• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 13
  • 6
  • Tagged with
  • 192
  • 114
  • 89
  • 77
  • 65
  • 46
  • 46
  • 45
  • 42
  • 37
  • 35
  • 32
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

BROAD-RS: arquitetura para recomendação de objetos de aprendizagem sensível ao contexto usando agentes e ontologia

Rezende, Paulo Alceu d` Almeida 25 June 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-02-24T12:45:48Z No. of bitstreams: 1 pauloalceudalmeidarezende.pdf: 6555080 bytes, checksum: 3840d1074c600a0d4cb352c39dd9e2c4 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-24T15:34:12Z (GMT) No. of bitstreams: 1 pauloalceudalmeidarezende.pdf: 6555080 bytes, checksum: 3840d1074c600a0d4cb352c39dd9e2c4 (MD5) / Made available in DSpace on 2017-02-24T15:34:12Z (GMT). No. of bitstreams: 1 pauloalceudalmeidarezende.pdf: 6555080 bytes, checksum: 3840d1074c600a0d4cb352c39dd9e2c4 (MD5) Previous issue date: 2014-06-25 / Objetos de aprendizagem são quaisquer recursos que possam ajudar no processo de ensino e aprendizagem sendo reutilizados em diversos contextos. Essa reutilização de objetos de aprendizagem mostra seu potencial para acelerar a preparação e a composição de cursos on line. Um sistema de recomendação na área educacional tem por objetivo identificar o perfil do aluno para que seja possível sugerir objetos de aprendizagem adequados às suas preferências. Entretanto, ao considerar o reuso de conteúdos, também se observa a necessidade de adaptação dos mesmos. Aplicações cientes de contexto são aplicações que são capazes de modificar seu comportamento baseado nas informações dos usuários. Uma motivação de usar um sistema sensível ao contexto é garantir a mobilidade transparente e fazer com que aplicações estejam de acordo com os elementos do ambiente. Este trabalho apresenta a arquitetura BROAD-RS (BROAD Recommendation System) capaz de realizar a recomendação de objetos de aprendizagem sensível ao contexto, baseado em uma ontologia para modelagem do perfil e contexto do aluno em um ambiente e-learning e implementado em um sistema multi-agentes. / Learning objects are any resources that might help in the teaching and learning process and to be reused in different contexts. The reuse of learning objects shows its potential to accelerate the preparation and composition of on line courses. A recommendation system in education aims to identify student profile so that it can suggest learning objects suitable to his/her preference. However, when considering content reuse, it is also necessary to adapt them. Context-aware applications are able to modify their behavior based on the users´ informations. One motivation of using a context-sensitive system is to assure seamless mobility and make applications comply with environment elements. This paper presents BROAD-RS (BROAD Recommendation System) architecture capable of performing context sensitive recommendation of learning objects based on an ontology for modeling the profile and context of the student in an e-learning environment implemented in a multi-agent system.
122

A unified framework for design, deployment, execution, and recommendation of machine learning experiments = Uma ferramenta unificada para projeto, desenvolvimento, execução e recomendação de experimentos de aprendizado de máquina / Uma ferramenta unificada para projeto, desenvolvimento, execução e recomendação de experimentos de aprendizado de máquina

