• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 7
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of electric vehicle charging patterns and range anxiety

Knutsen, Daniel, Willén, Oscar January 2013 (has links)
Range anxiety is a relatively new concept which is defined as the fear of running out of power when driving an electric vehicle. To decrease range anxiety you can increase the battery size or decrease the minimum state of charge, the least amount of power that can be left in the battery, or to expand the available fast charging infrastructure. But is that economical feasible or even technically possible in today’s society? In this project we have used a theoretical model for estimating range anxiety and have simulated the average electricity consumption using two different kinds of electric vehicles, to see how often they reach range anxiety according to a specific definition of range anxiety implemented in this model. The simulations were performed for different scenarios in order to evaluate the effect of different parameters on range anxiety. The result that we got were that range anxiety can be decreased with bigger batteries but to get range anxiety just a few times a year you have to use battery sizes which aren’t economical feasible today. Despite the shortcomings of todays electric vehicles there are promising new and future technologies such as better batteries which might help alleviate range anxiety for electric vehicle owner. The conclusion from this study is that in the present fleet of electric vehicles is in need of more charging stations and faster charging to get by the problem with range anxiety and having a chance to compete with gasoline and diesel vehicles.
2

Impact of range anxiety on driver route choices using a panel-integrated choice latent variable model

Chaudhary, Ankita 02 February 2015 (has links)
There has been a significant increase in private vehicle ownership in the last decade leading to substantial increase in air pollution, depleting fuel reserves, etc. One of the alternatives known as battery operated electric vehicles (BEVs) has the potential to reduce carbon footprints due to lesser or no emissions and thus the focus on shifting people from gasoline operated vehicles (GVs) to BEVs has increased considerably recently. However, BEVs have a limited ‘range’ and takes considerable time to completely recharge its battery. In addition, charging stations are not as pervasive as gasoline stations. As a result a new fear of getting stranded is observed in BEV drivers, known as range anxiety. Range anxiety has the potential to substantially affect the route choice of a BEV user. It has also been a major cause of lower market shares of BEVs. Range anxiety is a latent feeling which cannot be measured directly. It is not homogenous either and varies among different socio-economic groups. Thus, a better understanding of BEV users’ behavior may shed light on some potential solutions that can then be used to improve their market shares and help in developing new network models which can realistically capture effects of varying EV adoptions. Thus, in this study, we analyze the factors that may impact BEV users’ range anxiety in addition to their route choice behavior using the integrated choice latent variable model (ICLV) proposed by Bhat and Dubey (2014). Our results indicate that an individual’s range anxiety is significantly affected by their age, gender, income, awareness of charging stations, BEV ownership and other category vehicle ownership. Further, it also highlights the importance of including disutility caused by distance while considering network flow models with combined GV and BEV assignment. Finally, a more concentrated effort can be directed towards increasing the awareness of charging station locations in the neighborhood to help reduce the psychological barrier associated with range anxiety. Overcoming this barrier may help increase consumer confidence, resulting in increased BEV adoption and ultimately will lead towards a potentially pollution-free environment. / text
3

Development and evaluation of a range anxiety-reducing business model for connected full electric vehicles

