• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 13
  • 6
  • Tagged with
  • 192
  • 114
  • 89
  • 77
  • 65
  • 46
  • 46
  • 45
  • 42
  • 37
  • 35
  • 32
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Definição do campo das propriedades em aplicações de sistema de engenharia Kansei utilizando inputs de consumidores em lojas virtuais / Spanning the space of product properties in Kansei Engineering System applications using customer inputs obtained from virtual stores

Lucelindo Dias Ferreira Junior 09 August 2016 (has links)
O envolvimento do consumidor é fundamental nas fases iniciais de projetos de produtos inovadores, para a coleta de informações sobre interesses e preferências orientadores do processo de geração de ideias e conceitos de novos produtos. Uma das formas de viabilizar este envolvimento é utilizando ferramentas do tipo Sistema de Engenharia Kansei. Esse tipo de ferramenta permite a tradução de inputs de grande volume de consumidores em configurações de produtos otimizados para auxiliar a equipe de projeto, no Processo de Desenvolvimento de Produtos. Há duas principais limitações nos Sistemas de Engenharia Kansei propostos na literatura. A primeira é a operacionalização do envolvimento do consumidor na etapa de definição do campo das propriedades, i.e., captação dos dados de entrada dos consumidores. A segunda é a continuidade do envolvimento, com a intenção de fornecer informações atualizadas à equipe de projetos de produtos. Este trabalho propõe e testa procedimento automático para apoiar a definição do campo das propriedades utilizando inputs indiretos de consumidores obtidos em lojas virtuais, empregando e adaptando métodos utilizados em aplicações de Sistemas de Engenharia Kansei e Sistemas de Recomendação Híbridos. O procedimento automático fornece como resultado principal uma lista de produtos e propriedades, obtidos da realidade, representativos do domínio Kansei para utilização nas etapas posteriores de um Sistema de Engenharia Kansei. O teste do procedimento automático demonstrou que a dissimilaridade presente no conjunto inicial de produtos determina o número máximo de produtos representativos do domínio; e, que o grupo de produtos e propriedades representativos do domínio, obtido da aplicação do procedimento automático, pode apresentar disparidade com relação a um grupo referencial obtido utilizando método de planejamento de experimentos, embora atenda aos critérios informados na literatura seminal de Engenharia Kansei. / The customer involvement is critical in the early stages of innovative projects, to collect information about guiding interests and preferences of the process of generating ideas and concepts of new products. One way to facilitate this involvement is using the type system of Kansei Engineering tools. This type of tool allows the translation of large volume of inputs of consumers in products optimized settings to assist the project team, the Product Development Process. There are two main limitations in Kansei Engineering Systems proposed in the literature. The first is the operationalization of consumer involvement in the step of defining the field of properties, i.e., capture the input data consumer. The second is the continued involvement with the intention to provide updated information to the team of product designs. This thesis proposes and tests automatic procedure to support the definition of the properties field using indirect inputs of consumers obtained in virtual stores, using and adapting methods used in applications of Kansei Engineering Systems and Hybrid Recommender Systems. The automatic procedure provides as main result a list of products and properties obtained from reality, representative of Kansei domain for use in the later stages of a Kansei Engineering System. The automatic test procedure showed that the dissimilarity present in the initial product set determines the maximum number of products representative of the field; and that the product group and representative properties of the domain obtained from the application of the automatic procedure can present disparity with respect to a reference group obtained using planning method of experiments, although meets the criteria given in the seminal literature Kansei Engineering.
102

Desenvolvimento de técnica para recomendar atividades em workflows científicos: uma abordagem baseada em ontologias / Development of a strategy to scientific workflow activities recommendation: An ontology-based approach

