21 |
"Manufatura rápida - avaliação das tecnologias de impressão 3D e FDM na fabricação de moldes rápidos" / Rapid Manufactory Comparative evaluations of 3D printing system against FDM system for Rapid ToolingJosé Roberto Martins 16 May 2006 (has links)
Este trabalho avaliou a aplicação das tecnologias de prototipagem rápida por Impressão 3D e FDM (Fused Deposition Modeling) na produção de moldes rápidos. Esta avaliação foi feita com base nas qualidades das peças obtidas por vazamento nos moldes produzidos, bem como nas limitações encontradas em suas utilizações. Foram estabelecidas as principais diferenças do ponto de vista de qualidade, custos, tempos gastos e praticidade. Foram construídos moldes para peças que contemplando vários graus de dificuldades. Para cada ferramental foram obtidos lotes de peças, através dos quais foram analisadas e comparadas as qualidades dos protótipos. / This work evaluated the application of the Rapid Prototyping technologies 3D printer and FDM (Fused Deposition Modeling) in the rapid manufacturing of molds. This evaluation is based on the quality of the parts molded, as well as in the limitations found in the molds applications. As result the main differences related to quality, and usability was established. The molds produced parts with different degrees of geometric difficulties. For each mold, a few prototypes were produced and their qualities compared.
|
22 |
Additive Manufacturing: State-of-the-Art, Capabilities, and Sample Applications with Cost AnalysisAliakbari, Mina January 2012 (has links)
Additive Manufacturing – AM – which is a part of a generic term, Rapid Prototyping, comprises a family of different techniques to build 3D physical objects sequentially stacking a series of layers over each other. These techniques have been evolving over three decades with more materials available, improving the techniques as well as generating new ones. However they are all based on the same explained idea. In this research the main AM methods followed with the opportunities of application and cost drivers is sought. For this purpose, after reviewing different processes and techniques, the application of them in diverse industry sectors is described. The influence of AM in production systems, so called Rapid Manufacturing (RM) is also discussed in terms of lean and agile concepts. Time and cost are the most important factors for the production systems to be responsive and productive respectively. Thus, case based application of RM is evaluated to clarify how AM acts in different production systems regarding these factors. To decide which method is the best, strongly depends on the case. But what has been derived from the analysis, is that however in comparison with traditional methods, AM applies more economically in one-off jobbing, yet the economy of scale exists to some extent. In fact it depends on the machine capacity utilization as well as batch size which indicates the machine volume usage. Despite all the improvements in the last three decades, the application of AM is still not widespread. Since the demand, use, applications and materials as well as its techniques are still in a growing phase, a brighter future is seen for the upcoming customer oriented market. / Additive Manufacturing – AM – som är del av en generell term, Rapid Prototyping, består av en familj olika tekniker för att bygga 3D fysiska objekt genom att sekventiellt lägga lager ovanpå varandra. Dessa tekniker har utvecklats över de senaste tre decennierna, där nya material blivit tillgängliga, teknikerna har förbättrats och nya har skapats, men i slutändan bygger de alla på en och samma idé. Det projekt undersöks de huvudsakliga AM -metoderna, deras applikationer och kostnadsdrivare. Här görs först en litteraturstudie av olika tekniker och processer varefter deras användning inom olika industrier undersöks. Den influens AM har i produktionssystem, s.k. Rapid Manufacturing (RM), diskuteras också i förhållande till lean och agila koncept. Eftersom tid och kostnad är de viktigaste faktorerna för tillgänglighet respektive produktivitet utvärderas case-baserad användning av RM utifrån dessa faktorer för att förklara hur AM fungerar i produktionssystem. Att besluta vilken metod som är bäst, är starkt case-baserad. Men det som framkommit från analysen är att i jämförelse med traditionella metoder, är AM mer ekonomiskt vid enstyckstillverkning, men stordriftsfördelar finns i någon utsträckning. Faktiskt det beror på maskinens kapacitetsanvändning och satsstorlek som indikerar maskinens volymanvändning. Trots alla förbättringar under de senaste tre decennierna är användandet av AM ännu inte utbrett. Eftersom efterfrågan, användning, tillämpning och material så väl som dess tekniker fortfarande befinner sig i en tillväxtfas spås en ljusare framtid för en växande kundorienterad marknad.
|
23 |
Application of Rapid Manufacturing Technologies to Integrated Product Development inClinics and Medical Manufacturing IndustriesOwusu - Dompreh, Francis January 2013 (has links)
No description available.