Werneck, Rafael de Oliveira, 1989- 25 August 2018 (has links)
Orientadores: Ricardo da Silva Torres, Anderson de Rezende Rocha / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T19:48:27Z (GMT). No. of bitstreams: 1 Werneck_RafaeldeOliveira_M.pdf: 2395829 bytes, checksum: 8f190aeb6dbafb841d0c03f7d7099041 (MD5) Previous issue date: 2014 / Resumo: Devido ao grande crescimento do uso de tecnologias para a aquisição de dados, temos que lidar com grandes e complexos conjuntos de dados a fim de extrair conhecimento que possa auxiliar o processo de tomada de decisão em diversos domínios de aplicação. Uma solução típica para abordar esta questão se baseia na utilização de métodos de aprendizado de máquina, que são métodos computacionais que extraem conhecimento útil a partir de experiências para melhorar o desempenho de aplicações-alvo. Existem diversas bibliotecas e arcabouços na literatura que oferecem apoio à execução de experimentos de aprendizado de máquina, no entanto, alguns não são flexíveis o suficiente para poderem ser estendidos com novos métodos, além de não oferecerem mecanismos que permitam o reuso de soluções de sucesso concebidos em experimentos anteriores na ferramenta. Neste trabalho, propomos um arcabouço para automatizar experimentos de aprendizado de máquina, oferecendo um ambiente padronizado baseado em workflow, tornando mais fácil a tarefa de avaliar diferentes descritores de características, classificadores e abordagens de fusão em uma ampla gama de tarefas. Também propomos o uso de medidas de similaridade e métodos de learning-to-rank em um cenário de recomendação, para que usuários possam ter acesso a soluções alternativas envolvendo experimentos de aprendizado de máquina. Nós realizamos experimentos com quatro medidas de similaridade (Jaccard, Sorensen, Jaro-Winkler e baseada em TF-IDF) e um método de learning-to-rank (LRAR) na tarefa de recomendar workflows modelados como uma sequência de atividades. Os resultados dos experimentos mostram que a medida Jaro-Winkler obteve o melhor desempenho, com resultados comparáveis aos observados para o método LRAR. Em ambos os casos, as recomendações realizadas são promissoras, e podem ajudar usuários reais em diferentes tarefas de aprendizado de máquina / Abstract: Due to the large growth of the use of technologies for data acquisition, we have to handle large and complex data sets in order to extract knowledge that can support the decision-making process in several domains. A typical solution for addressing this issue relies on the use of machine learning methods, which are computational methods that extract useful knowledge from experience to improve performance of target applications. There are several libraries and frameworks in the literature that support the execution of machine learning experiments. However, some of them are not flexible enough for being extended with novel methods and they do not support reusing of successful solutions devised in previous experiments made in the framework. In this work, we propose a framework for automating machine learning experiments that provides a workflow-based standardized environment and makes it easy to evaluate different feature descriptors, classifiers, and fusion approaches in a wide range of tasks. We also propose the use of similarity measures and learning-to-rank methods in a recommendation scenario, in which users may have access to alternative machine learning experiments. We performed experiments with four similarity measures (Jaccard, Sorensen, Jaro-Winkler, and a TF-IDF-based measure) and one learning-to-rank method (LRAR) in the task of recommending workflows modeled as a sequence of activities. Experimental results show that Jaro-Winkler yields the highest effectiveness performance with comparable results to those observed for LRAR. In both cases, the recommendations performed are very promising and might help real-world users in different daily machine learning tasks / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
123

Um sistema de recomendação para páginas web sobre a cultura da cana-de-açúcar / A recommender system for web pages regarding sugarcane crop

Barros, Flavio Margarito Martins de 23 August 2018 (has links)
Orientador: Stanley Robson de Medeiros Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-23T12:56:12Z (GMT). No. of bitstreams: 1 Barros_FlavioMargaritoMartinsde_M.pdf: 2098709 bytes, checksum: 4fad46ce03410953cd3fbac10f9a43bd (MD5) Previous issue date: 2013 / Resumo: Sistemas de informação web oferecem informações em quantidade elevada, tal que a tarefa de encontrar a informação de interesse torna-se desafiadora. A Agencia de Informação Embrapa e um sistema web com o objetivo de organizar, tratar, armazenar e divulgar informações técnicas e conhecimentos gerados pela EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). O portal esta estruturado como uma arvore hierárquica, denominada Arvore de Conhecimento, a qual compreende centenas de paginas web, artigos, planilhas e materiais multimídia. Diariamente o site recebe milhares de acessos tal que os registros dessas visitas são armazenados em um banco de dados. Em domínios onde estão disponíveis informações em quantidade elevada, armazenadas em bancos de dados, as ferramentas de Mineração de Dados são promissoras, pois apresentam recursos para analise e extração de padrões de uso do site para fazer recomendações. Recomendações personalizadas de conteúdo melhoram a usabilidade de sistemas, agregam valor aos serviços, poupam tempo e fidelizam usuários. O objetivo desse trabalho foi projetar, desenvolver e implantar um sistema de recomendação web, baseado em regras de associação, que ofereça recomendações automaticamente de conteúdos da cultura da cana-de-açúcar, de acordo com o perfil da comunidade de usuários. Os dados utilizados nessa pesquisa foram extraídos de um banco de dados de acessos do projeto Agencia de Informação Embrapa. A metodologia utilizada na pesquisa compreendeu a preparação dos dados de visitas ao site para uma estrutura de "lista de acessos", onde estão registradas todas as paginas visitadas por cada usuário. A partir destas listas de acesso, regras de associação entre paginas foram geradas por meio do algoritmo Apriori. O conjunto de regras deu origem a uma base de conhecimento que foi armazenada em um banco de dados para fazer recomendações de conteúdo aos usuários. Como suporte a base de conhecimento, para cada pagina da agencia cana-de-açúcar foi criada uma lista de ate três das paginas mais visitadas. Essas paginas podem ser oferecidas caso haja ausência de recomendações. O sistema de recomendação foi avaliado com uma métrica denominada taxa de rejeição e, por meio de um questionário aplicado a um conjunto de usuários, foi avaliada a usabilidade da Agencia cana-de-açúcar, apos a implantação do sistema. A base de conhecimento, gerada na forma de regras de recomendação, também foi avaliada em relação a estrutura de links da Agencia, para verificar se a lista de recomendações trouxe conhecimentos sobre a estrutura do portal. De acordo com os resultados da pesquisa, por meio das recomendações, usuários encontram informações relevantes associadas as suas visitas, aumentam seu tempo de permanência no site e aumentam o uso e visualização dos conteúdos da Agencia de Informação Embrapa - Arvore cana-de-açúcar. Em paginas com dezenas de links, a base de conhecimento também atua como uma forma de resumo, apontando os principais links nas paginas / Abstract: Web information systems provide a great amount of information, so that the task of retrieving the information of interest becomes a challenge. Embrapa Information Agency is a web system aimed to organize, treat, store and disseminate technical information and knowledge generated by EMBRAPA (Brazilian Agricultural Research Corporation). The Agency's portal is structured as a hierarchical tree, called Knowledge Tree, which comprises hundreds of web pages, articles, spreadsheets and multimedia materials. Everyday this site receives thousands of access and the records of these visits are stored in a database. In domains where information is available in high quantity, stored in databases, Data Mining tools are promising, since they have resources for extraction and analysis of usage patterns of the site to make recommendations. Personalized recommendations of content improve the usability of systems, add value to services, save time and retain users. The aim of this work was to design, develop and deploy a web recommendation system based on association rules, which offers automatically recommendations of sugarcane contents, according to the profile of user community. The data used in this study were extracted from a database of accesses from Embrapa Information Agency. The methodology used in the research included a data preparation procedure to transform website visits into a structured access list, in which all page views by each user are stored. From these access lists, association rules between pages were generated by means of the Apriori algorithm. The set of rules has created a knowledge base that was stored in a database to make content recommendations to users. To support the knowledge base, for each page of the sugarcane Agency was created a list of up to three of the most visited pages. These pages can be offered if there are no recommendations. The recommender system was evaluated by using a metric called bounce rate. In addition, through a questionnaire applied to a set of users, the usability of the sugarcane Agency was evaluated, after the system deployment. The knowledge base generated in the form of recommendation rules was also evaluated in relation to link structure of Agency, to verify if the list of recommendations brought knowledge about the structure of the portal. According to the survey results, users find relevant information associated with their visits, increase their time spent on the site and increase the use and the interest of the contents of sugarcane Agency. In pages with dozens of links, the knowledge base also acts as a form of summarizing them, indicating the main links on the pages / Mestrado / Planejamento e Desenvolvimento Rural Sustentável / Mestre em Engenharia Agrícola
124