Adilson Lopes Khouri 16 March 2016 (has links)
O número de atividades disponibilizadas pelos sistemas gerenciadores de workflows científicos é grande, o que exige dos cientistas conhecerem muitas delas para aproveitar a capacidade de reutilização desses sistemas. Para minimizar este problema, a literatura apresenta algumas técnicas para recomendar atividades durante a construção de workflows científicos. Este projeto especificou e desenvolveu um sistema de recomendação de atividades híbrido, considerando informação sobre frequência, entrada e saídas das atividades, e anotações ontológicas para recomendar. Além disso, neste projeto é apresentada uma modelagem da recomendação de atividades como um problema de classificação e regressão, usando para isso cinco classificadores; cinco regressores; um classificador SVM composto, o qual usa o resultado dos outros classificadores e regressores para recomendar; e um ensemble de classificadores Rotation Forest. A técnica proposta foi comparada com as outras técnicas da literatura e com os classificadores e regressores, por meio da validação cruzada em 10 subconjuntos, apresentando como resultado uma recomendação mais precisa, com medida MRR ao menos 70% maior do que as obtidas pelas outras técnicas / The number of activities provided by scientific workflow management systems is large, which requires scientists to know many of them to take advantage of the reusability of these systems. To minimize this problem, the literature presents some techniques to recommend activities during the scientific workflow construction. This project specified and developed a hybrid activity recommendation system considering information on frequency, input and outputs of activities and ontological annotations. Additionally, this project presents a modeling of activities recommendation as a classification problem, tested using 5 classifiers; 5 regressors; a SVM classifier, which uses the results of other classifiers and regressors to recommend; and Rotation Forest , an ensemble of classifiers. The proposed technique was compared to other related techniques and to classifiers and regressors, using 10-fold-cross-validation, achieving a MRR at least 70% greater than those obtained by other techniques
103

Ensemble de agrupamentos para sistemas de recomendação baseados em conteúdo / Cluster ensemble to content-based recommender systems

Fernando Henrique da Silva Costa 05 November 2018 (has links)
O crescimento acelerado da internet proporcionou uma quantidade grande de informações acessíveis aos usuários. Ainda que tal quantidade possua algumas vantagens, os usuários que possuem pouca ou nenhuma experiência para escolher uma alternativa dentre as várias apresentadas terão dificuldades em encontrar informações (ou itens, considerando o escopo deste trabalho) úteis e que atendam às suas necessidades. Devido a esse contexto, os sistemas de recomendação foram desenvolvidos para auxiliar os usuários a encontrar itens relevantes e personalizados. Tais sistemas são divididos em diversas arquiteturas. Como exemplo estão as arquiteturas baseadas em: conteúdo, filtro colaborativo e conhecimento. Para este trabalho, a primeira arquitetura foi explorada. A arquitetura baseada em conteúdo recomenda itens ao usuário com base na similaridade desses aos itens que o usuário mostrou interesse no passado. Por consequência, essa arquitetura possui a limitação de, geralmente, realizar recomendações com baixa serendipidade, uma vez que os itens recomendados tendem a ser semelhantes àqueles observados pelo o usuário e, portanto, não apresentam novidade ou surpresa. Diante desta limitação, o aspecto de serendipidade tem destaque nas discussões apresentadas neste trabalho. Assim, o objetivo deste trabalho é minimizar o problema da baixa serendipidade das recomendações por meio da utilização da análise de similaridades parciais implementada usando ensemble de agrupamentos. Para alcançar este objetivo, estratégias de recomendação baseadas em conteúdo implementadas usando agrupamento e ensemble de agrupamento foram propostas e avaliadas neste trabalho. A avaliação contou com análises qualitativas sobre as recomendações produzidas e com um estudo com usuários. Nesse estudo, quatro estratégias de recomendação de notícias foram avaliadas, incluindo as duas propostas neste trabalhos, uma estratégia baseada em recomendação aleatória, e uma estratégia baseada em coagrupamento. As avaliações consideraram aspectos de relevância, surpresa e serendipidade de recomendações. Esse último aspecto é descrito como itens que apresentam tanto surpresa quanto relevância ao usuário. Os resultados de ambas análises mostraram a viabilidade da utilização de agrupamento como base de recomendação, uma vez que o ensemble de agrupamentos obteve resultados satisfatórios em todos os aspectos, principalmente em surpresa, enquanto a estratégia baseada em agrupamento simples obteve os melhores resultados em relevância e serendipidade / The accelerated growth of the internet has provided a large amount of information accessible to users. Although this amount of information has some advantages, users who have little or no experience in choosing one of several alternatives will find it difficulty to find useful information (or items, considering the scope of this work) that meets their needs. Due to this context, recommender systems have been developed to help users find relevant and personalized items. Such systems are divided into several architectures as content-based, collaborative filtering and knowledge-based. The first architecture was explored in this work. The content-based architecture recommends items to the user based on their similarity to items that the user has shown interest in the past. Consequently, this architecture has the limitation of generally making recommendations with low serendipity, since the recommended items tend to be similar to those observed by the user and, therefore, do not present novelty or surprise. Given this limitation, the aspect of serendipity is highlighted in the discussions presented in this work. Thus, the objective of this work is to minimize the problem of the low serendipity of the recommendations through the use of the partial similarity analysis implemented using cluster ensemble. To achieve this goal, content-based recommendation strategies implemented using clustering and cluster ensemble were proposed and evaluated. The evaluation involved qualitative analysis of the recommendations and a study with users. In such a study, four news recommendation strategies were evaluated including the two strategies proposed in this work, a strategy based on random recommendation, and a strategy based on co-clustering. The evaluations considered aspects of relevance, surprise and serendipity of recommendations. This last aspect is described as items that present both surprise and relevance to the user. The results of both analyzes showed the feasibility of using clustering as the basis of recommendation, since cluster ensemble had satisfactory results in all aspects, mainly in surprise, whereas the simple clustering-based strategy obtained the best results in relevance and serendipity
104

