• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 125
  • 60
  • 59
  • 8
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 742
  • 439
  • 105
  • 98
  • 89
  • 87
  • 79
  • 76
  • 52
  • 49
  • 49
  • 48
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Narrow Angle Radiometer for Oxy-Coal Combustion

Burchfield, Nicole Ashley 09 April 2020 (has links)
A new method of power production, called pressurized oxy-fuel combustion, burns coal with CO2 and oxygen, rather than air, bringing us closer to the end goal of developing zero emission coal-fired utility boilers. However, high-pressure, high-temperature systems such as these are under-studied, and their behavior is difficult to measure. An accurate model for previously untested conditions requires data for validation. The heat release profile of flames and their radiative intensity is one of the key data sets required for model validation of an oxy-coal combustion system. A radiometer can be used to obtain the necessary radiative heat flux data. However, several studies show significant measurement errors of past radiometer designs. This work focuses on developing a narrow angle radiometer that can be used to describe radiative heat transfer from a pressurized oxy-coal flame. The sensitivity of the instrument to outside environmental influences is thoroughly examined, making it possible to obtain the axial radiative heat flux profile of the flame in a 100kW pressurized facility by accurately converting the measured quantities into radiative heat flux. Design aspects of the radiometer are chosen to improve the accuracy of radiative heat flux measurements as well as conform to the physical constraints of the 100kW pressurized facility. The radiometer is built with a 0.079-inch aperture, an 8.63-inch probe internally coated with high emissivity coating, four baffles spaced evenly down the length of the probe, no optic lens, a thermopile as the sensor, argon purge gas, and a water-cooled jacket. The radiometer has a viewing angle of 1.33 degrees. The instrument is calibrated with a black body radiator, and these calibration data are used in combination with radiation models to convert the radiometer signal in mV to radiative heat flux in kW/m2. Environmental factors affecting accuracy are studied. The results of the calibration data show that the radiometer measurements will produce a calculated heat flux that is accurate to within 5.98E-04 kW/m2.
352

MOLECULAR GAS PROPERTIES IN LOCAL LUMINOUS INFRARED GALAXIES

Sliwa, Kazimierz 11 1900 (has links)
In this thesis, I analyze the physical conditions such as temperature, volume density and column density of the molecular gas in four Luminous Infrared Galaxies (LIRGs): Arp 55, NGC 1614, VV 114 and NGC 2623. LIRGs are systems where two gas-rich galaxies are in the process of merging. The goal of my thesis is to look for trends in the molecular gas properties during the merger process. I use several observations of transitions of carbon monoxide (12CO) and its isotopologue 13CO from the Submillimeter Array, Combined Array for Research in Millimeter-wave Astronomy and Atacama Large Millimeter/submillimeter Array. The high-resolution observations allow me to analyze the molecular gas at several positions inside a single galaxy. The observations are fitted to models obtained from a radiative transfer code using a Bayesian likelihood method. I find that advanced mergers such as NGC 2623 and VV 114 have warmer (≥40 K), less dense (≤ 10^3 cm^−3) molecular gas than early/intermediate stage mergers such as Arp 55 and NGC 1614. I suggest that there are mechanisms such as stellar winds, supernovae and AGN activity that dissipate the molecular gas and thus lower the density and warm the gas as the merger progresses. The molecular gas pressure of the advanced mergers is found to be lower by nearly an order of magnitude when compared to the early/intermediate stage mergers. I also find that the [12CO]/[13CO] abundance ratio in NGC 1614, VV 114 and NGC 2623 is unusually high (> 100) when compared to the interstellar medium value near the center of the Milky Way (∼ 30). Interestingly, Arp 55 does not conform to this trend with a [12CO]/[13CO] value of ∼ 30, similar to the Milky Way center. I suggest that nucleosynthesis may play a big role in enhancing the abundance ratio and/or the molecular gas from the outer radii of Arp 55 has not reached the central inner regions to drive the abundance ratio up. Nevertheless, Arp 55 is in an interesting merger stage. Finally, I measured the CO luminosity to molecular gas mass conversion factor, alpha_{CO}, across the sample in search of the transition stage from a Galactic-like alpha_{CO} to the 4-5 times lower value found in LIRGs. iii The four sources all have measured alpha_{CO} values that are consistent with the LIRG value of 0.8 M_{sol} (K km s^−1 pc^2)^−1. I suggest that we look at an even earlier merger stage such as Arp 240 to find the point of transition. With the golden age of submillimeter astronomy upon us, this is just the beginning of furthering our knowledge of the merger process and what happens to the molecular gas, the fuel for all star formation. / Thesis / Doctor of Philosophy (PhD)
353