Sistemas de recomendação baseados em contexto físico e social

PEIREIRA, Alysson Bispo 29 June 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-12T13:47:04Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) risethesis.pdf: 1393384 bytes, checksum: f5f2fb9182ce60a9c5d2b0cd95f2893a (MD5) / Made available in DSpace on 2017-07-12T13:47:04Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) risethesis.pdf: 1393384 bytes, checksum: f5f2fb9182ce60a9c5d2b0cd95f2893a (MD5) Previous issue date: 2016-06-29 / Em meio a grande sobrecarga de dados disponíveis na internet, sistemas de recomendação tornam-se ferramentas indispensáveis para auxiliar usuários no encontro de itens ou conteúdos relevantes. Diversas técnicas de recomendação são aplicadas em diversos tipos de domínios diferentes. Seja na recomendação de filmes, música, amigos, lugares ou notícias, sistemas de recomendação exploram diversas informações disponíveis para aprender as preferências dos usuários e promover recomendações úteis. Uma das estratégias mais utilizadas é a de filtragem colaborativa. A qualidade dessa estratégia depende da quantidade de avaliações disponíveis e da qualidade do algoritmo utilizado para predição de avaliação. Estudos recentes demonstram que informações provenientes de redes sociais podem ser muito úteis para aumentar a precisão das recomendações. Assim como acontece no mundo real, no mundo virtual usuários buscam recomendações e conselhos de amigos antes de comprar um item ou consumir algum serviço, informações desse tipo podem ser úteis para definição do contexto social da recomendação. Além do social, informações físicas e temporais passaram a ser utilizadas para definição do contexto físico de cada recomendação. A companhia, a localização e as condições climáticas são bons exemplos de elementos físicos que levam um usuário a preferir certos itens. Um processo de recomendação que não leve em consideração elementos contextuais pode fazer com que o usuário tenha uma péssima experiência consumindo determina do item recomendado equivocadamente. Esta dissertação tem como objetivo investigar técnicas de filtragem colaborativa que utilizam contexto a fim de realizar recomendações que auxiliem usuários no encontro de itens relevantes. Nesse tipo de técnica, um sistema de recomendação base é utilizando para fornecer recomendações para o usuário alvo. Em seguida, são filtrados apenas os itens considerados relevantes para contextos previamente identificados nas preferências do usuário alvo. As técnicas implementadas foram aplicadas em dois experimentos com duas bases de dados de domínios diferentes: uma base composta por eventos e outra por filmes. Na recomendação de eventos, investigamos o uso de contextos físicos (i.e., tempo e local) e de contextos sociais (i.e., amigos na rede social) associados aos itens sugeridos aos usuários. Na recomendação de filmes, por sua vez, investigamos novamente o uso de contexto social. A partir da aplicação de pós-filtragem em três algoritmos de filtragem colaborativa usados como base, foi possível recomendar itens de forma mais precisa, como demonstrado nos experimentos realizados. / The overload of data available on the internet makes recommendation systems become indispensable tools to assist users in meeting items or relevant content. Several recommendation techniques were has been userd in many different types of domains. Those systems can recommend movies, music, friends, places or news; recommender systems can exploit different information available to learn preferences of users and promote more useful recommendations. The collaborative filtering strategy is one of the most used. The quality of this technique depends on the number of available ratings and the algorithm used to predict. Recent studies show that information from social networks can be very useful to increase the accuracy recommendations. Just as in the real world, the virtual world users ask recommendations and advice from friends before buying an item or consume a service. Furthermore, the context of each rating may be crucial for the definition of new ratings. Location, date time and weather conditions are good examples of useful elements to define what should be the best items to recommend for some user. A recommendation process that does not respect those elements can provide a user a bad experience. This dissertation investigates collaborative filtering techniques based on context, and more specifically techniques based on post-filtering. First, a recommendation system was used to provide recommendations for a specific user. Then, only relevant items according to context preferences for the target user will be recommended. The techniques implemented was applied in two case studies with two different domains databases: one base composed of events and another of movies. In the event of recommendation, we investigated the use of physical contexts (i.e., time and place) and social contexts (i.e., friends in the social network) associated with items suggested to users. On the recommendation of movies, in turn, again we investigated the use of social context. From the application of post-filtering in three collaborative filtering algorithms used as a baseline, it was possible to recommend items more accurately, as demonstrated in the experiments.
125

