• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 13
  • 6
  • Tagged with
  • 192
  • 114
  • 89
  • 77
  • 65
  • 46
  • 46
  • 45
  • 42
  • 37
  • 35
  • 32
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Um estudo comparativo da acurácia de algoritmos de recomendação em sistemas de compras coletivas.

COSTA, Filipe da Silva. 13 September 2017 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2017-09-13T16:22:48Z No. of bitstreams: 1 Dissertação Um estudo comparativo.pdf: 3269969 bytes, checksum: 0be6afcf0661e75bf4300977e37dd0cb (MD5) / Made available in DSpace on 2017-09-13T16:22:48Z (GMT). No. of bitstreams: 1 Dissertação Um estudo comparativo.pdf: 3269969 bytes, checksum: 0be6afcf0661e75bf4300977e37dd0cb (MD5) Previous issue date: 2017-11-17 / Capes / Sites de Compras Coletivas (SCC) correspondem a um tipo específico de site que tem como objetivo divulgar ofertas (produtos, serviços ou viagens) com alto valor de desconto, por um tempo determinado, o que proporciona ao vendedor das ofertas um maior número de negociações em um curto período de tempo. Para atingir esse objetivo, os SCC utilizam estratégias de marketing que vão desde a divulgação das ofertas em redes sociais até o envio de e-mails diários para os usuários cadastrados. No entanto, a divulgação das ofertas para a maioria dos SCC é realizada de forma não personalizada, de maneira que todos os usuários recebem diariamente o mesmo conjunto de ofertas divulgadas. Logo, por falta de personalização dessa divulgação, os usuários acabam por receber uma grande quantidade de ofertas irrelevantes ou desinteressantes. Nesse sentido, propomos o estudo de um Sistema de Recomendação que leve em consideração aspectos importantes para os usuários de SCC, aspectos estes definidos a partir da análise da base de dados real de uma empresa que atua no domínio de compras coletivas. Neste estudo, avaliamos quatro algoritmos aplicados aos dados desse domínio, dois desses algoritmos considerados estado da arte em recomendação. Discutimos os resultados obtidos a partir dos experimentos, indicando qual dos algoritmos apresenta maior eficácia no domínio estudado, de acordo com as métricas definidas neste trabalho. A avaliação do trabalho foi realizada por meio experimental em parceria com a empresa QueroDois, sediada em Ribeirão Preto - São Paulo. / Daily Deals Sites (DDSs) correspond to a specific website type designed to advertise offers (products, services or travel) at a significantly reduced prices, for a certain time, so the seller of the offers can make a large number of negotiations in a short period of time. To achieve this goal, the DDSs use marketing strategies ranging from advertising the offers on social network until to sending daily e-mails to registered users. However, the disclosure of the offers for most DDSs is not performed in a personalized manner, so all users receive the same set of daily offers. Thus, because of the lack of customization of this disclosure, users end up receiving a large amount of irrelevant or uninteresting offerings. Accordingly, we propose the study of a Recommender System that takes into account important aspects of users of DDSs. This aspects are defined by analyzing the real database of a company engaged in the group of buying domain. We evaluated four algorithms applied to data in this domain, two of these considered state of the art on recommendation, and discuss the results obtained from the experiments, also indicating which of those algorithms presents better efficacy, according to the metrics defined in this work. The evaluation of this work was performed by experimental means in partnership with company QueroDois, based in Ribeirão Preto - São Paulo.
42

Investigação da combinação de filtragem colaborativa e recomendação baseada em confiança através de medidas de esparsidade