Recommender systems for UML class diagrams.

TOLEDO, Saulo Soares de. 14 September 2017 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2017-09-14T18:41:16Z No. of bitstreams: 1 dissertacao_saulo_toledo_recsys_uml.pdf: 2345909 bytes, checksum: dcaa7238380f7791f922778432a5b9ea (MD5) / Made available in DSpace on 2017-09-14T18:41:16Z (GMT). No. of bitstreams: 1 dissertacao_saulo_toledo_recsys_uml.pdf: 2345909 bytes, checksum: dcaa7238380f7791f922778432a5b9ea (MD5) Previous issue date: 2016-09-05 / Modelos UML são usados de várias formas na engenharia de software. Eles podem modelar desde requisitos até todo o software, e compreendem vários diagramas. O diagrama de classes, o mais popular dentre os diagramas da UML, faz uso de vários elementos UML e adornos, tais como abstração, interfaces, atributos derivados, conjuntos de generalização, composições e agregações. Atualmente, não há maneira fácil de encontrar este tipo de diagrama com base nestas características para a reutilização ou a aprendizagem por tarefas de exemplo. Por outro lado, Sistemas de Recomendação são ferramentas e técnicas que são capazes de descobrir os elementos mais adequados para um usuário, dentre muitos outros. Existem várias técnicas de recomendação, que usam informações dos elementos de várias maneiras, ao uso da opinião de outros usuários. Sistemas de recomendação já foram utilizados com sucesso em vários problemas de engenharia de software. Este trabalho tem como objetivo propor e avaliar (i) uma representação baseada em conteúdo para diagramas de classe e as preferências do usuário,(ii) um novo algoritmo de recomendação baseado no conhecimento, (iii) a aplicação deste algoritmo e outros dois outros do estado da arte para a recomendação de diagramas de classe UML e (iv) uma avaliação destas abordagens contra uma sugestão aleatória. Para atingir este objetivo, foi realizado um estudo de caso com estudantes de ciência da computação e egressos. Depois de comparar os algoritmos, os nossos resultados mostram que, para o nosso conjunto de dados, todos eles são melhores do que uma recomendação aleatória. / UML models are used in several ways in the software engineering. They can model from requirements to the entire software, and comprise several diagrams. The Class diagram, the most popular among the UML diagrams, makes use of several UML elements and adornments, such as abstraction, interfaces, derived attributes, generalization sets, compositions and aggregations. Currently, there is no easy way to find this kind of diagram based on these features for reuse or learning by example’s tasks, for instance. On the other hand, Recommender Systems are powerful tools and techniques that are able to discover the most appropriate elements to an user among many others. There are several recommender techniques, from using the elements’ information in several ways, to using other users’ opinions. Recommender systems were already used successfully in several software engineering problems, as discovering pieces of code to recommend (as methods, for example) and finding the best developer to work in certain software problems. This work aims to propose and evaluate (i) a content-based Recommender System’s representation for class diagrams’ features and user’s preferences, (ii) a new knowledge-based recommender algorithm, (iii) the application this algorithm and two other state of the art content-based ones to the recommendation of UML class diagrams and (iv) an evaluation of these approaches against a random suggestion. To achieve this goal, we conducted a case study with computer science students and egresses. After comparing the algorithms, our results show that, for our dataset, all of them are better than a random recommendation.
105

Uma abordagem multiagente de recomendação baseada em suposições e confiança para cenários dinâmicos / A multiagent recommender approach based in assumptions and trust for dynamic scenarios