Kammerer, Sven Daniel 27 September 2012 (has links)
Submitted by Eliene Soares da Silva (eliene.silva@fgv.br) on 2012-11-26T14:59:25Z No. of bitstreams: 1 FINAL THESIS_Sven Kämmerer.pdf: 4409442 bytes, checksum: f0b4d51fcb5997ef130c873c65386e15 (MD5) / Approved for entry into archive by Eliene Soares da Silva (eliene.silva@fgv.br) on 2012-11-26T15:03:02Z (GMT) No. of bitstreams: 1 FINAL THESIS_Sven Kämmerer.pdf: 4409442 bytes, checksum: f0b4d51fcb5997ef130c873c65386e15 (MD5) / Made available in DSpace on 2012-11-26T15:16:15Z (GMT). No. of bitstreams: 1 FINAL THESIS_Sven Kämmerer.pdf: 4409442 bytes, checksum: f0b4d51fcb5997ef130c873c65386e15 (MD5) Previous issue date: 2012-09-27 / This thesis develops and evaluates a business model for connected full electric vehicles (FEV) for the European market. Despite a promoting political environment, various barriers have thus far prevented the FEV from becoming a mass-market vehicle. Besides cost, the most noteworthy of these barriers is represented by range anxiety, a product of FEVs’ limited range, lacking availability of charging infrastructure, and long recharging times. Connected FEVs, which maintain a constant connection to the surrounding infrastructure, appear to be a promising element to overcome drivers’ range anxiety. Yet their successful application requires a well functioning FEV ecosystem which can only be created through the collaboration of various stakeholders such as original equipment manufacturers (OEM), first tier suppliers (FTS), charging infrastructure and service providers (CISP), utilities, communication enablers, and governments. This thesis explores and evaluates how a business model, jointly created by these stakeholders, could look like, i.e. how stakeholders could collaborate in the design of products, services, infrastructure, and advanced mobility management, to meet drivers with a sensible value proposition that is at least equivalent to that of internal combustion engine (ICE) cars. It suggests that this value proposition will be an end-2-end package provided by CISPs or OEMs that comprises mobility packages (incl. pay per mile plans, battery leasing, charging and battery swapping (BS) infrastructure) and FEVs equipped with an on-board unit (OBU) combined with additional services targeted at range anxiety reduction. From a theoretical point of view the thesis answers the question which business model framework is suitable for the development of a holistic, i.e. all stakeholder-comprising business model for connected FEVs and defines such a business model. In doing so the thesis provides the first comprehensive business model related research findings on connected FEVs, as prior works focused on the much less complex scenario featuring only 'offline' FEVs.
4

Electric car, take me home

Liljenström, Wilmer January 2024 (has links)
This work aims to develop a model capable of calculating the energy consumption of an electric car. The goal is a method of calculating the energy needs for a certain trip and presenting recommendations for a more efficient driving mode. The purpose of the work is to create a tool to help drivers use less energy and identify problems when developing such a tool. The model is based on a power equation which considers air resistance, rolling resistance, height differences and acceleration. A model of regenerative brakes is also developed in order to account for regained kinetic energy. Using map data, a routing tool is developed to allow input of a trip which the model can calculate energy needs for. The model shows for an example car Porsche Taycan 4S over a specific test-trip an energy consumption of 128.65 Wh/km and a 3% energy savings in relation to energy efficient driving. When evaluating the model against the Urban Dynamometer Driving Schedule (UDDS) and the New European Driving Cycle (NEDC) estimated driving ranges corresponding to 493.3 km and 521.2 km respectively, in relation to official statistics of 396 km. Finally, findings during development, problems with the model and recommendations are discussed.
5

How do battery electric vehicle drivers behave in a range critical situation in VR when using a "guess-o-meter" vs a novel range management tool?

