• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 1
  • Tagged with
  • 18
  • 8
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ESTUDOS ESTRUTURAIS E FUNCIONAIS DAS PROTEÍNAS ALANINA RACEMASE ISOFORMA LONGA DE Trypanosoma cruzi E GLICERALDEÍDO-3-FOSFATO DESIDROGENASE DE Naegleria gruberi

Machado, Agnes Thiane Pereira 22 March 2017 (has links)
Made available in DSpace on 2017-07-20T12:40:20Z (GMT). No. of bitstreams: 1 Agnes Thiane Machado.pdf: 7176772 bytes, checksum: 01a4049f5c4aed0935803a0cf3a6468d (MD5) Previous issue date: 2017-03-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Study of protein three-dimensional structures allow us to investigate the relations between amino acid sequence, structure and function, what is important chiefly for proteins from pathogenic organisms or ones that belong to the same genus of these, such that they can be used as a structural model. In this context, this work aims at the structural characterization of the enzymes alanine racemase long isoform from Trypanosoma cruzi and glyceraldehyde-3-phosphate dehydrogenase from Naegleria gruberi. The long isoform of alanine racemase catalyzes the conversion between L and D-alanine which, in turn, is part of one of the metabolic pathways in Trypanosoma cruzi, the etiologic agent of Chagas disease. The heterologous expression of this enzyme in Escherichia coli BL21 (DE3) GroEL was analyzed by SDS-PAGE, which revealed that the protein is in higher proportion in the insoluble fraction, thus it was necessary to establish a recovery protocol followed by an in vitro refolding. Data from enzymatic assays and circular dichroism revealed the success of the recovery/refolding protocol, which may in the future contribute to the search for specific inhibitors. Glyceraldehyde-3-phosphate dehydrogenase from Naegleria gruberi catalyzes the sixth step of the organism’s glycolytic pathway. NgGAPDH enzyme was expressed in E. coli (DE3) using the pET-15b vector, and then purified by tree chromatographic steps, two of nickel affinity and one of size exclusion. The enzymatic characterization was investigated with the enzyme without the his-tag; NgGAPDH presented higher activity at pH 8.0, 25 °C and 10 mM of arsenate, and positive cooperativity for substrates G3P and NAD+. His-tag depleted NgGAPDH crystals appeared in 3 days after drop settings, the best crystal diffracted to 1.94 A resolution and belongs to space group P21 with cell parameters a = 83.74 A, b = 94.55 A, c = 90.93 A, = 99.96 °. The final refined structure presents R = 0.1652 and Rfree = 0.2029. The catalytic domain formed by residues 134 to 313 is highly conserved, as expected, with the exception of Asn145, present only in NgGAPDH, while the other GAPDHs present either Ser or Thr on the corresponding position. Molecular dynamics analysis revealed that Asn145 has correlated motion with residues Ala123, Thr125 and Pro126 that belong to what was called "bonded loop". It should be emphasized that this is the first GAPDH from the phylum Percolozoa that has its three dimensional structure determined and kinetic parameters established, such that we expect to have contributed to the understanding of the evolution of this class of proteins. / O estudo da estrutura tridimensional de proteínas nos permite investigar as relações entre sequência de aminoácidos, estrutura e função, o que é importante principalmente para proteínas de organismos patogênicos ou mesmo pertencente ao gênero destes, que podem ser utilizadas como modelo estrutural. Neste contexto, o presente trabalho visa caracterizar estruturalmente as enzimas alanina racemase isoforma longa de Trypanosoma cruzi e gliceraldeído-3-fosfato desidrogenase de Naegleria gruberi. A alanina racemase isoforma longa catalisa a conversão entre L e D-alanina em uma das vias metabólicas do T. cruzi, que é o agente etiológico da doença de Chagas. A análise por SDS-PAGE de amostras da expressão heteróloga dessa enzima em Escherichia coli BL21(DE3) GroEL revelou que a proteína está em maior proporção na fração insolúvel, por isso, foi necessário estabelecer um protocolo de recuperação seguido de um reenovelamento in vitro. Dados de ensaios enzimáticos e dicroísmo circular revelaram o sucesso do protocolo de recuperação/reenovelamento, o que poderá no futuro contribuir para a busca de inibidores específicos. A gliceraldeído-3-fosfato desidrogenase de Naegleria gruberi catalisa a sexta etapa da via glicolítica do organismo. A enzima NgGAPDH foi expressa em E. coli (DE3) usando-se o vetor pET-15b e então purificada em três passos de cromatografia, dois por afinidade a níquel e um por exclusão por tamanho. A caracterização enzimática foi realizada com a enzima sem a ―his-tag‖; a NgGAPDH apresentou maior atividade em pH 8,0, 25 °C e 10 mM de arsenato, e cooperatividade positiva frente aos substratos G3P e NAD+. Cristais de NgGAPDH sem a ―his-tag‖ apareceram em 3 dias após montagem das gotas e o melhor difratou a 1,94 A de resolução, pertencendo ao grupo espacial P21 com parâmetros de cela a = 83,74 Å, b = 94,55 A, c = 90,93 A e = 99,96 °. A estrutura final refinada apresenta R = 0,1652 e Rfree = 0,2029. O domínio catalítico formado pelos resíduos 134 a 313 é altamente conservado, como esperado, com exceção da Asn145, presente somente em NgGAPDH, enquanto que as demais GAPDHs apresentam Ser ou Thr na posição correspondente. Análises por dinâmica molecular revelaram que a Asn145 tem correlação de movimento com os resíduos Ala123, Thr125 e Pro126, pertencentes ao que se chamou de ―bonded loop‖. Ressalte-se que esta é a primeira GAPDH do filo Percolozoa que tem sua estrutura tridimensional determinada e parâmetros cinéticos estabelecidos, tal que se espera contribuir para o entendimento da evolução dessa classe de proteínas.
12