|
24 |
The impact of additive fabrication technologies on Institutional Research Development and the SA product development community-the CRPM storyDe Beer, D.J. January 2008 (has links)
Published Aticle / The Centre for Rapid Prototyping and Manufacturing (CRPM) made a humble start in 1997 as a spin-off from a proposed research activity in 1995, at a stage when Technikons were still being seen as occupational training institutions rather than higher education institutions and and as such, were not funded for research. Addressing an area of high importance to the South African industry, the research activity soon grew into a research unit, commercial centre / centre of excellence, technology transfer unit and innovation support centre. Above all, the research started to impact on product development practices to deliver improved products. The paper considers the development of the available technology platforms at the CUT'S CRPM to become a technology power-house on the African continent, and how it impacted on Institutional Research Development in South Africa.
|
25 |
Development of a process chain for digital design and manufacture of patient-specific intervertebral disc implants with matching endplate geometriesDe Beer, Neal 03 1900 (has links)
Thesis (PhD (Industrial Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Back pain is a common concern amongst a growing population of people across the world today, where in
most cases the pain can become unbearable resulting in major lifestyle adjustments. Seventy to eighty
percent of the population of the Western world experiences low-back pain at one time or another. Pain can
be produced as a worn disc becomes thin, narrowing the space between the vertebrae. Pieces of the
damaged disc may also break off and cause irritation to the nerves signalling back pain.
Depending on the severity of a patient’s condition, and after conservative treatment options have been
exhausted, a disc replacement surgery (arthroplasty) procedure may be prescribed to restore spacing
between vertebrae and relieve the pinched nerve, while still maintaining normal biomechanical movement.
Typical complications that are however still observed in some cases of disc implants include: anterior
migration of the disc, subsidence (sinking of disc) and lateral subluxation (partial dislocation of a joint).
Issues such as function, correct placement and orientation, as well as secure fixation of such a disc implant
to the adjacent vertebrae are highly important in order to replicate natural biomechanical behaviour and
minimise the occurrence of the complications mentioned.
As various imaging and manufacturing technologies have developed, the option for individual, patientspecific implants is becoming more of a practical reality than it has been in the past. The combination of CT
images and Rapid Manufacturing for example is already being used successfully in producing custom
implants for maxilla/facial and cranial reconstructive surgeries.
There exists a need to formalise a process chain for the design and manufacture of custom-made
intervertebral disc implants and to address the issues involved during each step. Therefore this study has
investigated the steps involved for such a process chain and the sensible flow of information as well as the
use of state-of-the-art manufacturing technologies. Strong emphasis was placed on automation of some of
the processes as well as the user-friendliness of software where engineers and surgeons often need to
work together during this multi-disciplinary environment.
One of the main benefits for customization was also investigated, namely a reduction in the risk and
potential for implant subsidence. Stiffness values from pressure tests on vertebrae were compared
between customized implants and implants with flat endplate designs. Results indicated a statistically
significant improvement of customized, endplate matching implants as opposed to flat implant endplates.
Therefore it may be concluded that the use of customized intervertebral disc implants with patient specific
endplate geometry may decrease the risk and potential for the occurrence of subsidence. / AFRIKAANSE OPSOMMING: Rugpyn is ‘n algemene bekommernis vir ‘n groeiende populasie van mense in die wêreld vandag, waar in
meeste gevalle die pyn ondraagbaar kan raak en groot leefstyl aanpassings vereis. Sewentig tot tagtig
persent van die populasie in die Westerse wêreld ondervind lae rugpyn op een of ander stadium. Die pyn
kan veroorsaak word deur ‘n intervertebrale skyf wat verweer en dunner word, en veroorsaak dat die
spasie tussen die vertebrae vernou. Stukkies van die beskadigde skyf mag ook afbreek en irritasie aan die
senuwees veroorsaak wat verdere pyn kan veroorsaak.
Afhangende van die ernstigheid van ‘n pasiënt se geval, en nadat opsies vir konservatiewe behandeling
uitgeput is, kan ‘n skyf vervangings-prosedure (artroskopie) voorgeskryf word om die spasie tussen die
vertebrae te herstel en sodoende die geknypte senuwee te verlos. Die skyf vervanging herstel spasiëring
tussen vertebrae terwyl die normale biomeganiese beweging ook behoue bly, in teenstelling met ‘n fusieprosedure wat die betrokke vertebrae aanmekaar vasheg en normale beweging belemmer. Tipiese
komplikasies wat egter steeds na ‘n skyf vervanging in sommige gevalle waargeneem word sluit in: anterior
migrasie van die inplantaat, insinking, sowel as laterale sublukasie (gedeeltelike dislokasie van ‘n gewrig).