Sandberg, Staffan January 2020 (has links)
Battery electric vehicles are becoming more common but still fall behind combustion engine cars in terms of driving range and charging time. The displayed driving range in electric vehicles' dashboard can be a volatile parameter suddenly dropping by 10-20\%, for instance when speed is increased. Which can result in a condition referred to as range anxiety . Hence it is interesting to observe more in detail how drivers behave and think in scenarios where range is important and the cars' available range can change drastically depending on the drivers driving style. Such scenarios are problematic to test in real traffic for practical and ethical reasons. In this article, without putting anyone at risk, we present a study using a VR driving simulator in a critical scenario with a substantial risk of running out of battery. Two separate groups (N=10) each drove on the same test track using two different range displays. One group had a typical range display showing the distance left to empty (out of battery) and the other group a novel and more transparent display. The novel display shows how speed is affecting the range. Both displays allow the driver to set a target driving range. The results indicate that the novel display allows for a more agile and adaptive driving style by changing between specific speeds rather than searching and "guessing" which speed is the most optimal as with typical range displays. Although, it can hide other affecting factors, such as acceleration and road height. Which was more prevalent amongst drivers who had to search and guess. / Batterielbilar blir allt vanligare men når inte riktigt upp till samma nivå som bilar med förbränningsmotorer när det handlar om räckvidd och laddtid. Den kvarstående körsträckan som visas i elbilars instrumentpanel kan vara en instabil variabel och plötsligt sjunka med 10-20%, när man till exempel ökar hastigheten. Vilket kan leda till ett tillstånd som kallas räckviddsångest . Därav intresset för att undersöka i detalj hur förare agerar och tänker i scenarier där räckvidd är extra viktigt och bilens kvarstående körsträcka kan ändras drastiskt beroende på körstil. Sådana scenarier är problematiska att testa ute i trafiken av både praktiska och etiska skäl. I denna artikel, utan att placera någon i en verklig riskfylld situation, presenterar vi en studie där en bilsimulator i VR används för att testa ett kritiskt scenario där risken för att strömmen tar slut är stor. Två separata grupper (N=10) körde samma sträcka fast med olika instrumentpaneler. Där den ena är mer konventionell och endast visar kvarstående körsträcka. Medan den andra är mer originell och visar hur hastighet påverkar kvarstående körsträcka. Båda instrumentpanelerna tillåter föraren att ställa in hur långt man vill köra. Resultaten indikerar på att den originella instrumentpanelen tillåter en mer agil och adaptiv körstil, genom att byta mellan specifika hastigheter istället för att leta och gissa vilken hastighet som är optimal, vilket skedde med den konventionella instrumentpanelen. Men den kan även dölja andra faktorer som påverkar körsträckan, såsom acceleration och höjdskillnader. Vilket  användare av den originella instrumentbrädan noterade i större utsträckning.
6

Designing Energy-Sensitive Interactions : Conceptualising Energy from the Perspective of Electric Cars

Lundström, Anders January 2016 (has links)
As technology is increasingly used in mobile settings, energy and battery management is becoming a part of everyday life. Many have experienced how quickly a battery can be depleted in a smartphone, laptop or electric cars, sometimes causing much distress. An important question is how we can understand and work with energy as a factor in interaction design to enable better experiences for end-users. Through design-oriented research, I have worked with the specific case of electric cars, which is currently a domain where people struggle in terms of energy management. The main issue in this use case is that current driving range estimates cause distrust and anxiety among drivers. Through sketches, prototypes and studies, I investigated causes as well as possible remedies to this situation. My conclusion is that instead of providing black-boxed predictions, in-car interfaces should expose the logics of estimates so that drivers know how their own actions in e.g. driving style, climate control, and other equipment, affects energy use. Revealing such energy mechanisms will not only empower the driver, it will also acknowledge the impact of variables that cannot be predicted automatically. In this work, understanding the dynamic aspects of energy has emerged as central to interaction with systems. This points to a need to design energy sensitive interactions - focusing on supporting users to find the right balance between energy use and the experiential values sought for. To ease design of energy sensitive interactions, energy use is divided into three different categories with accompanying ideals. These are exergy (always needed to achieve the required interaction), intergy (controllable and changing over time and use, needs to be addressed in design), and anergy (always waste that needs to be reduced). This articulation highlights aspects of energy that are specific to interaction design, and possible aspects to expose to allow more energy-efficient interactions in use. / I takt med att vi använder alltmer teknik i mobila sammanhang blir energi- och batterihantering en allt större del av vår vardag. Många har erfarenheter av de besvär som ett plötsligt urladdat batteri i en mobiltelefon, laptop eller elbil kan orsaka. En central fråga för att uppnå bättre användarupplevelser är hur vi kan förstå och arbeta med energi som en faktor i design av interaktion med mobil teknik. Genom designdriven forskning har jag arbetat specifikt med interaktionen i elbilar, en situation där många brottas med just hantering och förståelse av begränsad energi. En specifik utmaning i denna kontext är den misstro som många upplever kring existerande system för räckviddsberäkning. Genom skisser, prototyper och användarstudier har jag undersökt orsaker och praktiska lösningar på detta problem. Min slutsats är att bilens gränssnitt bör exponera den inre logik som beräkningarna bygger på, så att föraren förstår hur egna handlingar, såsom körsätt och användning av t ex kupévärmare, påverkar energiförbrukning och räckvidd. Detta leder till ökad upplevelse av kontroll för föraren, och samtidigt till mer tillförlitliga beräkningar då det tar hänsyn till variabler som inte kan förutsägas automatiskt. I arbetet har dynamiska aspekter av energi framträtt som centralt i användning av interaktiva system. Detta pekar på behovet av att designa energikänsliga interaktioner, som hjälper användaren att förstå balansen mellan energiåtgång och bruksvärde. För att stödja design av energikänsliga interaktioner artikuleras tre kategorier av energianvändning i interaktiva system. Dessa är exergi (behövs för att uppnå tänkt interaktion), intergi (kontrollerbar och föränderlig över tid och användning, måste adresseras med design), och anergi (är alltid ett slöseri som behöver reduceras). Denna artikulation belyser specifikt de aspekter av energiförbrukningen som varierar genom användning, och som skulle kunna exponeras för mer energieffektiv interaktion med ny teknik. / <p>QC 20160429</p>
7