Lorenzi, Fabiana January 2010 (has links)
A falta de informação e de confiança entre os agentes em sistemas de recomendação que lidam com domínios dinâmicos podem ser fatores que contribuem para que os agentes gerem resultados de baixa qualidade. Na falta de informação para gerar recomendações, é necessário que os agentes sejam capazes de assumir ou compartilhar informações, criem laços de confiança entre si e que se adaptem às mudanças do estado do conhecimento para que sejam capazes de resolver os problemas. Esta tese apresenta a abordagem MATRES - uma abordagem multiagente baseada em suposições com mecanismo de confiança aplicada em um sistema de recomendação multiagente. Na abordagem MATRES, os agentes são capazes de lidar com conhecimento distribuído. Cada agente trabalha como especialista e é capaz de compartilhar seu conhecimento com os demais, de acordo com seus índices de confiança. Para a solução de um problema, diferentes tarefas são distribuídas entre os agentes. Algumas tarefas apresentam uma relação de dependência, fazendo com que uma tarefa dependa do resultado de outra. Nesta situação, o agente possui um componente de manutenção da verdade que permite a utilização de suposições para a realização das tarefas de forma assíncrona. Na falta de informação proveniente de outra tarefa, o agente é capaz de manipular suposições, sendo capaz de executar sua tarefa. Além disto, o componente de manutenção da verdade auxilia na manutenção da integridade das bases de conhecimento dos agentes. A abordagem MATRES foi validada em um cenário de recomendação de pacotes turísticos. Casos reais de uma agência de viagem foram utilizados na validação da abordagem e os resultados obtidos corroboram a hipótese de que que a abordagem proposta aumenta a assertividade das recomendações geradas pelos agentes em ambientes distribuídos e dinâmicos. / The lack of trust and information among agents in dynamic domains may contribute to the generation of poor results in multiagent recommender systems. These domains requires that agents exchange information, establishing bonds of trust among themselves and adapting the modification of the status of the knowledge to be able to solve problems. In systems where the knowledge is distributed among several agents, the exchange of information is essential for improving the performance of the agents and maybe leading to inconsistencies when the information exchanged has different status. This thesis presents the MATRES approach - a multiagent Assumption-Based recommender approach with a trust mechanism. In this approach agents are able to deal with distributed knowledge. Each agent works as an expert and is able to share its knowledge with other agents, according to its trust degree. In order to solve a problem, different tasks are distributed among the agents. Some tasks are interdependent, which means that to solve a task it is necessary to use the result from other one. In this situation, the agent has a truth maintenance component that allows using assumptions to perform tasks in a assynchronous ways and helps the maintenance of the integrity of the knowledge bases of the agents. TheMATRES approach was validated in the travel recommendation scenario. The results show that the proposal increases the assertiveness of the recommendations provided by the agents in this dynamic domain.
106

