChiapino, Maël 28 June 2018 (has links)
Nous présentons et étudions des méthodes d’apprentissage non-supervisé de phénomènes extrêmes multivariés en grande dimension. Dans le cas où chacune des distributions marginales d’un vecteur aléatoire est à queue lourde, l’étude de son comportement dans les régions extrêmes (i.e. loin de l’origine) ne peut plus se faire via les méthodes usuelles qui supposent une moyenne et une variance finies. La théorie des valeurs extrêmes offre alors un cadre adapté à cette étude, en donnant notamment une base théorique à la réduction de dimension à travers la mesure angulaire. La thèse s’articule autour de deux grandes étapes : - Réduire la dimension du problème en trouvant un résumé de la structure de dépendance dans les régions extrêmes. Cette étape vise en particulier à trouver les sous-groupes de composantes étant susceptible de dépasser un seuil élevé de façon simultané. - Modéliser la mesure angulaire par une densité de mélange qui suit une structure de dépendance déterminée à l’avance. Ces deux étapes permettent notamment de développer des méthodes de classification non-supervisée à travers la construction d’une matrice de similarité pour les points extrêmes. / We present and study unsupervised learning methods of multivariate extreme phenomena in high-dimension. Considering a random vector on which each marginal is heavy-tailed, the study of its behavior in extreme regions is no longer possible via usual methods that involve finite means and variances. Multivariate extreme value theory provides an adapted framework to this study. In particular it gives theoretical basis to dimension reduction through the angular measure. The thesis is divided in two main part: - Reduce the dimension by finding a simplified dependence structure in extreme regions. This step aim at recover subgroups of features that are likely to exceed large thresholds simultaneously. - Model the angular measure with a mixture distribution that follows a predefined dependence structure. These steps allow to develop new clustering methods for extreme points in high dimension.
|
14 |
Random projection for high-dimensional optimization / Projection aléatoire pour l'optimisation de grande dimensionVu, Khac Ky 05 July 2016 (has links)
À l'ère de la numérisation, les données devient pas cher et facile à obtenir. Cela se traduit par de nombreux nouveaux problèmes d'optimisation avec de très grandes tailles. En particulier, pour le même genre de problèmes, le nombre de variables et de contraintes sont énormes. En outre, dans de nombreux paramètres d'application tels que ceux dans l'apprentissage de la machine, une solution précise est moins préférée que celles approximatives mais robustes. Il est un véritable défi pour les algorithmes traditionnels, qui sont utilisés pour bien travailler avec des problèmes de taille moyenne, pour faire face à ces nouvelles circonstances.Au lieu de développer des algorithmes qui évoluent bien à résoudre ces problèmes directement, une idée naturelle est de les transformer en problèmes de petite taille qui se rapporte fortement aux originaux. Étant donné que les nouvelles sont de tailles gérables, ils peuvent encore être résolus efficacement par des méthodes classiques. Les solutions obtenues par ces nouveaux problèmes, cependant, nous donner un aperçu des problèmes originaux. Dans cette thèse, nous allons exploiter l'idée ci-dessus pour résoudre certains problèmes de grande dimension optimisation. En particulier, nous appliquons une technique spéciale appelée projection aléatoire pour intégrer les données du problème dans les espaces de faible dimension, et de reformuler environ le problème de telle manière qu'il devient très facile à résoudre, mais capte toujours l'information la plus importante.Dans le chapitre 3, nous étudions les problèmes d'optimisation dans leurs formes de faisabilité. En particulier, nous étudions le problème que l'on appelle l'adhésion linéaire restreint. Cette classe contient de nombreux problèmes importants tels que la faisabilité linéaire et entier. Nous proposonsd'appliquer une projection aléatoire aux contraintes linéaires etnous voulons trouver des conditions sur T, de sorte que les deux problèmes de faisabilité sont équivalentes avec une forte probabilité.Dans le chapitre 4, nous continuons à étudier le problème ci-dessus dans le cas où l'ensemble restreint est un ensemble convexe. Nous établissons les relations entre les problèmes originaux et projetés sur la base du concept de la largeur gaussienne, qui est populaire dans la détection comprimé. En particulier, nous montrons que les deux problèmes sont équivalents avec une forte probabilité aussi longtemps que pour une projection aléatoire échantillonné à partir ensemble sous-gaussienne avec grande dimension suffisante (dépend de la largeur gaussienne).Dans le chapitre 5, nous étudions le problème de l'adhésion euclidienne:.. `` Étant donné un vecteur b et un euclidienne ensemble fermé X, décider si b est en Xor pas "Ceci est une généralisation du problème de l'appartenance linéaire restreinte précédemment