Inhibitory myší serinracemasy / Inhibitors of mouse serine racemase

Vorlová, Barbora January 2013 (has links)
Serine racemase (SR) is a pyridoxal-5'-phosphate-dependent enzyme responsible for biosynthesis of D-serine, a recognized neurotransmitter acting as a co-activator of N-methyl- D-aspartate (NMDA) type of glutamate receptors in the mammalian central nervous system. The hyperfunction of the mentioned receptors have been shown to be implicated in many neuropathological conditions including Alzheimer's disease, amyotrophic lateral sclerosis and epilepsy. To alleviate the symptoms of these diseases, several artificial blockers of NMDA receptors have been introduced into the clinical practice. However, many of these compounds cause undesirable side effects and it is thus necessary to search for either less harmful blockers or regulators of other targets of pharmaceutical intervention that are involved in NMDA receptor activation. In this context, specific inhibition of serine racemase seems to be a promising strategy for regulation of NMDA receptor overstimulation. Mouse serine racemase shares 89% identity with its human ortholog and it was also shown that both enzymes possess similar kinetic parameters and inhibitor specificity. Therefore, the mouse models can be used to search for a potent human serine racemase inhibitor. Although many different compounds for their inhibitory potency towards serine...
13

Exploiting enzyme promiscuity for rational design

Branneby, Cecilia January 2005 (has links)
Enzymes are today well recognized in various industrial applications, being an important component in detergents, and catalysts in the production of agrochemicals, foods, pharmaceuticals, and fine chemicals. Their large use is mainly due to their high selectivity and environmental advantage, compared to traditional catalysts. Tools and techniques in molecular biology offer the possibility to screen the natural sources and engineer new enzyme activities which further increases their usefulness as catalysts, in a broader area. Although enzymes show high substrate and reaction selectivity many enzymes are today known to catalyze other reactions than their natural ones. This is called enzyme promiscuity. It has been suggested that enzyme promiscuity is Nature’s way to create diversity. Small changes in the protein sequence can give the enzyme new reaction specificity. In this thesis I will present how rational design, based on molecular modeling, can be used to explore enzyme promiscuity and to change the enzyme reaction specificity. The first part of this work describes how Candida antarctica lipase B (CALB), by a single point mutation, was mutated to give increased activity for aldol additions, Michael additions and epoxidations. The activities of these reactions were predicted by quantum chemical calculations, which suggested that a single-point mutant of CALB would catalyze these reactions. Hence, the active site of CALB, which consists of a catalytic triad (Ser, His, Asp) and an oxyanion hole, was targeted by site-directed mutagenesis and the nucleophilic serine was mutated for either glycine or alanine. Enzymes were expressed in Pichia pastoris and analyzed for activity of the different reactions. In the case of the aldol additions the best mutant showed a four-fold initial rate over the wild type enzyme, for hexanal. Also Michael additions and epoxidations were successfully catalyzed by this mutant. In the last part of this thesis, rational design of alanine racemase from Geobacillus stearothermophilus was performed in order to alter the enzyme specificity. Active protein was expressed in Escherichia coli and analyzed. The explored reaction was the conversion of alanine to pyruvate and 2-butanone to 2-butylamine. One of the mutants showed increased activity for transamination, compared to the wild type. / QC 20100929
14

Role of α-methylacyl-CoA racemase in lipid metabolism

Selkälä, E. (Eija) 19 April 2016 (has links)