Simulating Radiative Feedback and the Formation of Massive Stars

Klassen, Mikhail January 2016 (has links)
This thesis is a study of massive star formation: the environments in which they form and the effect that their radiation feedback has on their environments. We present high-performance supercomputer simulations of massive star formation inside molecular cloud clumps and cores. First, we present a novel radiative transfer code that hybridizes two previous approaches to radiative transfer (raytracing and flux-limited diffusion) and implements it in a Cartesian grid-based code with adaptive mesh refinement, representing the first of such implementations. This hybrid radiative transfer code allows for more accurate calculations of the radiation pressure and irradiated gas temperature that are the hallmark of massive star formation and which threaten to limit the mass which stars can ultimately obtain. Next, we apply this hybrid radiative transfer code in simulations of massive protostellar cores. We simulate their gravitational collapse and the formation of a massive protostar surrounded by a Keplerian accretion disk. These disks become gravitationally unstable, increasing the accretion rate onto the star, but do not fragment to form additional stars. We demonstrate that massive stars accrete material predominantly through their circumstellar disks, and via radiation pressure drive large outflow bubbles that appear stable to classic fluid instabilities. Finally, we present simulations of the larger context of star formation: turbulent, magnetised, filamentary cloud clumps. We study the magnetic field geometry and accretion flows. We find that in clouds where the turbulent and magnetic energies are approximately equal, the gravitational energy must dominate the kinetic energy for there to be a coherent magnetic field structure. Star cluster formation takes place inside the primary filament and the photoionisation feedback from a single massive star drives the creation of a bubble of hot, ionised gas that ultimately engulfs the star cluster and destroys the filament. / Thesis / Doctor of Philosophy (PhD)
354

Analysing the sensitivity of Arctic large-scale circulation to the regional radiation forcing over Europe using deep learning

Mehrdad, S., Sudhakar, D., Jacobi, C. 01 June 2023 (has links)
The Arctic large-scale circulation is governed by a wide range of factor. In order to investigate the sensitivity of the Arctic large-scale circulation to the regional radiative forcing over Europe, we conducted sensitivity experiments using a state-of-the-art atmosphere-land-ocean coupled model. Using advanced Deep Learning (DL) algorithms, we analyzed the Arctic circulation regimes response to negative radiative forcing anomalies over Europe. We examined different architectures for our DL algorithm to find the most suitable one for our analysis. We simultaneously layer Thickness (300-700-T) and their spatiotemporal patterns with the DL algorithm. The DL algorithm showed good skills in capturing the general structure of the large-scale circulation. The radiative forcing over Europe doesn't seem to induce the occurrence frequency of preferred circulation regimes. / Die arktische großräumige Zirkulation wird von einer Vielzahl von Faktoren bestimmt. Um die Sensitivität der arktischen großräumigen Zirkulation auf den regionalen Strahlungsantrieb über Europa zu untersuchen, haben wir Sensitivitätsexperimente mit einem hochmodernen gekoppelten Atmosphäre-Land-Ozean-Modell untersucht. Unter Verwendung neuer Deep-Learning-Algorithmen (DL) analysierten wir die Reaktion der arktischen Zirkulationsregime auf negativen Strahlungsantriebsanomalien über Europa. Wir haben verhsciedene Architekturen für unseren DL-Algorithmus untersucht, um die am besten geeignete für unsere Analyse zu finden. Wir haben die Felder des mittleren Drucks auf Meeresspiegelniveau und der Schichtdicke von 700 bis 300 hPa und ihre raumzeitlichen Muster mit dem DL-Algorithmus analysiert. Die DL-Algorithmen zeigten gute Ergebnisse bei der Erfassung der allgmeinen Struktur der großräumigen Zirkulation. Der Strahlungsantrieb über Europa scheint der großräumigen Zirkulation keine neuen raumzeitlichen Muster zuzufügen, veränderte aber die Häufigkeit des Auftretens bevorzugter Zirkulationsmuster.
355