considéré. Nous employons une gaussienne projection aléatoire T pour l'intégrer à la fois b et X dans un espace de dimension inférieure et étudier la version projetée correspondant. Lorsque X est fini ou dénombrable, en utilisant un argument simple, nous montrons que les deux problèmes sont équivalents presque sûrement quelle que soit la dimension projetée. Dans le cas où X peut être indénombrable, nous prouvons que les problèmes initiaux et prévus sont également équivalentes si la dimension d projetée est proportionnelle à une dimension intrinsèque de l'ensemble X. En particulier, nous employons la définition de doubler la dimension estimer la relation entre les deux problèmes.Dans le chapitre 6, nous proposons d'appliquer des projections aléatoires pour la zone de confiance sous-problème. Nous réduisons le nombre de variables en utilisant une projection aléatoire et prouver que des solutions optimales pour le nouveau problème sont en fait des solutions approchées de l'original. Ce résultat peut être utilisé dans le cadre de confiance-région pour étudier l'optimisation de boîte noire et l'optimisation des produits dérivés libre. / In the digitization age, data becomes cheap and easy to obtain. That results in many new optimization problems with extremely large sizes. In particular, for the same kind of problems, the numbers of variables and constraints are huge. Moreover, in many application settings such as those in Machine learning, an accurate solution is less preferred as approximate but robust ones. It is a real challenge for traditional algorithms, which are used to work well with average-size problems, to deal with these new circumstances.Instead of developing algorithms that scale up well to solve these problems directly, one natural idea is to transform them into small-size problems that strongly relates to the originals. Since the new ones are of manageable sizes, they can still be solved efficiently by classical methods. The solutions obtained by these new problems, however, will provide us insight into the original problems. In this thesis, we will exploit the above idea to solve some high-dimensional optimization problems. In particular, we apply a special technique called random projection to embed the problem data into low dimensional spaces, and approximately reformulate the problem in such a way that it becomes very easy to solve but still captures the most important information. Therefore, by solving the projected problem, we either obtain an approximate solution or an approximate objective value for the original problem.We will apply random projection to study a number of important optimization problems, including linear and integer programming (Chapter 3), convex optimization with linear constraints (Chapter 4), membership and approximate nearest neighbor (Chapter 5) and trust-region subproblems (Chapter 6).In Chapter 3, we study optimization problems in their feasibility forms. In particular, we study the so-called restricted linear membership problem. This class contains many important problems such as linear and integer feasibility. We proposeto apply a random projection to the linear constraints, andwe want to find conditions on T, so that the two feasibility problems are equivalent with high probability.In Chapter 4, we continue to study the above problem in the case the restricted set is a convex set. Under that assumption, we can define a tangent cone at some point with minimal squared error. We establish the relations between the original and projected problems based on the concept of Gaussian width, which is popular in compressed sensing. In particular, we prove thatthe two problems are equivalent with high probability as long as for some random projection sampled from sub-gaussian ensemble with large enough dimension (depends on the gaussian width).In Chapter 5, we study the Euclidean membership problem: ``Given a vector b and a Euclidean closed set X, decide whether b is in Xor not". This is a generalization of the restricted linear membership problem considered previously. We employ a Gaussian random projection T to embed both b and X into a lower dimension space and study the corresponding projected version: ``Decide whether Tb is in T(X) or not". When X is finite or countable, using a straightforward argument, we prove that the two problems are equivalent almost surely regardless the projected dimension. In the case when X may be uncountable, we prove that the original and projected problems are also equivalent if the projected dimension d is proportional to some intrinsic dimension of the set X. In particular, we employ the definition of doubling dimension estimate the relation between the two problems.In Chapter 6, we propose to apply random projections for the trust-region subproblem. We reduce the number of variables by using a random projection and prove that optimal solutions for the new problem are actually approximate solutions of the original. This result can be used in the trust-region framework to study black-box optimization and derivative-free optimization.