Extração de características de perfil e de contexto em redes sociais para recomendação de recursos educacionais

Pereira e Silva, Crystiam Kelle 27 March 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-12T14:22:55Z No. of bitstreams: 1 crystiamkellepereiraesilva.pdf: 5368190 bytes, checksum: 22e15248de5dbc282e6d4324b03dca64 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:15:27Z (GMT) No. of bitstreams: 1 crystiamkellepereiraesilva.pdf: 5368190 bytes, checksum: 22e15248de5dbc282e6d4324b03dca64 (MD5) / Made available in DSpace on 2016-01-25T17:15:27Z (GMT). No. of bitstreams: 1 crystiamkellepereiraesilva.pdf: 5368190 bytes, checksum: 22e15248de5dbc282e6d4324b03dca64 (MD5) Previous issue date: 2015-03-27 / Existem inúmeros recursos educacionais distribuídos em diferentes repositórios que abordam um conjunto amplo de assuntos e que possuem objetivos educacionais distintos. A escolha adequada desses recursos educacionais é um desafio para os usuários que desejam usá-los para a sua formação intelectual. Nesse contexto surgem os Sistemas de Recomendação para auxiliar os usuários nessa tarefa. Para que seja possível gerar recomendações personalizadas, torna-se importante identificar informações que ajudem a definir o perfil do usuário e auxiliem na identificação de suas necessidades e interesses. O uso constante e cada vez mais intenso de algumas ferramentas tecnológicas faz com que inúmeras informações a respeito do perfil, dos interesses, das preferências, da forma de interação e do comportamento do usuário possam ser identificadas em decorrência da interação espontânea que ocorre nesses sistemas. Esse é o caso, por exemplo, das redes socais. Neste trabalho é apresentada a proposta e o desenvolvimento de uma arquitetura capaz de extrair características do perfil e do contexto educacional dos usuários, através da rede social Facebook e realizar recomendações de recursos educacionais de forma individualizada e personalizada que sejam condizentes com essas características. A solução proposta é apoiada por técnicas de extração de informações e ontologias para a extração, definição e enriquecimento das características e interesses dos usuários. As técnicas de Extração de Informação foram aplicadas aos textos associados às páginas curtidas e compartilhadas por usuários nas suas redes sociais para extrair informação estruturada que possa ser usada no processo de recomendação de recursos educacionais. Já as ontologias foram usadas para buscar interesses relacionados aos temas extraídos. A recomendação é baseada em repositório de objetos de aprendizagem e em repositórios de dados ligados e é realizada dentro das redes sociais, aproveitando o tempo despendido pelos usuários nas mesmas. A avaliação da proposta foi feita a partir do desenvolvimento de um protótipo, três provas de conceito e um estudo de caso. Os resultados da avaliação mostraram a viabilidade e uma aceitação relevante por parte dos usuários no sentido de extrair informações sobre os seus interesses educacionais, geradas automaticamente da rede social Facebook, enriquecê-las, encontrar interesses implícitos e usar essas informações para recomendar recursos educacionais. Foi verificada também a possibilidade da recomendação de pessoas, permitindo a formação de uma rede de interesses em torno de um determinado tema, indicando aos usuários bons parceiros para estudo e pesquisa. / There are several educational resources distributed in different repositories that address to a wide range of subjects and have different educational goals. The proper choice of these educational resources is a challenge for users who want to use them for their intellectual development. In this context, recommendation systems may help users in this task.In order to be able to generate personalized recommendations, it is important to identify information that will help to define user profile and assist in identifying his/her needs and interests. The constant and ever-increasing use of some technological tools allows the identification of different information about profile, interests, preferences, interaction style and user behavior from the spontaneous interaction that occurs in these systems, as, for example, the social networks. This paper presents the proposal and the development of one architecture able to extract users´ profile characteristics and educational context, from the Facebook social network and recommend educational resources in individualized and personalized manner, consistent with these characteristics. The proposed solution is supported by Information Extraction Techniques and ontologies for the extraction, enrichment and definition of user characteristics and interests. The Information Extraction techniques were applied to texts associated with “LIKE” and shared user´s pages on his social networks to extract structured information that can be used in the recommendation process of educational resources, the ontologies were used to search to interests related to extracted subjects. The recommendation process is based on learning objects repositories and linked data repositories and is carried out within social networks, taking advantage of user time spent at the web. The proposal evaluation was made from the development of a prototype, three proofs of concept and a case study. The evaluation results show the viability and relevant users´ acceptance in order to extract information about their educational interests, automatically generated from the Facebook social network, enrich these information, find implicit interests and use this information to recommend educational resources. It was also validated the possibility of people recommendation, enabling the establishment of interest network, based on a specific subject, showing good partners to study and research.
126