Interaction with Limited Resource Systems in the Context of Sustainable Mobility: User Experience when Dealing with Electric Vehicles in Critical Range Situations

Rauh, Nadine 20 June 2018 (has links)
Der globale Klimawandel gehört zu einem der wichtigsten Themen, die in Politik, Wirtschaft und Wissenschaft diskutiert werden. Der Reduzierung des weltweiten CO2-Ausstoßes wird dabei ein besonderer Stellenwert beigemessen. Auch im Transportsektor wird eine Verringerung der CO2-Emissionen angestrebt. Um dieses Ziel zu erreichen sollte die Nachhaltigkeit im Transportwesen erhöht werden. Elektrofahrzeuge können enorm zu diesem Ziel beitragen. Dies setzt voraus, dass sie während ihrer gesamten Nutzungsphase mit Strom aus regenerativen Energien geladen werden. In diesem Zusammenhang ist es wichtig, auch bei der Produktion auf eine möglichst hohe Nachhaltigkeit zu achten. Das bedeutet, dass die Ressourcen, die zur Produktion eines Elektrofahrzeugs (zum Beispiel Energieressourcen oder eingesetzte Materialien für die Batterieproduktion) möglichst gering gehalten werden sollten. Daher wird empfohlen, die maximale Kapazität einer Batterie und somit die verfügbare Reichweite eines Elektroautos gemäß der tatsächlichen Reichweitenanforderungen der Fahrer auszulegen. Dies bedeutet jedoch, dass Elektroautofahrer mit vergleichbar geringeren Reichweiten umgehen müssen als beim Verbrennerfahrzeug. Zusätzlich ist das Wiederherstellen der Reichweitenressourcen, also das Nachladen des Elektrofahrzeugs, mit höherem Aufwand verbunden als das Nachtanken eines Verbrennerfahrzeugs, da es heutzutage vergleichbar weniger öffentliche Schnelllademöglichkeiten gibt und das Nachladen relativ viel Zeit in Anspruch nimmt. Daher wird die Interaktion mit den Reichweitenressourcen eines Elektrofahrzeugs als relativ herausfordernd wahrgenommen. Dies führt dazu, dass die reichweitenbezogene Nutzerzufriedenheit und das Reichweitenerleben der Fahrer beeinträchtigt und die verfügbaren Reichweitenressourcen nicht optimal ausgenutzt werden. Darüber hinaus wird die limitierte Reichweite von Elektrofahrzeugen häufig auch als eine der wichtigsten Barrieren für die generelle Akzeptanz und Nutzung von Elektrofahrzeugen diskutiert. Um das Potenzial eines Elektrofahrzeugs hinsichtlich der Erhöhung der Nachhaltigkeit im Transportsektor voll auszuschöpfen ist es daher unerlässlich, Möglichkeiten zu finden um diese Barriere unter Beachtung der Anforderungen des Fahrers zu überwinden. Ergänzend zu technischen Lösungen wie zum Beispiel der Weiterentwicklung der Batterietechnology oder der Implementierung einer größeren Anzahl von öffentlichen Schnelllademöglichkeiten, sollten weitere Strategien entwickelt werden um das Reichweitenerleben der Elektroautofahrer zu verbessern und sie zu einer möglichst effizienten Ausreizung der verfügbaren Reichweitenressourcen zu befähigen. Reichweitenstress ist ein wichtiges Konzept in diesem Zusammenhang. Reichweitenstress ist besonders relevant in der Interaktion mit Elektrofahrzeugen auf Grund des relativ begrenzten Zugangs zu Schnellladestationen und relativ langer Ladedauern. Das Konzept ist aber auch auf anderen Arten der Mensch-Technik-Interaktion im Transportsektor übertragbar (z.B. auch auf Verbrennerfahrzeuge). Im Rahmen der vorliegenden Dissertation wird davon ausgegangen, dass sich Reichweitenstress und das breiter definierte Phänomen Reichweitenangst negativ auf die Zufriedenheit mit der Reichweite und der effizienten Nutzung von Elektrofahrzeugen auswirken. Um den maximalen Nachhaltigkeitseffekt von Elektrofahrzeugen ausschöpfen zu können, müssen daher Möglichkeiten gefunden werden um den erlebten Reichweitenstress zu verringern und der Entstehung von Stress vorzubeugen. Die vorliegende Dissertation trägt zu diesem Ziel bei, indem sie ein detailliertes