Recomendação de objetos de aprendizagem com base no estilo de aprendizagem

Borges, Grace Anne Pontes January 2014 (has links)
Orientadora: Profa. Dra. Itana Stiubiener / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, 2014. / A partir do uso das Tecnologias de Informação e Comunicação (TIC) no apoio ao processo de aprendizagem, as diversas ferramentas utilizadas com esta finalidade como: ambientes virtuais de aprendizagem (AVA), cursos online, portais educacionais costumam disponibilizar conteúdos e outros recursos educacionais por meio de repositórios de Objetos de Aprendizagem (OAs). São exemplos de OAs: atividades, avaliações, vídeos, dentre outros, ou seja, toda e qualquer entidade que possa ser utilizada para aprendizagem, educação ou treinamento. O uso de OAs em ambientes digitais pode enriquecer a aprendizagem dos estudantes, entretanto, a partir do aumento da disponibilidade de tais recursos, surge a necessidade de melhorar a busca e seleção desses itens nos diversos repositórios. Os estilos pessoais de aprendizagem, ou seja, o modo como os indivíduos absorvem, processam e transformam informação em conhecimento, possibilitam a recomendação personalizada de OAs, de maneira que o aluno acesse o recurso educacional mais adequado no seu processo de ensino-aprendizagem. Assim, este trabalho apresenta um sistema de recomendação de OAs ao aluno com base em seu estilo de aprendizagem. Foi desenvolvido um protótipo utilizando a técnica de recomendação baseada em utilidade, que busca, seleciona e sugere OAs de acordo com seu grau de utilidade (relevância) para o usuário, considerando seu estilo de aprendizagem. Para teste e validação da solução proposta foi realizado um experimento com turma real de graduandos para disponibilização de materiais de apoio a aulas presenciais. Constatou-se uma adesão de 85% dos alunos ao uso do ambiente e a índice de satisfação atingiu 89%, ou seja, as recomendações dos recursos educacionais foram avaliadas como úteis na maioria dos casos. Essa solução pode beneficiar estudantes, ao sugerir OAs com maior chance de atender às suas necessidades particulares. / Starting from the use of Information and Communication Technologies (ICT) to support the learning process, the various tools used for this purpose such as Learning Management Systems (LMS), online courses, educational Web portals often provide content and other educational resources through repositories of learning objects (LOs). Examples of LOs are: activities, assessments, videos, among others, ie, any entity that can be used for learning, education or training. The use of LOs in digital environments can improve the student learning, however, from the increased availability of such resources, it arises the need of improving the search and selection of these items in different repositories. Personal learning styles, that is to say, how individuals comprehend, process and transform information into knowledge, allow personalized recommending learning objects, so that the student can access the most appropriate instructional resource in their teaching-learning process. Thus, this work presents a recommendation system of LOs to students according to their learning style. A prototype was developed by using the technique utility-based recommendation, which seeks, selects and suggests LOs according to their degree of usefulness (relevance) to the user considering their learning style. In order to test and validate the proposed solution, an experiment was conducted with real undergraduate class to share supporting material to class attendances. It was verified an adherence of 85% of the students using the environment and the satisfaction rate reached 89%, in other words, the recommendations of educational resources were evaluated as useful in most cases. This solution can benefit students by suggesting LOs with a greater chance to meet your particular needs.
107

Uma abordagem multiagente de recomendação baseada em suposições e confiança para cenários dinâmicos / A multiagent recommender approach based in assumptions and trust for dynamic scenarios

Lorenzi, Fabiana January 2010 (has links)
A falta de informação e de confiança entre os agentes em sistemas de recomendação que lidam com domínios dinâmicos podem ser fatores que contribuem para que os agentes gerem resultados de baixa qualidade. Na falta de informação para gerar recomendações, é necessário que os agentes sejam capazes de assumir ou compartilhar informações, criem laços de confiança entre si e que se adaptem às mudanças do estado do conhecimento para que sejam capazes de resolver os problemas. Esta tese apresenta a abordagem MATRES - uma abordagem multiagente baseada em suposições com mecanismo de confiança aplicada em um sistema de recomendação multiagente. Na abordagem MATRES, os agentes são capazes de lidar com conhecimento distribuído. Cada agente trabalha como especialista e é capaz de compartilhar seu conhecimento com os demais, de acordo com seus índices de confiança. Para a solução de um problema, diferentes tarefas são distribuídas entre os agentes. Algumas tarefas apresentam uma relação de dependência, fazendo com que uma tarefa dependa do resultado de outra. Nesta situação, o agente possui um componente de manutenção da verdade que permite a utilização de suposições para a realização das tarefas de forma assíncrona. Na falta de informação proveniente de outra tarefa, o agente é capaz de manipular suposições, sendo capaz de executar sua tarefa. Além disto, o componente de manutenção da verdade auxilia na manutenção da integridade das bases de conhecimento dos agentes. A abordagem MATRES foi validada em um cenário de recomendação de pacotes turísticos. Casos reais de uma agência de viagem foram utilizados na validação da abordagem e os resultados obtidos corroboram a hipótese de que que a abordagem proposta aumenta a assertividade das recomendações geradas pelos agentes em ambientes distribuídos e dinâmicos. / The lack of trust and information among agents in dynamic domains may contribute to the generation of poor results in multiagent recommender systems. These domains requires that agents exchange information, establishing bonds of trust among themselves and adapting the modification of the status of the knowledge to be able to solve problems. In systems where the knowledge is distributed among several agents, the exchange of information is essential for improving the performance of the agents and maybe leading to inconsistencies when the information exchanged has different status. This thesis presents the MATRES approach - a multiagent Assumption-Based recommender approach with a trust mechanism. In this approach agents are able to deal with distributed knowledge. Each agent works as an expert and is able to share its knowledge with other agents, according to its trust degree. In order to solve a problem, different tasks are distributed among the agents. Some tasks are interdependent, which means that to solve a task it is necessary to use the result from other one. In this situation, the agent has a truth maintenance component that allows using assumptions to perform tasks in a assynchronous ways and helps the maintenance of the integrity of the knowledge bases of the agents. TheMATRES approach was validated in the travel recommendation scenario. The results show that the proposal increases the assertiveness of the recommendations provided by the agents in this dynamic domain.
108