Extração de informação contextual utilizando mineração de textos para sistemas de recomendação sensíveis ao contexto / Contextual information extraction using text mining for recommendation systems context sensitive

Camila Vaccari Sundermann 20 March 2015 (has links)
Com a grande variedade de produtos e serviços disponíveis na Web, os usuários possuem, em geral, muita liberdade de escolha, o que poderia ser considerado uma vantagem se não fosse pela dificuldade encontrada em escolher o produto ou serviço que mais atenda a suas necessidades dentro do vasto conjunto de opções disponíveis. Sistemas de recomendação são sistemas que têm como objetivo auxiliar esses usuários a identificarem itens de interesse em um conjunto de opções. A maioria das abordagens de sistemas de recomendação foca em recomendar itens mais relevantes para usuários individuais, não levando em consideração o contexto dos usuários. Porém, em muitas aplicações é importante também considerar informações contextuais para fazer as recomendações. Por exemplo, um usuário pode desejar assistir um filme com a sua namorada no sábado à noite ou com os seus amigos durante um dia de semana, e uma locadora de filmes na Web pode recomendar diferentes tipos de filmes para este usuário dependendo do contexto no qual este se encontra. Um grande desafio para o uso de sistemas de recomendação sensíveis ao contexto é a falta de métodos para aquisição automática de informação contextual para estes sistemas. Diante desse cenário, neste trabalho é proposto um método para extrair informações contextuais do conteúdo de páginas Web que consiste em construir hierarquias de tópicos do conteúdo textual das páginas considerando, além da bag-of-words tradicional (informação técnica), também informações mais valiosas dos textos como entidades nomeadas e termos do domínio (informação privilegiada). Os tópicos extraídos das hierarquias das páginas Web são utilizados como informações de contexto em sistemas de recomendação sensíveis ao contexto. Neste trabalho foram realizados experimentos para avaliação do contexto extraído pelo método proposto em que foram considerados dois baselines: um sistema de recomendação que não considera informação de contexto e um método da literatura de extração de contexto implementado e adaptado para este mestrado. Além disso, foram utilizadas duas bases de dados. Os resultados obtidos foram, de forma geral, muito bons apresentando ganhos significativos sobre o baseline sem contexto. Com relação ao baseline que extrai informação contextual, o método proposto se mostrou equivalente ou melhor que o mesmo. / With the wide variety of products and services available on the web, it is difficult for users to choose the option that most meets their needs. In order to reduce or even eliminate this difficulty, recommender systems have emerged. A recommender system is used in various fields to recommend items of interest to users. Most recommender approaches focus only on users and items to make the recommendations. However, in many applications it is also important to incorporate contextual information into the recommendation process. For example, a user may want to watch a movie with his girlfriend on Saturday night or with his friends during a weekday, and a video store on the Web can recommend different types of movies for this user depending on his context. Although the use of contextual information by recommendation systems has received great focus in recent years, there is a lack of automatic methods to obtain such information for context-aware recommender systems. For this reason, the acquisition of contextual information is a research area that needs to be better explored. In this scenario, this work proposes a method to extract contextual information of Web page content. This method builds topic hierarchies of the pages textual content considering, besides the traditional bag-of-words, valuable information of texts as named entities and domain terms (privileged information). The topics extracted from the hierarchies are used as contextual information in context-aware recommender systems. By using two databases, experiments were conducted to evaluate the contextual information extracted by the proposed method. Two baselines were considered: a recommendation system that does not use contextual information (IBCF) and a method proposed in literature to extract contextual information (\\methodological\" baseline), adapted for this research. The results are, in general, very good and show significant gains over the baseline without context. Regarding the \"methodological\" baseline, the proposed method is equivalent to or better than this baseline.
127