Verständnis zu Reichweitenstress und dem Einfluss verschiedener Resilienzfaktoren im Rahmen von 5 Zeitschriftenartikeln (4 veröffentlich, 1 zur Veröffentlichung eingereicht) zur Verfügung stellt. Resilienzfaktoren meint dabei Faktoren, welche die Fähigkeit des Fahrers mit kritischen Situationen umzugehen erhöhen und somit das Erleben von Stress verringern. Das erste Forschungsziel dieser Arbeit bestand darin, das Konzept Reichweitenstress zur Beschreibung des Reichweitenerlebens in kritischen Reichweitensituationen (d.h., Situationen mit geringem Reichweitenpuffer) zu etablieren, ein theoretisches Rahmenmodell zur Erklärung von Reichweitenstress und möglichen Einflussfaktoren zur Verfügung zu stellen sowie eine Methode zur Erfassung von Reichweitenstress im experimentellen Kontext zu prüfen. Die Ergebnisse der Arbeit konnten zeigen, dass sich das Konzept Reichweitenstress dafür eignet, das Erleben der Fahrer zu beschreiben. Das bereits existierende Modell zur adaptiven Reichweitenkontrolle wurde auf den speziellen Fall einer Fahrt in einer kritischen Reichweitensituation angewendet und um das Konzept Reichweitenstress sowie möglicher, aus der Literatur abgeleiteter, Einflussfaktoren erweitert. Dies ermöglicht es, potenzielle stressreduzierende Faktoren abzuleiten um diese empirisch in einem Feldexperiment zu untersuchen, welches im Rahmen dieser Dissertation weiterentwickelt und getestet wurde. Es konnte gezeigt werden, dass es möglich ist, eine kritische Reichweitensituation in einem Feldexperiment herzustellen. Die Nutzung einer Coverstory ist in diesem Zusammenhang zu empfehlen (z.B. längere Strecke kommunizieren als dann tatsächlich gefahren werden muss). Das zweite Forschungsziel bestand darin, den Einfluss potenzieller Resilienzfaktoren auf den erlebten Reichweitenstress empirisch zu untersuchen. Basierend auf dem weiterentwickelten Modell der adaptiven Reichweitenkontrolle wurden mehrere Faktoren abgeleitet, die einen Einfluss auf das Reichweitenerleben haben sollten: (1) Wissen über Einflussfaktoren auf die Reichweitenentwicklung oder Wissen über Möglichkeiten zum energie-effizienten Fahren, (2) praktische Fahrerfahrung mit Elektrofahrzeugen sowie das Erleben einer kritischen Reichweitensituation, (3) Persönlichkeitseigenschaften wie zum Beispiel Kontrollüberzeugungen im Umgang mit Technik und schließlich (4) technische Systemeigenschaften wie zum Beispiel die wahrgenommene Verlässlichkeit des im Fahrzeug integrierten Systems zur Reichweitenschätzung. Die Ergebnisse zeigten, dass die Vermittlung von relevanten Informationen zur Reichweite eines Elektrofahrzeugs das Reichweitenerleben zum Teil verbessern kann. Insbesondere detaillierte Informationen zum energie-effizienten Fahren haben das Potenzial um Reichweitenstress zu verringern. Daher sollten dem Fahrer diese Informationen auf vielfältigen Wegen zur Verfügung gestellt werden. Dies könnte zum Beispiel über Informationsbroschüren, im Rahmen theoretischer Trainings zur Verbesserung der Interaktion mit dem Elektrofahrzeug, bereits vor dem Kauf durch den Berater oder eventuell sogar im Rahmen der theoretischen Fahrschulausbildung geschehen. Ein weiterer vielversprechender Ansatz wäre die Bereitstellung der relevanten Informationen direkt während der Fahrt durch Informations-, Assistenz- und Tutorsysteme. Praktische Fahrerfahrung sowie das Erleben und erfolgreiche Bewältigen einer kritischen Reichweitensituation in einer relativ geschützten Umgebung konnten Reichweitenstress ebenfalls verringern. Daher wird empfohlen Probefahrten mit Elektrofahrzeugen sowie Praxistrainings anzubieten, die im Idealfall auch eine unterstützte Fahrt in einer kritischen Reichweitensituation beinhalten sollten. Durch das aktive Auseinandersetzen mit den Grenzen der Reichweite kann ein Lernprozess angestoßen