Faktore soos funksie, korrekte posisionering en orientasie, sowel as vashegting van so ‘n skyf inplantaat tot
die aanliggende vertebrale bene is besonder belangrik om natuurlike biomeganiese beweging te herstel en
sodoende bogenoemde komplikasies te verminder.
Soos wat verskeie beeldings- en vervaardigingstegnologië verbeter het oor die laaste dekade, het die
moontlikheid vir individuele, pasiënt-spesifieke inplantate al hoe meer ‘n praktiese realiteit begin word. Die
kombinasie van Gerekenariseerde Tomografie (GT), tesame met Snel Vervaardiging word byvoorbeeld
reeds suksesvol aangewend tydens die ontwerp en vervaardiging van pasiënt-spesifieke inplantate vir
maksilla- en kraniale rekonstruktiewe chirurgie. Daar bestaan egter ‘n behoefte om ‘n formele
prosesketting vir die ontwerp en vervaardiging van pasiënt-spesifieke intervertebrale skyf inplantate te
ontwikkel en om belangrike faktore tydens elke stap noukeurig te beskryf.
Hierdie studie het na die verskillende stappe in die prosesketting gekyk om ‘n sinvolle vloei van informasie
en benutting van hoë gehalte vervaardigingstegnologië saam te snoer. Sterk klem was gelê op
outomatisering van prosesse asook gebruikersvriendelikheid van sagteware waar ingenieurs en medici
dikwels saam moet werk tydens hierdie kruisdissiplinêre omgewing.
Een van die hoof verwagte voordele met die gebruik van pasklaar skyf inplantate, naamlik die vermindering
van moontlike insinking van die inplantaat in die been, is ook ondersoek. Die ondersoek het druktoetse
behels en die vergelyking van ooreenstemmende styfheid tussen inplantate wat die kontoer van die bene
volg teenoor gewone plat eindplate. Die resultate was statisties beduidend in die guns van die pasklaar
inplantate wat die beenkontoere gevolg het, en bewys dus dat die risiko vir insinking verminder is.
|
26 |
Méthodologie de conception pour la réalisation de pièces en Fabrication Additive / Design methodology to manufacture parts in additive manufacturingBoyard, Nicolas 29 June 2015 (has links)
Le but de cette thèse est de proposer une méthodologie de conception pour la réalisation depièces en fabrication additive (FA). Par rapport aux familles de procédés de fabrication standard que sontl'enlèvement de matière, la déformation plastique et la fusion, les procédés de FA présentent descaractéristiques nouvelles permettant la fabrication de pièces en multimatériaux, d'assemblagesindémontables ou encore de formes complexes. L’arrivée de cette nouvelle technologie implique unchangement de paradigme nécessitant l’accompagnement des concepteurs dans leurs missions dedéveloppement de produits de qualité. De plus les caractéristiques mécaniques et l'état de surfaces despièces obtenues en FA dépendent de leur orientation au moment de la réalisation. Par ailleurs, en fonctiondu procédé, de la géométrie souhaitée et de cette orientation, il peut être nécessaire d'intégrer du supportafin d'assurer la fabricabilité de la pièce. Nous avons donc défini une méthodologie de conception, quirespecte l’intégrité de la chaine numérique et dont la finalité est la production d'un modèle numériquetranché prêt à être fabriqué sur une machine de FA. Pour ceci, notre méthodologie se base sur lesdonnées du cahier des charges fonctionnel (CDCF) et les connaissances métier du procédé renseignéespar le concepteur afin de lui proposer automatiquement un premier solide dont la géométrie satisfait toutesces contraintes. Une étape d'optimisation topologique vient ensuite restreindre le volume de matière utilede la pièce afin de limiter son poids, son coût et le temps de fabrication. Enfin, si nécessaire, un supportoptimisé assurant la fabricabilité de la pièce est généré selon ces mêmes critères. Cette méthodologies'accompagne d'un cas d'étude industriel ainsi que de deux expérimentations visant à observer lapossibilité d'un parachèvement à l'acétone sur des pièces réalisée en ABS. La première expérimentationest un plan d'expérience mesurant l'état de surface obtenu en s'appuyant sur la température de l'acétone,le temps d'opération, l'inclinaison des surfaces de la pièce et son épaisseur. La seconde expérimentationest un test