|
15 |
Proposition d'une méthode spectrale combinée LDA et LLE pour la réduction non-linéaire de dimension : Application à la segmentation d'images couleurs / Proposition of a new spectral method combining LDA and LLE for non-linear dimension reduction : Application to color images segmentationHijazi, Hala 19 December 2013 (has links)
Les méthodes d'analyse de données et d'apprentissage ont connu un développement très important ces dernières années. En effet, après les réseaux de neurones, les machines à noyaux (années 1990), les années 2000 ont vu l'apparition de méthodes spectrales qui ont fourni un cadre mathématique unifié pour développer des méthodes de classification originales. Parmi celles-ci ont peut citer la méthode LLE pour la réduction de dimension non linéaire et la méthode LDA pour la discrimination de classes. Une nouvelle méthode de classification est proposée dans cette thèse, méthode issue d'une combinaison des méthodes LLE et LDA. Cette méthode a donné des résultats intéressants sur des ensembles de données synthétiques. Elle permet une réduction de dimension non-linéaire suivie d'une discrimination efficace. Ensuite nous avons montré que cette méthode pouvait être étendue à l'apprentissage semi-supervisé. Les propriétés de réduction de dimension et de discrimination de cette nouvelle méthode, ainsi que la propriété de parcimonie inhérente à la méthode LLE nous ont permis de l'appliquer à la segmentation d'images couleur avec succès. La propriété d'apprentissage semi-supervisé nous a enfin permis de segmenter des images bruitées avec de bonnes performances. Ces résultats doivent être confortés mais nous pouvons d'ores et déjà dégager des perspectives de poursuite de travaux intéressantes. / Data analysis and learning methods have known a huge development during these last years. Indeed, after neural networks, kernel methods in the 90', spectral methods appeared in the years 2000. Spectral methods provide an unified mathematical framework to expand new original classification methods. Among these new techniques, two methods can be highlighted : LLE for non-linear dimension reduction and LDA as discriminating classification method. In this thesis document a new classification technique is proposed combining LLE and LDA methods. This new method makes it possible to provide efficient non-linear dimension reduction and discrimination. Then an extension of the method to semi-supervised learning is proposed. Good properties of dimension reduction and discrimination associated with the sparsity property of the LLE technique make it possible to apply our method to color images segmentation with success. Semi-supervised version of our method leads to efficient segmentation of noisy color images. These results have to be extended and compared with other state-of-the-art methods. Nevertheless interesting perspectives of this work are proposed in conclusion for future developments.
|
16 |
Analyse de données d' IRM fonctionnelle : statistiques, information et dynamiqueThirion, Bertrand 01 October 2003 (has links) (PDF)
Dans cette thèse, nous discutons et proposons un certains nombre de méthodes pour l'analyse de données d'IRM -imagerie par résonance magnétique- fonctionnelle. L'IRM fonctionnelle est une modalité récente de l'exploration du cerveau: elle produit des séquences d'images reflétant l'activité métabolique locale, celle-ci reflétant l'activité neuronale. Nous nous intéressons tout d'abord à la modélisation des séries temporelles obtenues pour chaque voxel séparément, en faisant appel aux techniques de prédiction linéaire et au calcul de l'information des processus modélisés. Nous étudions ensuite différentes généralisations multivariées de ce modèle. Après avoir rappelé et discuté certaines techniques classiques (analyse en composantes indépendantes, regroupement), nous proposons successivement une approche linéaire fondée sur la théorie des systèmes à état et une approche non-linéaire fondée sur les décompositions à noyau. Le but commun de ces méthodes -qui peuvent se compléter- est de proposer des décompositions qui préservent au mieux la dynamique des données. Nous introduisons ensuite une approche nouvelle par réduction de la dimension des données; cette approche offre une représentation plus structurée et relativement agréable à visualiser. Nous montrons ses avantages par rapport aux techniques linéaires classiques. Enfin, nous décrivons une méthodologie d'analyse qui synthétise une grande partie de ce travail, et repose sur des hypothèses très souples. Nos résultats offrent ainsi une description globale des processus dynamiques qui sont mis en image lors des expériences d'IRM fonctionnelle.