AZUIRSON, Gabriel de Albuquerque Veloso 06 August 2015 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2016-03-11T15:25:20Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) dissertação_gava_cin.pdf: 1596983 bytes, checksum: 23245c1b65fe3416d3baeeac5e118845 (MD5) / Made available in DSpace on 2016-03-11T15:25:20Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) dissertação_gava_cin.pdf: 1596983 bytes, checksum: 23245c1b65fe3416d3baeeac5e118845 (MD5) Previous issue date: 2015-08-06 / Sistemas de recomendação têm desempenhado um papel importante em diferentes contextos de aplicação (e.g recomendação de produtos, filmes, músicas, livros, dentre outros). Eles automaticamente sugerem a cada usuário itens que podem ser relevantes, evitando que o usuário tenha que analisar uma quantidade gigantesca de itens para realizar sua escolha. Filtragem colaborativa (FC) é a abordagem mais popular para a construção de sistemas de recomendação, embora sofra com problemas relacionados à esparsidade dos dados (e.g., usuários ou itens com poucas avaliações). Neste trabalho, investigamos a combinação de técnicas de FC, representada pela técnica de Fatoração de Matrizes, e técnicas de recomendação baseada em confiança (RBC) em redes sociais para aliviar o problema da esparsidade dos dados. Sistemas de RBC têm se mostrado de fato efetivos para aumentar a qualidade das recomendações, em especial para usuários com poucas avaliações realizadas (e.g., usuários novos). Entretanto, o desempenho relativo entre técnicas de FC e de RBC pode depender da quantidade de informação útil presente nas bases de dados. Na arquitetura proposta nesse trabalho, as predições geradas por técnicas de FC e de RBC são combinadas de forma ponderada através de medidas de esparsidade calculadas para usuários e itens. Para isso, definimos inicialmente um conjunto de medidas de esparsidade que serão calculadas sobre a matriz de avaliações usuários-itens e matriz de confiança usuários-usuários. Através de experimentos realizados utilizando a base de dados Epinions, observamos que a proposta de combinação trouxe uma melhoria nas taxas de erro e na cobertura em comparação com as técnicas isoladamente. / Recommender systems have played an important role in different application contexts (e.g recommendation of products, movies, music, books, among others). They automatically suggest each user items that may be relevant, preventing the user having to analyze a huge amount of items to make your choice. Collaborative filtering (CF) is the most popular approach for building recommendation systems, although suffering with sparsity of the data-related issues (eg, users or items with few evaluations). In this study, we investigated the combination of CF techniques represented by matrix factorization technique, and trust-based recommendation techniques (TBR) on social networks to alleviate the problem of data sparseness. TBR systems have in fact proven to be effective to increase the quality of the recommendations, especially for users with few assessments already carried out (e.g., cold start users). However, the relative performance between CF and TBR techniques may depend on the amount of useful information contained in the databases. In the proposed architecture in this work, the predictions generated by CF and TBR techniques are weighted combined through sparsity measures calculated to users and items. To do this, first we define a set of sparsity measures that will be calculated on the matrix of ratings users-items and matrix of trust users-users. Through experiments using Epinions database, we note that the proposed combination brought an improvement in error rates and coverage compared to combined techniques.
43

Group recommendation strategies based on collaborative filtering

Ricardo de Melo Queiroz, Sérgio January 2003 (has links)
Made available in DSpace on 2014-06-12T15:59:01Z (GMT). No. of bitstreams: 2 arquivo4812_1.pdf: 2843132 bytes, checksum: cf053779fad5d73c77a2b107542256b3 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2003 / Ricardo de Melo Queiroz, Sérgio; de Assis Tenório Carvalho, Francisco. Group recommendation strategies based on collaborative filtering. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2003.
44

Pre-processing approaches for collaborative filtering based on hierarchical clustering / Abordagens de pré-processamento para filtragem colaborativa baseada em agrupamento hierárquico