de traction visant à observer une modification de la tenue mécanique de pièces soumises à cetraitement. Indépendamment du type de machine et du procédé de FA, la méthodologie que nousproposons est un premier pas concret vers l’obtention de pièces directement conformes, que ce soit pourdes besoins industriels ou domestiques. / The aim of this thesis is to propose a design methodology to produce parts using additivemanufacturing (AM). Compared to standard manufacturing processes, as machining, forming, casting ormolding, AM processes have new features for manufacturing multi-material parts, nondetachableassemblies or complex shapes. The arrival of this new technology involves a paradigm shift that requiressupport to designers to develop quality products. Also the mechanical and finishing specifications of theparts obtained by AM depend on their orientation during the manufacturing. Furthermore, depending onthe process, the desired geometry and the orientation, it could be necessary to integrate a support in orderto ensure manufacturability of the part. We define a design methodology that respects the integrity of thedigital channel and whose purpose is to produce a sliced numerical model ready to be manufactured on anAM machine. For this, our methodology is based on data from functional specification and businessknowledge of the process indicated by the designer, to automatically propose a first solid geometry whichsatisfies all these requirements. After this first step, a step of topological optimization restricts the volumeof the part in order to reduce its weight, cost and manufacturing time. Finally, if necessary, optimizedsupport ensuring the manufacturability of the part is generated according to the same criteria. Thismethodology is accompanied by an industrial case study as well as of two experiments to observe thepossibility to finish parts made of ABS with acetone. The first experiment is an experimental design whichmeasures the obtained surface finish based on the temperature of the acetone, the operating time, theinclination of the surfaces of the piece and its thickness. The second experiment is a tensile stress testdesigned to observe a change in the mechanical resistance of the part. Regardless of the type of machineand the AM process, the methodology we propose is a first concrete step towards obtaining directlycompliant parts, whether for industrial or domestic use.
|
27 |
Selection for Rapid Manufacturing under Epistemic UncertaintyWilson, Jamal Omari 17 April 2006 (has links)
Rapid Prototyping (RP) is the process of building three-dimensional objects, in layers, using additive manufacturing. Rapid Manufacturing (RM) is the use of RP technologies to manufacture end-use, or finished, products. At small lot sizes, such as with customized products, traditional manufacturing technologies become infeasible due to the high costs of tooling and setup. RM offers the opportunity to produce these customized products economically. Coupled with the customization opportunities afforded by RM is a certain degree of uncertainty. This uncertainty is mainly attributed to the lack of information known about what the customers specific requirements and preferences are at the time of production. In this thesis, the author presents an overall method for selection of a RM technology, as an investment decision, under the geometric uncertainty inherent to mass customization. Specifically, the author defines the types of uncertainty inherent to RM (epistemic), proposes a method to account for this uncertainty in a selection process (interval analysis), and proposes a method to select a technology under uncertainty (Decision Theory under strict uncertainty). The author illustrates the method with examples on the selection of an RM technology to produce custom caster wheels and custom hearing aid shells.
In addition to the selection methodology, the author also develops universal build time and part cost models for the RM technologies. These models are universal in the sense that they depend explicitly on the parameters that characterize each technology and the overall part characteristics.