Modelo I2P : recomendação de recursos baseando-se em preferências, interesses e popularidade

Gotardo, Reginaldo Aparecido 22 August 2008 (has links)
Made available in DSpace on 2016-06-02T19:05:37Z (GMT). No. of bitstreams: 1 2131.pdf: 8350502 bytes, checksum: 4dc12e822d8a4aeea41a8ba2b85769f2 (MD5) Previous issue date: 2008-08-22 / Financiadora de Estudos e Projetos / The development of technologies that assist in the teach-learning process is an rgued subject in some areas of knowledge. The great diffusion of Web-based Educational Systems (WbE-S) has been shown the popularization of distance learning and its support tools. The Tidia-Ae project, support by FAPESP, aim at the development of a WbE-S that can use the concept about high velocity internet. But, the WbE Systems don t have a personal treatment of user s necessities. So, the offers of personalization resources for systems aim at improving the teach-learning process using the treatment of real necessities of each user. The content recommendation, more specifically a recommendation system, is one of several techniques for that and it is a non-intrusive meaning of help user s in a system with a lot of information. This technique was used in Tidia-Ae environment to development of this thesis. This thesis presents the I2P model based on metrics of Interests, Preferences and Popularity which are acquired by the measuring of the relationship of users and system resources. These metrics provide a form to calculate the recommendation offers of resources. The calculation is done using Collaborative Filtering technique and the personalization is offered in collaborative form, considering the group learning. / O desenvolvimento de tecnologias que auxiliem no processo de ensinoaprendizagem é assunto discutido em várias áreas do conhecimento. A grande difusão de Sistemas Educacionais baseados nas tecnologias existentes na Web (também chamados de Sistemas Educacionais baseados na Web Web-based Educational Systems WbE-S) demonstra a popularização da educação a distância e das ferramentas de suporte a esta. O projeto Tidia-Ae, financiado pela FAPESP visa, sobretudo, o desenvolvimento de um WbE-S que possa explorar os conceitos da internet de alta velocidade. Os WbE-S, comumente, não possuem um tratamento personalizado das ações dos usuários no sistema. Assim, a oferta de recursos de personalização de sistemas visa melhorias no processo de ensino-aprendizagem através do tratamento das necessidades reais e pessoais de cada aluno. A recomendação de conteúdo é uma das possíveis técnicas para oferta de personalização. Trata-se de uma forma não intrusiva de auxiliar o processo de escolha dos usuários num sistema com grande conjunto de informações. Está técnica foi amplamente explorada e, junto com o projeto Tidia-Ae, serviu como base para a criação do modelo I2P. Este trabalho define e propõe o modelo I2P baseado em métricas de Interesses, Preferências e Popularidade obtidas no relacionamento entre os usuários e os recursos do sistema. Estas métricas fornecem o embasamento para oferta de recursos adequados às necessidades dos usuários num WbE-S. O cálculo para oferta de recomendação é realizado com a técnica de Filtragem Colaborativa e, assim, a personalização é oferecida de forma colaborativa, considerando o aprendizado em grupo.
109

Os sistemas de recomendação como instrumento para atingir mercados de nicho

Nodari, Antonio Regis 09 May 2008 (has links)
O objetivo deste trabalho é estudar o efeito dos sistemas de recomendação em um site de vinhos, verificando se os resultados estão de acordo com a teoria long tail. Esta proposição prevê que em mercados online, os produtos de nicho podem representar uma parcela significativa do resultado de uma empresa. Uma das formas de explorar estas fontes de receitas é pelo uso adequado de sistemas de recomendação que auxiliem o consumidor a encontrar o que deseja. Neste trabalho são efetuados dois estudos de caso, o primeiro utiliza o coeficiente Gini para comparar a distribuição das vendas de duas empresas, sendo uma delas de comércio eletrônico, o segundo estudo de caso seleciona quatro tipos de sistemas de recomendação e compara seus desempenhos na sugestão de vinhos. Os resultados indicam que ocorre um comportamento do tipo long tail nas vendas da loja virtual e que os sistemas de recomendação baseados nos gostos de outras pessoas são os preferidos. / Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-05-20T19:24:51Z No. of bitstreams: 1 Dissertacao Antonio Regis Nodari.pdf: 1570446 bytes, checksum: 4592a5c6268d0bfe3c10cd8a58315c8f (MD5) / Made available in DSpace on 2014-05-20T19:24:51Z (GMT). No. of bitstreams: 1 Dissertacao Antonio Regis Nodari.pdf: 1570446 bytes, checksum: 4592a5c6268d0bfe3c10cd8a58315c8f (MD5)
110

Um estudo de caso na recomendação de ações de eficiência energética para residências.

