• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification and Development of a Model of Railway Track Dynamic Behaviour

Steffens, David Martyn January 2005 (has links)
The research presented in this thesis has identified and developed a sophisticated computer model for the analysis of railway track dynamic behaviour to be used by the Rail Cooperative Research Centre for Railway Engineering and Technologies (Rail CRC) in Australia. To be competitive railway track owners need to extract as much performance as possible from their asset without serviceability or catastrophic failure. Railway track designers therefore need to develop more knowledge of the static and dynamic loadings that track may be subjected to in its lifetime. This would be best undertaken using computer modelling capable of quantifying the effects of train speed, traffic mix, wheel impact loading and distribution of vehicle loads into the track. A comprehensive set of criteria for the selection of a model of track dynamic behaviour was developed. An international review of state-of-the-art models which represented the railway track structure under the loading of a passing train was undertaken. The models' capabilities were assessed and a number of potential models identified. A benchmark test was initiated to compare current models available throughout the international railway research community. This unique benchmark test engaged six researchers to compare their railway track models using a set of theoretical vehicle and track data. The benchmark results showed that significantly different results may be obtained by models, depending on the assumptions of the user in representing a particular track scenario. Differing complexities and modelling methods, the number of different input parameters required and the representation of the irregularities in the wheel and rail all have effect on the results produced. As a result of these initiatives, the DARTS (Dynamic Analysis of Rail Track Structures) computer model was chosen for use by the Rail CRC. A user-friendly interface was created for DARTS by the writer, which was readily interpretable by railway design engineers. At the time of writing, DARTS was found to be suitable for detailed investigations planned by the Rail CRC for future research and was provided for use through an Intellectual Property agreement with its author.
2

Design, Modeling and Tests of Electromagnetic Energy Harvesting Systems for Railway Track and Car Applications

Pan, Yu 22 January 2020 (has links)
This study proposes various methods to harvest the mechanical energy present in railcar suspensions and railroad tracks to generate electricity that is suitable for onboard or trackside electronics, using electromagnetic generators. Compact electromagnetic energy harvesters that can be installed onboard railcars or wayside on railroad tracks are designed, fabricated, and tested. The designs integrate a mechanical motion rectifier (MMR) with embedded one-way clutches in the bevel gears in order to convert the bi-directional mechanical energy that commonly exists in the form of vibrations into a unidirectional rotation of the generator. The ball screw mechanism is configured such that it has reduced backlash and thus can more efficiently harvest energy from low-amplitude vibrations. Two prototype harvesters are fabricated and tested extensively in the laboratory using a suspension dynamometer and in the field onboard a railcar and on a test track. A power management system with an energy storage circuit has also been developed for this onboard harvester. The laboratory evaluation indicate that the harvesters are capable of harvesting power with sufficient current and voltage for successfully powering light electronics or charging a low demand battery pack. The harvested power varies widely from a few to tens of Watts, depending on the resistive load across the harvester and the amplitude and frequency of the mechanical motion. The laboratory test results are verified through field testing. One harvester is tested onboard a freight railcar, placing it across the wedge suspension, to use the small amount of relative displacement at the wedge suspension to harvest energy. A second harvester is placed on a test track to use the vertical motion that occurs due to passing wheels for wayside energy harvesting. Both onboard and wayside tests confirm the laboratory test results in terms of the success of the design concept in providing low-power electrical power. The harvester design is further integrated into a conventional railroad tie for ease of field installation and for improving the efficiency of harvesting the mechanical energy at the rail. The integrated design, referred to as the "smart tie," not only protects the energy harvester, the wiring harness, and supporting electronics from the maintenance-of-the-way equipment, but also positions the harvester in a mechanically advantageous position that can maximize the track-induced motion, and hence the harvested power. Although for testing purposes, the smart tie uses a modified composite tie, it can be integrated into other track tie arrangements that are used for revenue service track, including concrete and wooden ties. A prototype smart tie is fabricated for laboratory testing, and the results nearly surpass the results obtained earlier from the wayside harvester. The smart tie is currently being considered for revenue service field testing over an extended length of time, potentially at a railroad mega site or similarly suitable location. / Doctor of Philosophy / This dissertation proposes three different electromagnetic energy harvesters for harvesting railroad track and railcar suspension vibration energy. The concept is similar to what you may have seen in self-powering flashlights that are often advertised in late-night TV commercials. You shake the flashlight vigorously, which moves an energy harvester devoice and, Voila, the light bulb comes on. The device design in this study uses the mechanical energy that is present in a vehicle or at a railroad track to harvest the mechanical energy that is naturally present in the form of electrical energy, which can then be used for powering electronic devices and sensors of various kinds. Such sensors and electronics would help with improving the operational efficiency of railroads. The energy harvesters can be installed onboard a railcar or at the track. In either case, the movement of the train creates a small amount of vibration energy that is turned into electrical power. When onboard a train the power can be used for sensors, GPS, and similar devices to allow the operator to better monitor the condition and location of the train. Note that most railcars, especially the freight railcars, do not have any onboard electrical power. Similarly, the energy harvester can be installed at the track to convert the small amount of up and down motion that happens with the passing of each wheel into energy that could be used for integration of sensors that make the track "smarter." This means that the sensors can potentially alert the engineers who are responsible for monitoring the track of an existing or impending problem with the track. Both the railcar and track integration of the energy harvester that is designed, fabricated, and tested during this study are exciting concepts that can improve the rail industry in the U.S. This document includes the details of designing efficient energy harvesters, specifically for rail applications. A prototype of the energy harvester is fabricated and tested extensively in the lab and in the field, albeit to a more limited extent. The test results were quite successful, which is why I am telling you about them! Both the laboratory and field test results show that the device holds significant promise for rail applications.
3