werden, der zu einem effizienteren Umgang mit den Reichweitenressourcen des Fahrzeugs führt. Auch in diesem Kontext bieten Assistenzsysteme im Fahrzeug ein großes Potenzial. Sie sollten so gestaltet sein, dass sie einen aktiven Umgang mit der Reichweite sowie eine kritische Auseinandersetzung mit der Reichweitendynamik ermöglichen und fördern. In der vorliegenden Dissertation konnte gezeigt werden, dass Persönlichkeitsmerkmal wie hohe Emotionale Stabilität und hohe Kontrollüberzeugungen im Umgang mit Technik mit einem geringeren erlebten Reichweitenstress zusammenhängen. Dies hat vor allem theoretische Implikationen und kann dazu beitragen, relative Unterschiede zwischen Individuen zu verstehen. Zudem konnte gezeigt werden, dass technische Systemeigenschaften wie die wahrgenommene Verlässlichkeit des Systems zur Reichweitenschätzung (z.B. zu Grunde liegender Algorithmus, Aktualität und Genauigkeit der angezeigten Reichweiteninformationen) ein wichtiger Faktor im Zusammenhang mit reduziertem Reichweitenstress darstellt. Daher sollte darauf geachtet werden, die verbliebene Reichweite eines Elektrofahrzeugs möglichst genau und verlässlich zu schätzen (z.B. Integration möglichst vieler Einflussfaktoren in den Algorithmus zur Reichweitenschätzung) sowie gut verständlich und nachvollziehbar zu präsentieren. Das dritte Forschungsziel bestand schließlich darin, die Relevanz des Konzepts Reichweitenstress auch jenseits des experimentellen Settings zu überprüfen. Bisherige Forschung konnte zeigen, dass der alltägliche Umgang mit Elektrofahrzeugen eher durch das Vermeiden kritischer Reichweitensituationen gekennzeichnet ist. Daher stellte sich die Frage, ob Reichweitenstress und der Einfluss der Resilienzfaktoren auch im Alltagserleben eine Rolle spielt. Die Ergebnisse einer Langzeit-Feldstudie konnten zeigen, dass Reichweitenstress in Form von Sorgen oder Bedenken bezüglich der Reichweite durchaus relevant im täglichen Umgang mit Elektrofahrzeugen ist. Zudem konnte gezeigt werden, dass die identifizierten Resilienzfaktoren (z.B. praktische Fahrerfahrung und technische Systemeigenschaften) auch unter alltäglichen Bedingungen das Erleben von Reichweitenstress verringern können. Zusammenfassend lässt sich sagen, dass Reichweitenstress ein relevantes Konzept im Zusammenhang mit der Interaktion mit Elektrofahrzeugen darstellt. Das Erleben von Reichweitenstress kann durch verschiedene Resilienzfaktoren wie zum Beispiel relevante Wissenselemente und Erfahrungen positiv beeinflusst werden. Aus den Ergebnissen lassen sich Strategien und Design-Empfehlungen für Informations- und Assistenzsysteme ableiten. Dadurch kann das Reichweitenerleben verbessert und ein effizienter Umgang mit der Reichweite gefördert werden. Dies trägt schließlich auch dazu bei, die Zufriedenheit mit Elektrofahrzeugen sowie deren Akzeptanz zu verringern. Somit kann ein Beitrag zur Erhöhung der Nachhaltigkeit im Transportsektor geleistet werden. Das Elektrofahrzeug stellt in dem Zusammenhang nur ein Beispiel für Systeme dar, die einen Umgang mit begrenzten Ressourcen erfordern. Die theoretischen Konzepte, Annahmen, Ergebnisse sowie Schlussfolgerungen der vorliegenden Dissertation können auch auf andere Formen der Mensch-Maschine-Interaktion übertragen werden, welche sich dadurch auszeichnen, dass eine Interaktion mit dem technischen System zu einer Verringerung der Ressourcen führt. Diese Arbeit kann also auch einen Betrag dazu leisten, den Stress und die mentale Beanspruchung beim Umgang mit diesen Systemen zu verringern sowie den effizienten Umgang mit begrenzten Ressourcen zu verbessern.:I Synopsis 1 Sustainability in the Context of Road Transport 2 The Challenge of Battery Electric Vehicles‘ Limited Range and the Contribution of the Present Dissertation 3 Overview of the Dissertation 