Uma arquitetura de personalização de conteúdo baseada em anotações do usuário / An architecture for content personalization based on peer-level annotations

Marcelo Garcia Manzato 14 February 2011 (has links)
A extração de metadados semânticos de vídeos digitais para uso em serviços de personalização é importante, já que o conteúdo é adaptado segundo as preferências de cada usuário. Entretanto, apesar de serem encontradas várias propostas na literatura, as técnicas de indexação automática são capazes de gerar informações semânticas apenas quando o domínio do conteúdo é restrito. Alternativamente, existem técnicas para a criação manual dessas informações por profissionais, contudo, são dispendiosas e suscetíveis a erros. Uma possível solução seria explorar anotações colaborativas dos usuários, mas tal estratégia provoca a perda de individualidade dos dados, impedindo a extração de preferências do indivíduo a partir da interação. Este trabalho tem como objetivo propor uma arquitetura de personalização que permite a indexação multimídia de modo irrestrito e barato, utilizando anotações colaborativas, mas mantendo-se a individualidade dos dados para complementar o perfil de interesses do usuário com conceitos relevantes. A multimodalidade de metadados e de preferências também é explorada na presente tese, fornecendo maior robustez na extração dessas informações, e obtendo-se uma maior carga semântica que traz benefícios às aplicações. Como prova de conceito, este trabalho apresenta dois serviços de personalização que exploram a arquitetura proposta, avaliando os resultados por meio de comparações com abordagens previamente propostas na literatura / The extraction of semantic information from digital video is important to be used on personalization services because the content is adapted according to each users preferences. However, although it is possible to find several approaches in the literature, automatic indexing techniques are able to generate semantic metadata only when the contents domain is restricted. Alternatively, this information can be created manually by professionals, but this activity is time-consuming and error-prone. A possible solution would be to explore collaborative users annotations, but such approach has the disadvantage of lacking the individuality of annotations, hampering the extraction of users preferences from the interaction. This work has the objective of proposing a generic personalization architecture that allows multimedia indexing procedures to be accomplished in a cheap and unrestricted way. Such architecture uses collaborative annotations, but keeps the individuality of the data in order to augment the users profile with relevant concepts. The multimodality of metadata and users preferences is also explored in this work, which provides robustness during the extraction of semantic information, bringing benefits to applications. This work also presents two personalization services that explore the proposed architecture, along with evaluations that compare the obtained results with previously proposed approaches
128

Sistema integrado de diagnose e recomendação (DRIS) para avaliação do estado nutricional da macieira no sul do Brasil. / Diagnosis and recommendation integrated system (dris) to evaluation of nutritional status of apple in southern Brazil.