Aguiar Neto, Fernando Soares de 19 October 2018 (has links)
Recommender Systems (RS) support users to find relevant content, such as movies, books, songs, and other products based on their preferences. Such preferences are gathered by analyzing past users interactions, however, data collected for this purpose are typically prone to sparsity and high dimensionality. Clustering-based techniques have been proposed to handle these problems effectively and efficiently by segmenting the data into a number of similar groups based on predefined characteristics. Although these techniques have gained increasing attention in the recommender systems community, they are usually bound to a particular recommender system and/or require critical parameters, such as the number of clusters. In this work, we present three variants of a general-purpose method to optimally extract users groups from a hierarchical clustering algorithm specifically targeting RS problems. The proposed extraction methods do not require critical parameters and can be applied prior to any recommendation system. Our experiments have shown promising recommendation results in the context of nine well-known public datasets from different domains. / Sistemas de Recomendação auxiliam usuários a encontrar conteúdo relevante, como filmes, livros, músicas entre outros produtos baseando-se em suas preferências. Tais preferências são obtidas ao analisar interações passadas dos usuários, no entanto, dados coletados com esse propósito tendem a tipicamente possuir alta dimensionalidade e esparsidade. Técnicas baseadas em agrupamento de dados têm sido propostas para lidar com esses problemas de foma eficiente e eficaz ao dividir os dados em grupos similares baseando-se em características pré-definidas. Ainda que essas técnicas tenham recebido atenção crescente na comunidade de sistemas de recomendação, tais técnicas são usualmente atreladas a um algoritmo de recomendação específico e/ou requerem parâmetros críticos, como número de grupos. Neste trabalho, apresentamos três variantes de um método de propósitvo geral de extração ótima de grupos em uma hierarquia, atacando especificamente problemas em Sistemas de Recomendação. Os métodos de extração propostos não requerem parâmetros críticos e podem ser aplicados antes de qualquer sistema de recomendação. Os experimentos mostraram resultados promissores no contexto de nove bases de dados públicas conhecidas em diferentes domínios.
45

Aspectos temporais na recomendação de conteúdo em microblogs / Temporal aspects on content recommendation in microblogs

Casimiro, Caio Ramos 15 June 2015 (has links)
Este documento apresenta um estudo que avalia o uso de informação temporal na tarefa de recomendação de tweets no twitter. Foram explorados dois aspectos temporais: a vida útil de tópico de informação e a sua versão personalizada para cada usuário. A aplicação destes aspectos temporais foi avaliada utilizando-se três sistemas de recomendação implementados. Também avaliamos dois modelos de tópicos utilizados para representar tweets: o modelo bag of words e um modelo de tópicos latentes extraídos por LDA (Latent Dirichlet Allocation). Além disso, avaliamos o uso de máquinas de vetor de suporte para estimar o perfil de interesses de usuário, comparando esta abordagem com uma outra mais simples. Os experimentos foram executados utilizando-se um conjunto de dados com 414 milhões de tweets publicados por 321 mil usuários. Os resultados apresentados demonstram que o uso de vida útil de tópico na tarefa de recomendação melhora a qualidade das recomendações, e o uso da versão personalizada desta informação melhorou ainda mais a qualidade destas / This document presents a study that evaluates the use of temporal information in the task of recommending tweets on Twitter. Two temporal aspects have been analysed: the lifespan of information topic and its personalized version for each user. The application of such temporal aspects has been evaluated using three recommendation systems implemented in this work. We also evaluated two topic models considered to describe tweets: a bag of words model and a model of latent topics extracted using LDA (Latent Dirichlet Allocation). Furthermore, we evaluated the use of SVM (Support Vector Machines) to estimate the user profile, comparing this approach with a simpler one. The experiments have been executed using a dataset with 414 millions of tweets published by 321 thousands of users. The results show that the use of topic lifespan information increases the quality of recommendation, and the personalized version of this information increases the quality even more
46

Níveis de adubação N-P-K sobre o manejo da desfolhação do capim-marandu orientado pela interceptação da radiação