4 Interaction with Battery Electric Vehicles' Range 4.1 Psychological Reference Values for the Regulation of Range Resources 4.2 The Adaptive Control of Range Resources (ACOR) Model 5 User Experience in Critical Range Situations 5.1 The Concept of Range Stress - Conceptual Framework and Empirical Investigation 5.1.1 Range Stress as One Facet of Drivers’ Experience in Critical Range Situations 5.1.2 Adaption of the ACOR Model with the Focus on Range Stress 5.1.3 Empirical Investigation of Range Stress and the Effects of Resilience Factors 5.2 Reduction of Range Stress - Influence of Inter-Individual Differences and Technical System Characteristics 5.2.1 The Influence of Domain Specific Knowledge on Range Stress 5.2.2 The Influence of Practical Driving Experience on Range Stress 5.2.3 The Influence of Personality Traits and Technical System Characteristics on Range Stress 5.3 Everyday Range Stress - Relevance of Range Stress and Resilience Factors in the Daily Interaction with Battery Electric Vehicles 6 Research Objectives of the Dissertation 6.1 Research Objective 1: Providing a Conceptual Framework and Validating a Methodology to Examine Range Stress and the Influence of Resilience Factors 6.2 Research Objective 2: Examining the Influence of Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics on Range Stress 6.3 Research Objective 3: Investigation of Range Stress and Specific Resilience Factors in the Everyday Usage of Battery Electric Vehicles 7 Overview of the Methodology 7.1 Field-Experimental Studies to Investigate Range Stress in a Critical Range Situation 7.1.1 General Setup of the Field Studies 7.1.2 Specific Characteristics of the Particular Field Studies 7.2 Long-Term Field Trial to Investigate Range Stress in Everyday BEV Interaction 8 Discussion and Critical Reflection of the Results 8.1 Research Objective 1: Providing a Conceptual Framework and Validating a Methodology to Examine Range Stress and the Influence of Resilience Factors 8.1.1 The Adapted ACOR Model (ACOR-c) with the Focus on Range Stress 8.1.2 Empirical Investigation of Range Stress in a Field-Experimental Setting 8.2 Research Objective 2: Examining the Influence of Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics on Range Stress 8.2.1 Influence of Range-Related Knowledge on Range Stress 8.2.2 Influence of Practical Driving Experience on Range Stress 8.2.3 Subjective Range Competence as Relevant Factor for Drivers’ Range Experience 8.2.4 Influence of Personality Traits and Technical System Characteristics on Range Stress 8.3 Research Objective 3: Investigation of Range Stress and Specific Resilience Factors in the Everyday Usage of Battery Electric Vehicles 9 Implications of the Results 9.1 Implications for the Conceptual Framework and the Methodology 9.2 Implications Regarding Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics 9.3 Implications Regarding Range Stress in the Everyday Interaction with Battery Electric Vehicles 10 Conclusion 11 References II Preliminary Study: Understanding the impact of electric vehicle driving experience on range anxiety III Paper 1: First-time experience of critical range situations in BEV use and the positive effect of coping information IV Paper 2: User experience with electric vehicles while driving in a critical range situation – a qualitative approach V Paper 3: Individual differences in BEV drivers’ range stress during first encounter of a critical range situation VI Paper 4: Positive influence of practical electric vehicle driving experience and range related knowledge on drivers' experienced range stress VII Paper 5: Which factors can protect against range stress in everyday usage of battery electric vehicles? Towards enhancing sustainability of electric mobility systems VIII Curriculum Vitae IX Publications
8