Přesuvna / Transfer table

Bartel, Jindřich January 2016 (has links)
Diploma thesis deals with the design of transfer table for steel sheets with stroke using screw jacks. The thesis contains a technical balance sheet construction of electromechanical and hydraulic transfer table. The main work is a description of the conceptual solutions and description of selected components. The thesis includes calculations wheel drive and stroke, design and control wheel blocks and traversing chain. End of thesis includes strength finite element analysis with the determination of the maximum stress and strain. The work accompanying drawings.
4

Three-dimensional scene recovery for measuring sighting distances of rail track assets from monocular forward facing videos

Warsop, Thomas E. January 2011 (has links)
Rail track asset sighting distance must be checked regularly to ensure the continued and safe operation of rolling stock. Methods currently used to check asset line-of-sight involve manual labour or laser systems. Video cameras and computer vision techniques provide one possible route for cheaper, automated systems. Three categories of computer vision method are identified for possible application: two-dimensional object recognition, two-dimensional object tracking and three-dimensional scene recovery. However, presented experimentation shows recognition and tracking methods produce less accurate asset line-of-sight results for increasing asset-camera distance. Regarding three-dimensional scene recovery, evidence is presented suggesting a relationship between image feature and recovered scene information. A novel framework which learns these relationships is proposed. Learnt relationships from recovered image features probabilistically limit the search space of future features, improving efficiency. This framework is applied to several scene recovery methods and is shown (on average) to decrease computation by two-thirds for a possible, small decrease in accuracy of recovered scenes. Asset line-of-sight results computed from recovered three-dimensional terrain data are shown to be more accurate than two-dimensional methods, not effected by increasing asset-camera distance. Finally, the analysis of terrain in terms of effect on asset line-of-sight is considered. Terrain elements, segmented using semantic information, are ranked with a metric combining a minimum line-of-sight blocking distance and the growth required to achieve this minimum distance. Since this ranking measure is relative, it is shown how an approximation of the terrain data can be applied, decreasing computation time. Further efficiency increases are found by decomposing the problem into a set of two-dimensional problems and applying binary search techniques. The combination of the research elements presented in this thesis provide efficient methods for automatically analysing asset line-of-sight and the impact of the surrounding terrain, from captured monocular video.
5