|
28 |
Investigating the suitability of laser sintered elastomers for running footwear applicationsDavidson, Craig January 2012 (has links)
The research contained within this thesis formed part of an Engineering and Physical Sciences Research Council (EPSRC) funded project based at Loughborough University, which aimed to investigate the use of additive manufacturing (AM), and in particular sintering technologies, for the production of running footwear sole units. Laser sintering (LS) is an AM process which produces parts directly from a computer aided design (CAD) file by selectively fusing successive layers of powdered material using a CO2 laser. LS imparts significant advantages over traditional manufacturing techniques including extensive design freedom, the ability to manipulate the local properties of a single material part as well as economical manufacture of bespoke items due to the elimination of tooling. Modifying the mechanical properties and/or geometry of sole units has been shown to provide benefits in the areas of performance, injury risk reduction and comfort, especially when considering elite athletes on a subject specific basis. Given the attributes of LS outlined above, the technology offers significant potential to produce sole units offering high added-value compared to conventional counterparts which are limited by the constraints of traditional processing techniques such as injection moulding. However, the mechanical capacity of LS polymers in context of such application was unknown. Accordingly, this research investigated the suitability of a laser sintered elastomer (LSE) material, in view of key selected mechanical properties, for the manufacture of running shoe midsoles. The midsole is the primary functional component in the sole unit of a running shoe used for distance running on hard surfaces. Following a preliminary assessment of the selected LSE (TPE 210-S), a new dynamic test method was designed to assess the compressive, fatigue and time dependent recovery properties of midsole material specimens under loading conditions representative of in-service use. The method was successfully implemented on an electro-mechanical test apparatus (previously unreported upon in literature) and used firstly, to benchmark the aforementioned properties of a range of ethylene vinyl acetate (EVA) and polyurethane (PU) midsole foams representative of the range currently used in production, and secondly, to establish the same property set for TPE 210-S specimens produced across a range of laser powers (LP's). Initial cycle operating ranges in terms of key compressive properties were established for EVA and PU materials. All conventional variants showed considerable deterioration from these initial values over the 125,000 cycle test regime, but subsequently demonstrated partial recovery when left unloaded post-test. PU grades generally exhibited better fatigue performance and findings were consistent with those of previous studies. Whilst variation in LP facilitated linear variation in displacement and stiffness properties for TPE 210-S, all specimens yielded a stiffer and more elastic response than that of conventional foams at the outset; initial compressive operating ranges, whilst within close proximity, did not overlap. However, fatigue performance was found to be superior with only relatively small property changes occurring over the test regime regardless of LP. Furthermore, no signs of catastrophic specimen failure (e.g. cracking) were visually apparent. In this respect the material showed good suitability for midsole applications, but further work is required to address increasing the available compressive property range which fell outside the scope of this work.
|
29 |
Development of a selection program for additive manufacturing systemsHusam, Shames 03 1900 (has links)
Thesis (MScEng (Industrial Engineering))--University of Stellenbosch, 2010 / ENGLISH ABSTRACT: Additive Manufacturing (AM) refers to the technologies that use Computer Aided Design
(CAD) data to produce plastic, metal, ceramic, paper, wax or composite materials parts.
Their ability to join thin layers of liquid, powder or sheet materials together permits the
production of parts, which are difficult or even impossible to produce, using any other
manufacturing method. Even though these technologies are still developing, they are
considered a major breakthrough in industry.
One of the main problems that is facing the improvement and the spread of AM
technologies, and its benefits worldwide, is the lack of knowledge about them. Still a lot of
countries, educational and industrial organizations do not even know about AM
technologies. This lack of knowledge of such technologies is keeping their cost artificially
high, which is limiting the access to more AM advanced technologies and materials. It also
makes it difficult to market the technologies and those who do not use AM technologies yet
become unable to compete against those who do.
The numbers of AM systems are continually growing, their capabilities and applications are
improving and their cost is decreasing. Today there are more than 40 companies that
produce over 100 different systems in Canada, China, France, Germany, Israel, Italy,
Japan, South Korea, Sweden and the United States. These systems vary in their strengths,
defects, applications, functions and limitations. This growth has led to an increase in current
and potential users of AM from both the manufacturing and educational sectors. These
users are however facing increasing complex problems when it comes to selecting the most
appropriate commercial system(s) to suit their needs.
The aim of this study is to develop an AM system selection program. The program will
serve both as an educational tool and a decision making support tool to assist any potential
purchasers in both the educational and industrial sectors. The AM system selection
program is divided into two sections: the learning section and the selecting section. The
learning section introduces the AM technologies by imparting knowledge to the new users;
moreover, it inspires them to start using these technologies to get their benefits. Having a
background in AM technologies enables the new users to make educated decisions and to
discuss technical issues about the systems with the providers. The selecting section offers a decision making support tool to help the users to decide which system best suits their
needs. This study can contribute to the promotion of AM technologies and their benefits
worldwide, especially for the countries and organizations that have not yet used such
technologies. / AFRIKAANSE OPSOMMING: Toevoegende vervaardiging verwys na al die tegnologie wat rekenaargesteunde ontwerp
data gebruik om plastiek, metaal, keramiek, papier, saamgestelde materiale en waks parte
te vervaardig. Die vermoë van die tegnologie om dun lae vloeistof, poeier of plaatmateriaal
op mekaar te verbind laat die vervaardiging van parte wat moeilik of selfs onmoontlik is,
deur die gebruik van ander vervaardigingsmetodes. Alhoewel hierdie tegnologieë nog in ‘n
ontwikkelingsfase is, word dit as ‘n reuse deurbraak vir die bedryf beskou.