Gilmar Ribeiro Nachtigall 04 August 2004 (has links)
O manejo nutricional adequado é fator determinante na produtividade e na qualidade dos frutos de macieira. Dentre os métodos para diagnóstico nutricional das plantas, destacam-se o critério de faixa de suficiência e o sistema integrado de diagnose e recomendação (DRIS). Este trabalho teve por objetivo avaliar o DRIS como método de interpretação de resultados de análises de folhas de plantas de macieira, estabelecendo normas adequadas para a cultura, e compará-lo com o método de diagnose nutricional, baseado no critério de faixa de suficiência, atualmente utilizado no Sul do Brasil. Buscou-se determinar, também a melhor época de amostragem de folhas de macieira para a aplicação do método DRIS. O estudo foi realizado na região produtora de maçã dos Campos de Cima da Serra, no Rio Grande do Sul, e nas regiões do Alto Vale do Rio do Peixe e Planalto Serrano, em Santa Catarina, em 70 pomares selecionados quanto à produtividade e técnicas de manejo do pomar, onde foram obtidas informações sobre a produtividade, espaçamento, porta-enxertos e realizada a amostragem de folhas e solo. Foram determinadas as concentrações de nitrogênio, fósforo, potássio, cálcio, magnésio, boro, cobre, ferro, manganês e zinco nas amostras de folhas e os valores de pH e os teores de matéria orgânica, fósforo, potássio, cálcio e magnésio nas amostras de solos. Também foram utilizados resultados de experimentos de adubação potássica e nitrogenada para avaliar a eficiência dos métodos DRIS, bem como de resultados de sazonalidade de nutrientes em três cultivares de macieira, para avaliar a época adequada de coleta de folhas para o método DRIS. Os índices DRIS foram calculados utilizando-se dois critérios para a escolha da ordem da razão dos nutrientes (Letzsch, 1985 e Walworth et al., 1986; Nick, 1998) e três formas de cálculo das funções dos nutrientes (Beaufils, 1973; Jones, 1981; Elwali & Gascho, 1984). Os resultados indicaram que: (i) A concentração dos nutrientes apresentou correlação positiva e significativa (p<0,01) com os respectivos índices DRIS, com exceção do N; (ii) O critério do “valor F” (Letzsch, 1985 e Walworth et al., 1986) mostrou-se mais eficiente que o “valor R” (Nick, 1998) para a escolha da ordem da razão dos nutrientes para a cultura da macieira; (iii) O Índice de Balanço Nutricional (IBN), calculado a partir das normas geradas, apresentou correlação negativa e significativa (p<0,01) com a produtividade para a população de referência, em todas as combinações de métodos testados; (iv) O método DRIS descrito por Elwali & Gascho (1984), utilizando o “valor F”, quando comparado com o critério de faixas de suficiência, apresentou diagnóstico nutricional mais eficiente que os demais métodos de cálculo do DRIS; (v) O método de cálculo do DRIS, com base no somatório das funções, descrito por Elwali & Gascho (1984), utilizando o “valor F” é o mais indicado para a cultura da macieira, por apresentar valores de IBN que melhor indicam o estado nutricional das plantas e pela eficiência no diagnóstico nutricional da cultura; (vi) A melhor época de coleta de folhas para o método DRIS esta situada entre a quinta e a décima quinta semana após a plena floração; (vii) As normas DRIS geradas neste trabalho foram adequadas para o diagnóstico nutricional da macieira, para as condições do Sul do Brasil. / The appropriate nutritional management is a decisive factor in fruit productivity and quality of apple trees. Among the several methods for nutritional diagnosis of the plants, the most important are the sufficiency range approach and the diagnosis and recommendation integrated system (DRIS). The objective of this work was evaluate DRIS as an interpretation method of results of analyses of apple tree leaves, establishing appropriate norms for the culture and comparing it with the sufficiency range approach currently used in the Southern Brazil, and determine the best sampling time of apple tree leaves for the application of the DRIS method. The study was carried out in the apple producing area of Campos de Cima da Serra (RS, Brazil), and in the areas of Alto Vale do Rio do Peixe and Planalto Serrano (SC, Brazil), in 70 orchards selected on basis of productivity and management techniques, where information on productivity, spacing, rootstock was obtained and leaf and soil sampling were performed. The concentrations of nitrogen, phosphorus, potassium, calcium, magnesium, boron, copper, iron, manganese and zinc were determined in the leaf samples as well as the pH values and the concentrations of organic matter, phosphorus, potassium, calcium and magnesium in the samples of soils. Results of fertilization experiments with potassium and nitrogen were also used to evaluate the efficiency of DRIS methods, as well as results of nutrient seasonally in three apple tree cultivars, to evaluate the appropriate leaf collection time for the DRIS method. The DRIS indices were calculated using two criteria to choose the order of the nutrient ratio (Letzsch, 1985 and Walworth et al., 1986; Nick, 1998) and three forms of calculating of the nutrient functions (Beaufils, 1973; Jones, 1981; Elwali & Gascho, 1984). The results indicated that: (i) the nutrient concentration presented positive and significant correlation (p<0.01) with the respective DRIS indices, except for N; (ii) the criterion of the "F value" (Letzsch, 1985 and Walworth et al., 1986) was shown to be more efficient than the "R value” (Nick, 1998) to choose the order of the nutrient ratio for apple tree culture; (iii) the Nutritional Balance Index (NBI), calculated from the generated norms, presented a negative and significant correlation (p <0.01) with productivity for the reference population in all combinations of methods tested; (iv) the DRIS method described by Elwali & Gascho (1984), using the "F value", when compared with the sufficiency range approach, presented a more efficient nutritional diagnosis than the other methods of DRIS calculation; (v) the method of DRIS calculation, based on the sum of the functions, described by Elwali & Gascho (1984), using the "F value" is the most suitable for apple tree culture, for presenting NBI values that best indicate the nutritional state of the plants and for the efficiency in the nutritional diagnosis of the culture; (vi) the best leaf sampling time for the DRIS method is between the fifth and the fifteenth week after full blossom; (vii) The DRIS norms generated in this work were appropriate for the nutritional diagnosis of apple trees, for the conditions of Southern Brazil.
129