MULTI-OBJECTIVE DESIGN OF DYNAMIC WIRELESS CHARGING SYSTEMS FOR HEAVY – DUTY VEHICLES

Akhil Prasad (9739226) 15 December 2020 (has links)
<p>Presently, internal combustion engines provide power to move the majority of vehicles on the roadway. While battery-powered electric vehicles provide an alternative, their widespread acceptance is hindered by range anxiety and longer charging/refueling times. Dynamic wireless power transfer (DWPT) has been proposed as a means to reduce both range anxiety and charging/refueling times. In DWPT, power is provided to a vehicle in motion using electromagnetic fields transmitted by a transmitter embedded within the roadway to a receiver at the underside of the vehicle. For commercial vehicles, DWPT often requires transferring hundreds of kW through a relatively large airgap (> 20 cm). This requires a high-power DC-AC converter at the transmitting end and a DC-AC converter within the vehicle. </p> In this research, a focus is on the development of models that can be used to support the design of DWPT systems. These include finite element-based models of the transmitter/receiver that are used to predict power transfer, coil loss, and core loss in DWPT systems. The transmitter/receiver models are coupled to behavioral models of power electronic converters to predict converter efficiency, mass, and volume based upon switching frequency, transmitter/receiver currents, and source voltage. To date, these models have been used to explore alternative designs for a DWPT intended to power Class 8-9 vehicles on IN interstates. Specifically, the models have been embedded within a genetic algorithm-based multi-objective optimization in which the objectives include minimizing system mass and minimizing loss. Several designs from the optimization are evaluated to consider practicality of the proposed designs.

Page generated in 0.0638 seconds