Přesuvna elektromechanická / Transfer table electromechanical

Přecechtílek, Pavel January 2014 (has links)
The aim of this thesis is to design a proposal of Transfer table electromechanical earmarked for transporting packs of sheets of tin with balance-sheet of electromechanical and electrohydraulic construction and to make important technical calculations. The introduction contains a description of the used constructional solution with the description of the individual parts of the transfer table and survey used components from different producer. The work includes functional calculations, which mainly includes the design and control of power running and lifting gear, calculate speeds and lift loads, the chain drives and other assemblies Transverse. Conclusion of this work deals with the assessment of the frame strength of the Transfer table using the finite element method. Further the work deals with the assessment of the maximum capacity of the machine and with any design modifications. The work also contains a design documentation, especially the plan of the Transfer table and detailed drawings of the frame and eccentric casters.
6

Einsatz von Bacillus subtilis und Lactobacillus-Stämmen zur Entwicklung und Gestaltung technischer Vegetationssysteme für die Gleisbett-Naturierung

Dunya, Sadif 25 April 2005 (has links)
Das Ziel der Arbeit war die Entwicklung einer Begrünungsmethode für Gleisbette mit schneller Vegetationsentwicklung. Zur Begrünung wurden Sedumpflanzen verwendet, die durch den Einsatz von Bacillus subtilis, Lactobacillus und Nährsubstrat (allein und kombiniert) in verschiedenen Vegetationssystemen auf dem nährstoffarmen Standort Gleisbett etabliert werden sollten. Die Aktivität der inokulierten Mikroorganismen wurde indirekt über den Einfluss auf die Vegetationsleistung ermittelt. Der Einsatz von B. subtilis und Lactobacillus bewirkte eine signifikante Wachstumsförderung der oberirdischen Pflanzenteile. Die Anwendung von Nährsubstrat als Bodenhilfsmittel war ebenfalls für das Pflanzenwachstum besonders wirksam, sowohl allein appliziert als auch in Kombination mit den Bakterien. Darüber hinaus führte die Applikation der Bakterien und des Nährsubstrates zu einem reduzierten Trockenstress auf Geotextilmatten. Die Wahl des Substrates war entscheidend für die Wirksamkeit der Bakterieninokulation. Jedoch hatten höhere Versuchstemperaturen und pH-Werte ebenfalls eine positive Wirkung auf das Pflanzenwachstum. Diese Einflüsse waren in Kombination mit Ziegelbruchsubstrat wesentlich stärker als mit den anderen getesteten Substrattypen. Das Ziegelbruchsubstrat kombiniert mit einer Bakterien- und Nährsubstratbehandlung bewährte sich als günstiges, umweltschonendes Begrünungsverfahren von Gleisbettanlagen. / The aim of the present study was to develop and improve existing methods for the remediation of rail tracks using soil borne bacteria. Through the use of Bacillus subtilis and Lactobacillus ssp. alone and in combination with a nutrient solution three different growth substrates were tested. The substrates were brick chips, textile mats, and mineral wool mats. Brick chips were tested along railway tracks in Munich but all three substrates were tested along an artificial rail track on the experimental station at the Humboldt University-Berlin. Plants selected for remediation belong to the genus Sedum, which is relatively tolerant to dry conditions. The use of Bacillus subtilis and Lactobacillus in combination with a nutrient solution improved plant growth significantly. Plants inoculated with bacteria showed increased growth during the first three months but after four months there was no longer any significant difference between treatments. The addition of nutrient solution alone improved plant growth. Plant growth was significantly different on all three substrates, whereas brick chips were the best substrate. The results of this study indicate that the quality of the substrate is the most important factor for remediation and greening of rail tracks. Both bacteria tested had only a limited effect. High temperature and pH resulted in larger Sedum plants in the open field. Brick chips are a cheap substrate which can be used for rail track greening. The rapid growth of plants can be influenced by the application of an additional nutrient solution as well as inoculation with Lactobacillus and/or B. subtilis.
7