RIBEIRO, Iara Pereira. 24 May 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-05-24T13:28:45Z No. of bitstreams: 1 IARA PEREIRA RIBEIRO - DISSERTAÇÃO (PPGCC) 2016.pdf: 3942904 bytes, checksum: 107850ca0aaa80f6bdae5254492eed99 (MD5) / Made available in DSpace on 2018-05-24T13:28:45Z (GMT). No. of bitstreams: 1 IARA PEREIRA RIBEIRO - DISSERTAÇÃO (PPGCC) 2016.pdf: 3942904 bytes, checksum: 107850ca0aaa80f6bdae5254492eed99 (MD5) Previous issue date: 2016 / Capes / O aumento da demanda por recursos nos últimos anos e a provável escassez destes em um futuro próximo vem gerando um novo tipo de preocupação na sociedade de como utilizar estes recursos de forma mais eficiente. Um dos recursos onde essa preocupação se tornou mais evidente é o consumo elétrico devido ao uso de fontes não renováveis para a geração de energia elétrica, como por exemplo, as termoelétricas que utilizam o carvão mineral. No Brasil onde a maioria da demanda energética é suprida através de fontes renováveis, atualmente 73.1% da energia é gerada a partir de fontes renováveis, outros fatores como mudanças climáticas e períodos de estiagem podem alterar no total de energia gerado tornando necessário o uso de formas alternativas para geração de energia e consequentemente tornando mais caro o preço final para o consumidor. Surge então a necessidade nesse contexto de desenvolver ferramentas e opções que ajudem a tornar o consumo mais eficiente e a reduzir a produção de energia elétrica de forma a beneficiar tanto as concessionárias como os consumidores finais. Uma opção para solucionar esse problema seria tornar o consumo residencial mais eficiente, dado que no Brasil o consumo residencial é o terceiro maior. Este trabalho propõe uma solução que utiliza mapeamento entre conceitos de sistemas de recomendação e conceitos de eficiência energética para promover a redução do consumo elétrico, propondo algoritmos de Filtragem Colaborativa e de Conteúdo, usando nesse processo dados de uma pesquisa de comportamento entre voluntários, dados do governo, voluntários e um software que simula o consumo elétrico residencial. Após a experimentação concluiu-se que existem índicos da eficiência dos algoritmos propostos para o contexto de eficiência energética. A partir dos resultados podemos concluir que, por ser uma área nova ainda existem muitos conceitos a serem explorados no uso de técnicas de análise de dados para a eficiência energética e que o estudo realizado apresenta contribuições importantes para trabalhos futuros. / The recent increase in demand for resources, and the imminent potential shortage of these has created a new kind of societal concern which spawned an emphasis for more efficient methods on how to use these resources. One resource, in particular, is electricity and the glaring concern for how it is consumed; mainly due to the use of non-renewable way for generating electricity, E.G. thermal power using coal. Currently, in Brazil, 73.1% of the country’s energy is generated from renewable sources. Other factors such as climate change and extended periods of drought may impact the total amount of energy being generated, thus making the use of alternative methods for power generation a necessity – which in turn inflates the costs for the consumer. Within this context comes the need to develop tools and ideas which help to make the consumption of energy more efficient by reducing the production of electricity which will be beneficial to both the dealers and end consumers. One option to solve this problem would be to focus on the consumption in residential areas, as in Brazil, the residential sector is the third largest consumer of energy, consuming on average 24.78% of the total power generated in the country. This paper proposes a solution which uses mapping between energy efficient concepts and concepts of recommender systems to help promote the reduction of electrical consumption. The proposed algorithms combined with Collaborative Filtering and Content has used the processed data from behavioral surveys among volunteers, data government and software to stimulate the residential electricity consumption. From the results, we can conclude that with this relatively new ambit of discovery comes many concepts yet to be explored in the use of data analysis techniques for energy efficiency, and the importance of the application to future work.

Page generated in 0.0866 seconds