|
17 |
Modélisation et classification des données de grande dimension : application à l'analyse d'images.Bouveyron, Charles 28 September 2006 (has links) (PDF)
Le thème principal d'étude de cette thèse est la modélisation et la classification des données de grande<br />dimension. Partant du postulat que les données de grande dimension vivent dans des sous-espaces de<br />dimensions intrinsèques inférieures à la dimension de l'espace original et que les données de classes<br />différentes vivent dans des sous-espaces différents dont les dimensions intrinsèques peuvent être aussi<br />différentes, nous proposons une re-paramétrisation du modèle de mélange gaussien. En forçant certains<br />paramètres à être communs dans une même classe ou entre les classes, nous exhibons une famille de 28 modèles gaussiens adaptés aux données de grande dimension, allant du modèle le plus général au modèle le plus parcimonieux. Ces modèles gaussiens sont ensuite utilisés pour la discrimination et la classification<br />automatique de données de grande dimension. Les classifieurs associés à ces modèles sont baptisés respectivement High Dimensional Discriminant Analysis (HDDA) et High Dimensional Data Clustering (HDDC) et<br />leur construction se base sur l'estimation par la méthode du maximum de vraisemblance des paramètres du<br />modèle. La nature de notre re-paramétrisation permet aux méthodes HDDA et HDDC de ne pas être perturbées par le mauvais conditionnement ou la singularité des matrices de covariance empiriques des classes et d'être<br />efficaces en terme de temps de calcul. Les méthodes HDDA et HDDC sont ensuite mises en dans le cadre d'une<br />approche probabiliste de la reconnaissance d'objets dans des images. Cette approche, qui peut être<br />supervisée ou faiblement supervisée, permet de localiser de manière probabiliste un objet dans une<br />nouvelle image. Notre approche est validée sur des bases d'images récentes et comparée aux meilleures<br />méthodes actuelles de reconnaissance d'objets.
|
18 |
Reconnaissance d'objets multiclasses pour des applications d'aide à la conduite et de vidéo surveillanceZaklouta, Fatin 13 December 2011 (has links) (PDF)
La détection de piétons et la reconnaissance des panneaux routiers sont des fonctions importantes des systèmes d'aide à la conduite (anglais : Advanced Driver Assistance System - ADAS). Une nouvelle approche pour la reconnaissance des panneaux et deux méthodes d'élimination de fausses alarmes dans des applications de détection de piétons sont présentées dans cette thèse. Notre approche de reconnaissance de panneaux consiste en trois phases: une segmentation de couleurs, une détection de formes et une classification du contenu. Le color enhancement des régions rouges est amélioré en introduisant un seuil adaptatif. Dans la phase de classification, la performance du K-d tree est augmentée en utilisant un poids spatial. Les Random Forests obtiennent un taux de classification de 97% sur le benchmark allemand de la reconnaissance des panneaux routiers (German Traffic Sign Recognition Benchmark). Les besoins en mémoire et calcul sont réduits en employant une réduction de la dimension des caractéristiques. Les classifieurs atteignent un taux de classification aussi haut qu'avec une fraction de la dimension des caractéristiques, selectionée en utilisant des Random Forests ou Fisher's Crtierion. Cette technique est validée sur deux benchmarks d'images multiclasses : ETH80 et Caltech 101. Dans une application de vidéo surveillance avec des caméras statiques, les fausses alarmes des objets fixes, comme les arbres et les lampadaires, sont éliminées avec la corrélation sur plusieurs trames. Les fausses alarmes récurrentes sont supprimées par un filtre complémentaire en forme d'arbre.