Abstract α-Methylacyl-CoA racemase (Amacr) is an auxiliary enzyme of β-oxidation and participates in the elimination of methyl-branched fatty acids in peroxisomes and in mitochondria and in the synthesis of bile acids in peroxisomes. Amacr catalyzes in reversible manner the isomerization of fatty acyl-CoA esters with a methyl group in the R-configuration to the corresponding S-configuration, which allows them to serve as substrates for the next reaction in their metabolism. The substrates of Amacr include the acyl-CoA esters of 2R-pristanic acid, a metabolite derived from phytol, and 25R-THCA and 25R-DHCA (tri- and dihydroxycholestanoic acid), the bile acid intermediates derived from cholesterol. AMACR-deficiency in humans results in the accumulation of R-isoforms of its substrates. Patients with adult onset AMACR-deficiency suffer from neurological disorders. The more severe infantile form of the deficiency is characterized by liver disease. Amacr-deficient mice show a bile acid pattern similar to that of human patients with accumulation of bile acid intermediates in their body. In contrast to humans, Amacr-deficient mice are clinically symptomless on a regular laboratory chow diet. Supplementation of phytol in their diet triggers the disease state with liver abnormalities. In this study it was shown that in spite of the disruption of a major metabolic pathway, Amacr-deficient mice are able to readjust their cholesterol and bile acid metabolism to a new balanced level allowing them to live a normal life span. A double knockout mouse model deficient in Amacr and MFE-1 (peroxisomal multifunctional enzyme type 1) was generated in this work. Characterization of this mouse line showed that MFE-1 can contribute to peroxisomal side-chain shortening of C27 bile acid intermediates in both Amacr-dependent and Amacr-independent pathways. In addition, this work confirmed that Amacr-deficient mice are unable to thrive when phytol is supplemented in their chow. The main cause of death was liver failure accompanied by kidney and brain abnormalities. The detoxification of phytol metabolites in liver is accompanied by activation of multiple pathways and Amacr-deficient mice are not able to respond adequately. The results of this study emphasize the indispensable role of Amacr in detoxification of α-methyl branched fatty acids. / Tiivistelmä α-Metyyliasyyli-koentsyymi-A-rasemaasi (Amacr) osallistuu metyyli-haarautuvien rasvahappojen eliminointiin peroksisomeissa ja mitokondrioissa ja sappihappojen synteesiin kolesterolista peroksisomeissa. Amacr katalysoi käänteisesti rasvahappojen asyyli-koentsyymi-A-estereiden isomerisaatio-reaktiota, jossa stereokemiallisesti R-asemassa oleva metyyliryhmä siirtyy S-asemaan. Tämä on edellytys eliminointiketjun seuraavan reaktion tapahtumiselle. Amacr-entsyymin substraatteja ovat fytolin aineenvaihdunnassa syntyvän 2R-pristaanihapon ja kolesterolista sappihapposynteesireitin välituotteina syntyvien 25R-trihydroksikolestaanihapon ja 25R-dihydroksikolestaanihapon (25R-THCA ja 25R-DHCA) asyyli-koentsyymi-A-esterit. Ihmisellä Amacr-entsyymin puutos johtaa R-muodossa olevien substraattien kertymiseen, joka aiheuttaa neurologisia oireita aikuisiässä alkavassa sairauden muodossa. Lapsuusiässä alkavassa tautimuodossa potilaille kehittyy vakava maksasairaus. Tutkimuksen tulokset osoittivat, että Amacr-poistogeenisten hiirten elinikä ei lyhene huolimatta yhden tärkeän aineenvaihduntareitin estymisestä. Tämä on hyvä esimerkki siitä, kuinka nisäkäs pystyy mukauttamaan kolesteroli- ja sappihappoaineenvaihduntaansa vastaamaan muuttunutta tilannetta aineenvaihdunnassa. Tässä työssä tuotettiin myös kaksoispoistogeeninen hiirimalli, jonka Amacr- ja peroksisomaalinen monitoiminnallinen entsyymi tyyppi 1- (MFE-1) entsyymit ovat toimimattomat. Tämä hiirimalli paljasti, että MFE-1 pystyy osallistumaan 27:ää hiiltä sisältävien sappihappovälituotteiden sivuketjun lyhentämiseen sekä Amacr entsyymin kanssa että ilman sitä. Työn tulokset myös osoittivat, että Amacr-poistogeeniset hiiret eivät ole elinkykyisiä, jos niiden ravinto sisältää fytolia. Maksan toiminnanvajaus oli näiden hiirten tärkein kuolinsyy, mutta hiirten munuaisten ja aivojen kudosrakenteissa oli myös muutoksia. Maksassa fytolin metaboliittien vaarattomaksi tekeminen aiheuttaa villityypin hiirillä useamman aineenvaihduntareitin aktivoitumisen, mutta Amacr-poistogeeniset hiiret eivät pysty reagoimaan tähän samalla tavalla. Tämä työ osoittaa, että Amacr-entsyymin elintärkeä tehtävä on osallistua ravinnon mukana elimistöön joutuvien α-metyylihaarautuvien rasvahappojen eliminaatioon.
15