Incorporação de metadados semânticos para recomendação no cenário de partida fria / Incorporation of semantic metadata for recommendation in the cold start scenario

Fressato, Eduardo Pereira 06 May 2019 (has links)
Com o propósito de auxiliar os usuários no processo de tomada de decisão, diversos tipos de sistemas Web passaram a incorporar sistemas de recomendação. As abordagens mais utilizadas são a filtragem baseada em conteúdo, que recomenda itens com base nos seus atributos, a filtragem colaborativa, que recomenda itens de acordo com o comportamento de usuários similares, e os sistemas híbridos, que combinam duas ou mais técnicas. A abordagem baseada em conteúdo apresenta o problema de análise limitada de conteúdo, o qual pode ser reduzido com a utilização de informações semânticas. A filtragem colaborativa, por sua vez, apresenta o problema da partida fria, esparsidade e alta dimensionalidade dos dados. Dentre as técnicas de filtragem colaborativa, as baseadas em fatoração de matrizes são geralmente mais eficazes porque permitem descobrir as características subjacentes às interações entre usuários e itens. Embora sistemas de recomendação usufruam de diversas técnicas de recomendação, a maioria das técnicas apresenta falta de informações semânticas para representarem os itens do acervo. Estudos na área de sistemas de recomendação têm analisado a utilização de dados abertos conectados provenientes da Web dos Dados como fonte de informações semânticas. Dessa maneira, este trabalho tem como objetivo investigar como relações semânticas computadas a partir das bases de conhecimentos disponíveis na Web dos Dados podem beneficiar sistemas de recomendação. Este trabalho explora duas questões neste contexto: como a similaridade de itens pode ser calculada com base em informações semânticas e; como semelhanças entre os itens podem ser combinadas em uma técnica de fatoração de matrizes, de modo que o problema da partida fria de itens possa ser efetivamente amenizado. Como resultado, originou-se uma métrica de similaridade semântica que aproveita a hierarquia das bases de conhecimento e obteve um desempenho superior às outras métricas na maioria das bases de dados. E também o algoritmo Item-MSMF que utiliza informações semânticas para amenizar o problema de partida fria e obteve desempenho superior em todas as bases de dados avaliadas no cenário de partida fria. / In order to assist users in the decision-making process, several types of web systems started to incorporate recommender systems. The most commonly used approaches are content-based filtering, which recommends items based on their attributes; collaborative filtering, which recommends items according to the behavior of similar users; and hybrid systems that combine both techniques. The content-based approach presents the problem of limited content analysis, which can be reduced by using semantic information. The collaborative filtering, presents the problem of cold start, sparsity and high dimensionality of the data. Among the techniques of collaborative filtering, those based on matrix factorization are generally more effective because they allow us to discover the underlying characteristics of interactions between users and items. Although recommender systems have several techniques, most of them lack semantic information to represent the items in the collection. Studies in this area have analyzed linked open data from the Web of data as source of semantic information. In this way, this work aims to investigate how semantic relationships computed from the knowledge bases available in the Data Web can benefit recommendation systems. This work explores two questions in this context: how the similarity of items can be calculated based on semantic information and; as similarities between items can be combined in a matrix factorization technique, so that the cold start problem of items can be effectively softened. As a result, a semantic similarity metric was developed that leverages the knowledge base hierarchy and outperformed other metrics in most databases. Also the Item-MSMF algorithm that uses semantic information to soften the cold start problem and obtained superior performance in all databases evaluated in the cold start scenario.
130

Regularização social em sistemas de recomendação com filtragem colaborativa / Social Regularization in Recommender Systems with Collaborative Filtering

Zabanova, Tatyana 14 May 2019 (has links)
Modelos baseados em fatoração de matrizes estão entre as implementações mais bem sucedidas de Sistemas de Recomendação. Neste projeto, estudamos as possibilidades de incorporação de informações provindas de redes sociais, para melhorar a qualidade das predições do modelo tanto em modelos tradicionais de Filtragem Colaborativa, quanto em Filtragem Colaborativa Neural. / Models based on matrix factorization are among the most successful implementations of Recommender Systems. In this project, we study the possibilities of incorporating the information from social networks to improve the quality of predictions of the model both in traditional Collaborative Filtering and in Neural Collaborative Filtering.

Page generated in 0.0654 seconds