The stiffening of soft soils on railway lines

Dong, K., Connolly, D.P., Laghrouche, O., Woodward, P.K., Alves Costa, P. 21 December 2020 (has links)
Railway tracks experience elevated rail deflections when the supporting soil is soft and/or the train speed is greater than approximately 50% of the wave propagation velocity in the track-soil system (i.e. the critical velocity). Such vibrations are undesirable, so soil replacement or soil improvement of the natural soil (or alternatively mini-piles or lime-cement treatment) is often used to increase track-ground stiffness prior to line construction. Although areas of existing soft subgrade might be easily identified on a potential new rail route, it is challenging to determine the type and depth of ground remediation required. Therefore, major cost savings can be made by optimising ground replacement/improvement strategies. This paper presents a numerical railway model, designed for the dynamic analysis of track-ground vibrations induced by high speed rail lines. The model simulates the ground using a thin-layer finite element formulation capable of calculating 3D stresses and strains within the soil during train vehicle passage. The railroad track is modelled using a multi-layered formulation which permits wave propagation in the longitudinal direction, and is coupled with the soil model in the frequency-wavenumber domain. The model is validated using a combination of experimental railway field data, published numerical data and a commercial finite element package. It is shown to predict track and ground behaviour accurately for a range of train speeds. The railway simulation model is computationally efficient and able to quickly assess dynamic, multi-layered soil response in the presence of ballast and slab track structures. Therefore it is well-suited to analysing the effect of different soil replacement strategies on dynamic track behaviour, which is particularly important when close to critical speed. To show this, three soil-embankment examples are used to compare the effect of different combinations of stiffness improvement (stiffness magnitude and remediation depths up to 5 m) on track behaviour. It is found that improvement strategies must be carefully chosen depending upon the track type and existing subgrade layering configuration. Under certain circumstances, soil improvement can have a negligible effect, or possibly even result in elevated track vibration, which may increase long-term settlement. However, large benefits are possible, and if detailed analysis is performed, it is possible to minimise soil improvement depth with respect to construction cost.
8

Nové brněnské hlavní nádraží a jeho veřejná prostranství / Brno New Train Station and its Public Spaces

Sedláček, Jakub January 2020 (has links)
The topic of the Diploma thesis is a design of the New train station in Brno. The plot is located on the boundary of three city districts – Komárov, Štýřice and Trnitá. This area includes the railway structure for the new train station and also its public spaces, which are very close to the river Svratka. The railway structure is designed as bridge construction, that rises all platforms and rail tracks to 7,65 metres above the ground level. So all of the railways do not become a barrier in the city. The main concept extends a longitudinal axis of the city boulevard through the train station, which creates a high-rise building in the southern part of the plot. This axis is written not only to the layout but also to the roof design. The train station includes two underground levels, ground floor and first floor. Underground levels consist of P+R parking, deliveries only area, technical facilities and subway terminal. The ground floor is the main traffic centre. There is an entrance hall, shopping area, bus terminal and public corridors. The first floor includes platforms for train departures and arrivals. There are also public spaces in the entrance hall. The basic structural system consists of two parts. The first part is a massive reinforced concrete structure of the railway bridge deck and all underground levels. This structure is based on reinforced concrete foundation pads with drilled piles. The second part is a steel frame structure of the roof. That includes steel columns and truss girders for the structure of the lower area. The higher part of the roof is designed as a steel-truss bridge with the characteristic profile. The new train station supposes to create a new gate to the city of Brno, that connects contemporary districts with the historical city center.

Page generated in 0.0783 seconds