Cell Survival Strategies : Role Of Gyrase Modulatory Proteins

Sengupta, Sugopa 01 1900 (has links)
A steady state level of negative supercoiling is essential for chromosome condensation, initiation of replication and subsequent elongation step. DNA gyrase, found in every eubacteria, serves the essential housekeeping function of maintenance of the negative supercoiling status of the genome. The functional holoenzyme is a heterotetramer, comprising of two GyrA and two GyrB subunits. DNA gyrase is an indispensable enzyme and serves as a readily susceptible target for natural antibacterial agents. The enzymatic steps of topoisomerisation by gyrase involve transient double strand break and rejoining of the strands after intact duplex transfer. Corruption of its catalytic cycle can lead to the generation of cytotoxic double-strand DNA breaks. Most of the anti-gyrase agents achieve their objective by targeting the vulnerable step of the reaction cycle i.e. DNA cleavage step. Bacteria on their part must have evolved and adopted strategies to counter the action of external agents and prevent the generation of double strand breaks thereby safeguarding their genome. In the present thesis, attempts have been made to understand the role of three endogenous gyrase interacting proteins in gyrase modulation and cellular defense against anti-gyrase agents. The thesis is divided into six chapters. Chapter 1 introduces the wonder enzymes “DNA topoisomerases” starting with a brief classification of these enzymes and their physiological functions. In the next section, DNA gyrase has been discussed in greater detail. The structural aspects as well as the mechanism of the topoisomerisation reaction catalyzed by gyrase have been discussed. Final section gives an overview of different gyrase modulators known till date focusing on their source, structure and mode of action. The scope and objectives of the present study is presented at the end of this chapter. In Chapter 2 is aimed at understanding the physiological role of GyrI. GyrI, originally identified in Escherichia coli as an inhibitor of DNA gyrase, has been previously shown in the laboratory to render protection against gyrase poisons and also various other DNA damaging agents (mitomycin C, MNNG). Abolishing GyrI expression renders the cell hypersensitive to these cytotoxic agents. Interestingly, GyrI exhibits contrasting behavior towards two plasmid encoded proteinaceous poisons of DNA gyrase. It reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin. However, a positive cooperation between GyrI and F plasmid encoded toxin CcdB, results in enhanced DNA damage and cell death. These results suggest a more complex functional interplay and physiological role for GyrI. Search for other chromosomally encoded gyrase inhibitors led to YacG, a small zinc finger protein (7.3kDa) from E. coli, shown to be a member of DNA gyrase interactome, in a protein-protein interaction network described recently. Chapter 3 deals with the detailed characterization of YacG. It is shown that YacG inhibits DNA gyrase by binding to GyrB subunit and preventing DNA binding activity of the enzyme. More importantly, it protects against the cytotoxic effects of other gyrase inhibitors like ciprofloxacin, novobiocin, microcin B17 and CcdB. Further investigations revealed that YacG and its homologues are found only in proteobacteria. Hence, it appears to be a defense strategy developed by gram-negative bacteria to fight against the gyrase targeting cytotoxic agents. Inhibition by YacG appears to be specific to E. coli gyrase as mycobacterial enzyme is refractile to YacG action. GyrB, only in gram-negative organisms, possesses extra stretch of 165 amino acids, indispensable for DNA binding. Biochemical experiments with the truncated GyrB lacking the extra stretch reveal the importance of this stretch for stable YacG-GyrB interaction. E. coli topoisomerase IV is also resistant to YacG mediated inhibition, probably due to the absence of the extra stretch in ParE subunit, which is otherwise highly similar to GyrB. Further, YacG homologues from other proteobacterial