Die verbetering, verspreiding en voordele van die tegnologie word hoofsaaklik belemmer
deur ‘n tekort aan inligting daaroor. Baie lande, akademiese en industrieële organisasies is
nog nie eens bewus dat sulke tegnologieë bestaan nie. Die tekort aan inligting veroorsaak
dat kostes hoog bly en verhoed die vinnige uitbreiding van nog meer gevorderde
tegnologieë en materiale. Verder bemoeilik dit ook die bemarking van die tegnologieë.
Die aantal toevoegende vervaardigingsmasjiene groei jaarliks met beter vermoëns, laer
kostes en ‘n groter verskeidenheid van toepassings. Tans is daar meer as 40 vervaardigers
wat meer as 100 verskillende masjiene vervaardig in Kanada, China, Frankryk, Duitsland,
Israel, Italië, Japan, Suid-Korea, Swede en Amerika. Al die masjiene verskil ten opsigte van
hul funksies, beperkings en ook ten opsigte van sterkte, materiale en toepassings van
parte. Die groei het gelei tot ‘n toename in gebruik van die tegnologie deur huidige en
potensiële nuwe gebruikers van beide die vervaardigings en akademiese sektore. Die
keuse van ‘n geskikte sisteem wat aan al ‘n gebruiker se vereistes voldoen, raak elke dag
meer kompleks.
Die doel van hierdie studie is die ontwikkeling van ‘n seleksie program vir toevoegende
vervaardigingmasjiene. Die program sal dien as ‘n opleidingshulpmiddel en as ‘n basis vir
masjienseleksie deur potensiële kopers. Die program bestaan uit twee dele: die
opleidingsgedeelte en die selekteringsgedeelte. Die opleidingsgedeelte beskryf die
verskeie toevoegende prosesse en motiveer gebruikers om die tegnologie aan te skaf
weens die voordele. ‘n Agtergrond oor die verskeie tegnologieë stel die gebruiker in staat
om ingeligte besluite te neem en tegniese vrae te kan stel aan verskaffers. Die
selekteringsdeel het ‘n besluitnemingstruktuur wat help om die regte masjien te kies ten
opsigte van verlangde vereistes.
Hierdie studie kan help met die bevordering van toevoegende tegnologieë en hul voordele,
veral vir lande en organisasies wat nog nooit voorheen sulke tegnologieë gebruik het nie.
|
30 |
From rapid prototyping to direct manufacturing : State-of-the-art and impacts on operational performance : The case of the automotive industryBadaire, Maeva January 2015 (has links)
Additive manufacturing is an industrial process, developed in the early 1980s and currently used in several industries such as the medical, aircraft and automotive industries. In the first place,additive manufacturing was mostly usedby manufacturing industries to produce prototypes, models and patterns. Nowadays, this technology can be used at any point in the lifecycle of a product from pre-production(rapid prototyping and rapid tooling) to production (direct manufacturing). This technology is especially adapted for the production of limited series of small and geometrically complex components.The purpose of this study is to identify howadditive manufacturing affects operational performance during the development and production phases, specifically in the case of the automotive industry.With this purpose in mind, I have collected primary and secondary data through a qualitative study using both in-depth semi-structured interviewsand archival records found on automotive companies’ websites. The objective of collecting multiple sources datawas to gain a reliable and comprehensive perception of the situation and understand the effects of additive manufacturing on operational performance, and more precisely on the seven production wastesdefined on lean practices, to be able to answer my research question. The data are analyzed using an inductive thematic analysis approach and testthe presupposition that emerged from the empirical findings. Through the analysis of the data collected, I came to the conclusion that additive manufacturing is mostly used during the prototyping phase and sometimes also used for rapid tooling. But it appears that this technology is only used for direct manufacturing in some specific niche markets such as luxury carmakers. Another interesting finding concerns the use of additive manufacturing for marketing purpose. Concerning operational performance, the impacts of additivemanufacturing remainlimited, and contrary to what some authors said, the use of this technology is still marginal in the automotive industry compared to traditional manufacturing.
|
Page generated in 0.0848 seconds