A Theoretical Study of Elementary Processes in Interstellar Plasma

Forer, Joshua 01 January 2023 (has links) (PDF)
Interstellar plasma — interstellar clouds in particular — play an important role in determining the structure and evolution of galaxies. Understanding the time evolution of such plasmas requires knowledge of the chemical processes that drive their dynamics. Two processes are studied in this dissertation: radiative electron attachment (REA) via dipole-bound states (DBSs) and dissociative recombination (DR). Of the several hundred molecules detected in the interstellar medium, only eight anions have been detected: CN-, C3N-, C5N-, C7N-, C4H-, C6H-, C8H-, and C10H-. Their production mechanism is not well known; REA was suggested as a possible formation pathway, but previous theoretical studies have found that REA rate coefficients were too low to explain the formation of CN-, C3N-, and C5N-. It was later suggested that including DBSs — an electron weakly bound at a large distance to the large dipole moment of a neutral molecule — could appreciably enhance the REA rate coefficients. The first portion of this study is dedicated to investigating the role of the large dipole moment of rotating C3N using an accurate \it ab initio approach with electronic and rotational resolution. DBS wavefunctions of C3N- are calculated and used to obtain REA cross sections that produce even smaller rate coefficients, suggesting that C3N- is efficiently formed by a different process. The second part of this study investigates DR in the difficult case of molecules with low-lying eletronic resonances, although these are not necessary for the approach. An approach to treat both direct and indirect mechanisms of DR in a diatomic ion with electronic, vibrational, and rotational resolution using R-matrix scattering calculations, frame transformation theory, and multichannel quantum defect theory is presented and applied to the CH+ and CF+ molecular ions at low collision energies. The calculated CH+ cross sections agree well with recent rotationally state-resolved experimental results and overall better than previous theoretical results. The calculated CF+ cross sections agree well with experimental results, although these do not have rotational resolution, and overall better than previous theoretical results at low energies. Additionally, the method can study rovibronic (de-)excitation — a process in competition with DR. These are calculated and compared to previous theoretical calculations for CH+, which which our results agree well with the exception of dipole-driven rotational excitation cross sections. This discrepancy is tentatively attibuted to negelcting the contribution of higher partial waves in the description of the incident electron, which will be incorporated in future studies.
356

Radiative Characteristics of a Thin Cellulosic Fuel at Discrete Levels of Pyrolysis: Angular, Spectral, and Thermal Dependencies

Pettegrew, Richard Dale January 2006 (has links)
No description available.
357

Investigating the Structure of Protoplanetary Disks Using Radiative Transfer Modeling

Swearingen, Jeremy R. 12 October 2015 (has links)
No description available.
358

The ³H(d,γ) Reaction and the ³H(d,γ)/ ³H(d,n) Branching Ratio for E<sub>c.m.</sub> ≤ 300 keV

Parker, Cody E. January 2016 (has links)
No description available.
359

Radiative Transfer Models of the Galactic Center

Schlawin, Everett A. January 2009 (has links)
No description available.
360

Monte Carlo/Fokker-Planck simulations of Accretion Phenomena and Optical Spectra of BL Lacertae Objects

Finke, Justin David 25 September 2007 (has links)
No description available.

Page generated in 0.0569 seconds