|
19 |
Style du génome exploré par analyse textuelle de l'ADNLespinats, Sylvain 10 April 2006 (has links) (PDF)
Les séquences d'ADN peuvent être considérées comme des textes écrits dans un alphabet de 4 lettres. Des techniques inspirées de l'analyse textuelle permettent donc de les caractériser, entre autres à partir de fréquences d'apparition de courtes suites de caractères (les oligonucléotides ou mots). L'ensemble des fréquences des mots d'une longueur donnée est appelé « signature génomique » (cet ensemble est spécifique de l'espèce, ce qui justifie le terme de « signature »). La signature d'espèce est observable sur la plupart des courts fragments d'ADN, ce qui donne à penser qu'elle résulte d'un « style d'écriture ». De plus, la proximité entre espèces du point de vue de la signature génomique correspond bien souvent à une proximité en terme taxonomique. Pourtant, l'analyse des signatures génomiques se confronte rapidement à des limitations dues à la malédiction de la dimension. En effet, les données de grande dimension (la signature génomique a généralement 256 dimensions) montrent des propriétés qui mettent en défaut l'intuition. Par exemple, le phénomène de concentration des distances euclidiennes est bien connu.<br />Partant de ces constatations, nous avons mis en place des procédures d'évaluation des distances entre signatures de façon à rendre plus manifeste les informations biologiques sur lesquelles s'appuient nos analyses. Une méthode de projection non-linéaire des voisinages y est associée ce qui permet de s'affranchir des problèmes de grande dimension et de visualiser l'espace occupé par les données. L'analyse des relations entre les signatures pose le problème de la contribution de chaque variable (les mots) à la distance entre les signatures. Un Z-score original basé sur la variation de la fréquence des mots le long des génomes a permis de quantifier ces contributions. L'étude des variations de l'ensemble des fréquences le long d'un génomes permet d'extraire des segments originaux. Une méthode basée sur l'analyse du signal permet d'ailleurs de segmenter précisément ces zones originales.<br />Grâce à cet ensemble de méthodes, nous proposons des résultats biologiques. En particulier, nous mettons en évidence une organisation de l'espace des signatures génomiques cohérente avec la taxonomie des espèces. De plus, nous constatons la présence d'une syntaxe de l'ADN : il existe des « mots à caractère syntaxique » et des « mots à caractère sémantique », la signature s'appuyant surtout sur les mots à caractère syntaxique. Enfin, l'analyse des signatures le long du génome permet une détection et une segmentation précise des ARN et de probables transferts horizontaux. Une convergence du style des transferts horizontaux vers la signature de l'hôte a d'ailleurs pu être observée.<br />Des résultats variés ont été obtenus par analyse des signatures. Ainsi, la simplicité d'utilisation et la rapidité de l'analyse des séquences par signatures en font un outil puissant pour extraire de l'information biologique à partir des génomes.
|
20 |
Approche sensorimotrice de la perception de l'espace pour la robotique autonomeLaflaquière, Alban 19 July 2013 (has links) (PDF)
L'approche classique de conception des robots obéit à une organisation interne du type sentir-planifier-agir, proposée dès l'apparition des problématiques d'Intelligence Artificielle. Elle implique le développement amont de modèles d'interaction entre le robot et son environnement et d'algorithmes de traitement du flux sensoriel conduisant, à terme, à la génération de commandes motrices. Dans ce contexte particulier, les caractéristiques de l'environnement perçues par le robot dérivent fondamentalement des traitements du flux sensoriel implémentés par le roboticien. Elles peuvent donc se révéler inadaptées vis-à-vis de l'interaction sensorimotrice réelle que le robot entretient avec le monde. Une autre approche, développée dans cette thèse, consiste à repenser la problématique de la perception en robotique. Elle s'inspire de la théorie des contingences sensorimotrices qui propose de concevoir notre perception non pas comme un phénomène se produisant dans le cerveau mais comme une interaction que nous entretenons avec l'environnement. Cette perspective, radicalement opposée aux postulats classiques, induit que percevoir n'est pas inné mais s'acquiert par la découverte des relations sensorimotrices qui sous-tendent notre expérience du monde. L'objectif de cette thèse est d'appliquer ce nouveau paradigme au champ de la robotique. Plus précisément, les travaux menés visent à déterminer comment un robot naïf peut découvrir et caractériser l'espace dans lequel son corps et l'environnement sont plongés au travers de l'analyse de son seul flux sensorimoteur. Pour se faire, une approche sera développée sur la base de la compensabilité des variations sensorielles générées par les déplacements du système robot/environnement, concept initialement introduit par H.Poincaré. Elle permettra à nos robots de déterminer la dimension de l'espace géométrique extérieur puis d'en construire une représentation interne, permettant à terme d'interpréter intrinsèquement leur expérience et de guider leur action.
|
Page generated in 0.1703 seconds