members (Sinorhizobium meliloti and Haemophilus influenzae homologues sharing 35% and 63 % identity with E. coli YacG respectively ) also inhibits E. coli DNA gyrase at comparable levels. YacG thus emerges as a proteobacteria specific inhibitor of DNA gyrase. The occurrence of both YacG and the gyrase extra stretch only in proteobacteria, suggest co-evolution of interacting partners in proteobacteria. In Chapter 4, the study of endogenous gyrase modulators is extended to Mycobacterium sp. glutamate racemase (MurI) from E. coli has been shown earlier to be an inhibitor of DNA gyrase. However, nothing much was known about its mode of action. MurI is an important enzyme in the cell wall biosynthesis pathway, which catalyses the conversion of L-glutamate to D-glutamate, an integral component of the bacterial cell wall. In this chapter, it is demonstrated that M. tuberculosis MurI inhibits DNA gyrase activity, in addition to its precursor independent racemization function. The inhibition is not species specific as E. coli gyrase is also inhibited. However, it is gyrase specific as topoisomerase I activity remains unaltered. The mechanism of inhibition by MurI has been elucidated for the first time and it is shown that MurI binds to GyrA subunit of the enzyme leading to a decrease in DNA binding of the holoenzyme. The sequestration of the gyrase by MurI results in inhibition of all reactions catalyzed by DNA gyrase. Chapter 5 is the extension of the studies on glutamate racemase into another species, i.e. Mycobacterium smegmatis. DNA gyrase inhibition seems to be an additional attribute of some of the glutamate racemases, but not all, as Glr isozyme from B. subtilis has no effect on gyrase activity in spite of sharing a high degree of similarity with the gyrase inhibitory glutamate racemases. It is shown that like the M. tuberculosis MurI, M. smegmatis enzyme is also a bifunctional enzyme. It inhibits DNA gyrase in addition to its racemization activity. Further, overexpression of the enzyme in M. smegmatis provides protection to the organism against fluoroquinolones. DNA gyrase inhibitory property thus appears to be a typical characteristic of these MurI and seems to have evolved to either modulate the function of the essential housekeeping enzyme or to provide protection to gyrase against gyrase inhibitors, which cause double strand breaks in the genome. In the above chapters, it is shown that besides its crucial role in cell wall biosynthesis, mycobacterial MurI moon lights as DNA gyrase inhibitor. That the two activities exhibited by M. tuberculosis MurI are unlinked and independent of each other is demonstrated in Chapter 6. Racemization function of MurI is not essential for its gyrase inhibitory property as mutants compromised in racemization activity retain gyrase inhibition property. MurI- DNA gyrase interaction influences gyrase activity but has no effect on racemization activity of MurI. MurI expression in mycobacterial cells provides protection against the action of ciprofloxacin, thereby suggesting a role of MurI in countering external agents targeting DNA gyrase. Further M. tuberculosis MurI overexpressed in near homologous expression system of M. smegmatis yields highly soluble enzyme which can be further used for structural and functional studies. In conclusion, the studies reveal that the endogenous inhibitors essentially influence the enzyme activity by sequestering the enzyme away from DNA. None of them cause cytotoxicity, which usually arises as a result of DNA damage caused by accumulation of gyrase-DNA covalent intermediate. On the contrary they provide protection against such gyrase poisons. Comparative analysis of these proteinaceous inhibitors, however, does not reveal a common motif or structural fold, required for their ability to inhibit DNA gyrase. Based on these studies, it can be proposed that these endogenous proteins exist to serve as cellular defense strategies against external abuse and also to modulate the intracellular activity of DNA gyrase as and when required, for accurate division, functioning and survival of the cells.
16

Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

Erdmann, Kati, Kaulke, Knut, Thomae, Cathleen, Hübner, Doreen, Sergon, Mildred, Fröhner, Michael, Wirth, Manfred P, Füssel, Susanne 11 July 2014 (has links) (PDF)
Background: Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). Methods: In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. Results: The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. Conclusions: The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction.
17

Dynamic Covalent Resolution: Applications in System Screening and Asymmetric Synthesis

Vongvilai, Pornrapee January 2009 (has links)
Combined thermodynamic/kinetic events amount to a kinetically controlled Dynamic Combinatorial Resolution (DCR) process, where the lability of themolecules/aggregates are used to generate dynamics, and the species experiencing the lowest activation energy is selected via kinetic process. Bothinter- and intramolecular processes can be performed using this concept,resulting in complete resolution and associated amplification of the selected species. When intermolecular processes are resolved using this method, an additional advantage is that only a catalytic amount of selector is required tocontrol the system.In this thesis, the Henry and Strecker reactions were developed as efficient C–C bond-forming routes to single and multi-level dynamic covalent systems.These methods efficiently provided a vast variety of substrates from smallnumbers of starting compounds. These dynamic systems, generated underthermodynamic control at mild conditions, were coupled in one-pot processes with kinetically controlled lipase-mediated transacylation. The enzym emediated resolution of the dynamic nitroaldol system led to enantiomericallypure β-nitroacetates in high yield. Furthermore, combination of multi-leveldynamic Strecker systems and lipase-mediated acylation resulted in theresolution of specific α-aminonitriles from the pool.In addition, the asymmetric synthesis of discrete β-nitroalkanol derivatives wassimply achieved, resulting in high yields and high enantiomeric purities through the direct one-pot procedure. Moreover, racemase type activity oflipase enzyme through N-substituted α-aminonitrile structure has been discovered. By use of control experiments together with molecular modeling,the mechanism of the racemization process has been established. Asymmetric synthesis of N-methyl α-aminonitriles was also performed through the dualfunction of lipase, resulting in high yield and good enantio selectivity. / <p>QC 20100818</p>
18

Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

Erdmann, Kati, Kaulke, Knut, Thomae, Cathleen, Hübner, Doreen, Sergon, Mildred, Fröhner, Michael, Wirth, Manfred P, Füssel, Susanne 11 July 2014 (has links)
Background: Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). Methods: In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. Results: The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. Conclusions: The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction.

Page generated in 0.0477 seconds