Silva, André Augusto Marinho 02 March 2016 (has links)
O conhecimento das respostas morfofisiológicas da planta sobre as condições edafoclimáticas específicas de cada região é fundamental para determinação de recomendações de manejo da desfolhação e adubação mais eficientes que favoreçam a interface solo-planta. Assim, objetivou-se avaliar o melhor momento de corte do capim-Marandu (Urochloa Brizantha cv. Marandu) submetido a diferentes níveis de adubação (zero-00:00:00, baixa-100:32:100, média-170:55:170 e alta-240:78:240 de N-P2O5-K2O) associado a diferentes momentos de desfolhação (90, 95 e 100% de interceptação da luminosidade) para distintas estações do ano (transição seca/água – S/A, período das águas – A e água/seca – A/S). Para tanto foram conduzidos dois trabalhos, sendo o primeiro para determinar o efeito dos níveis de adubação e o segundo para avaliar o efeito da interceptação da radiação fotossinteticamente ativa – IRFA sobre o desempenho do capim-Marandu nas épocas do ano. O trabalho foi composto por parcelas de 4x3 m² com três repetições por tratamento, as quais foram distribuídas em delineamento inteiramente casualizado (DIC). O primeiro trabalho foi avaliado em medidas repetidas no tempo e o segundo em arranjo fatorial 4x3. A densidade populacional de perfilhos (DPP perfilho-1 m2), altura (cm) e o índice de área foliar (IAF m2 m2) foram fortemente influenciados pelas estratégias de adubação, mas foram estáveis após a primeira época de avaliação. A taxa de senescência (TSF) demostrou ser bastante variável com as épocas do ano, em que a menor adubação teve um incremento na TSF diária de 30,2% em comparação com a maior adubação. As taxas de alongamento foliar (TAlF mm perfilho-1 dia-1), taxa de alongamento de colmo (TAlC mm perfilho-1 dia-1) e Filocrono (FILOR dias-1 folha-1) foram influenciadas pelas épocas do ano, as quais proporcionaram as maiores TAlF e TAlC na época S/A, o FILOR tendeu a diminuir com a elevação da fertilidade do solo sendo em média o menor valor de 9,6 dias-1 folha-1 obtido para a adubação alta e dentre as épocas o menor valor obtido para FILOR foi na estação S/A com média de 9,1 dias-1 folha-1. A duração de vida das folhas (DVF dias) não se mostrou flexível aos tratamentos, o comprimento de bainha (CB mm perfilho-1) e o número de folhas vivas (NFV folhas-1 perfilho-1) mostraram-se bastante influenciados pelos tratamentos e principalmente pela época do ano, onde o maior CB foi obtido na estação S/A com média de 359,6 mm-1 perfilho-1, proporcionado principalmente pelo baixo número de perfilhos que resultou em maior CB para atingir a meta alvo de 95% de IRFA, bem como para a mesma época foram obtidos os maiores NFV com média de 4,9 folhas-1 perfilho-1. As massa seca total (MST kg ha-1), de lâmina foliar (MSLF kg ha-1), colmo (MSC kg ha-1) e material morto (MSMM kg ha-1) foram influenciadas pelos tratamentos, onde tanto a elevação da fertilidade quanto a interceptação da luminosidade elevaram a produção de matéria seca (MS), entretanto, o incremento proporcionado após o IAFcrítico foi principalmente pelo aumento de colmo e material morto, e essa resposta promoveu a redução da relação F/C, o que resultou também na diminuição do índice SPAD, que passou de 18,3 na IRFA de 90% para 11,2 na IRFA de 100%, essa queda, demostra redução no estado nutricional da planta. A taxa de acumulo de forragem (TAF kg ha-1 dia-1) foi influenciada pelas estratégias de adubação, onde a maior adubação proporcionou um incremento de 204,6% na TAF em comparação a dose zero. Assim, é possível concluir que as características morfogênicas e estruturais do capim-Marandu, bem como sua produção forrageira são fortemente influenciadas pelas estações de crescimento e pelo manejo da adubação, sendo fundamental a realização da adubação associada as condições ambientais favoráveis para uma boa produção forrageira tanto quantitativa quanto qualitativa. Por fim, a altura do dossel próxima os 40 cm coincide com o IAFcrítico, sendo esse o momento ótimo para a desfolhação da planta sob os fatores edafoclimáticos de condições tropicais. / Knowledge of the morphological and physiological responses of the plant on the specific soil and climatic conditions of each region is fundamental for determining management of defoliation recommendations and more efficient fertilizer to encourage the soil-plant interface. The objective was to evaluate the best time to cut the palisadegrass Marandu (Urochloa brizantha cv. Marandu) submitted to different levels of fertilization (zero-00:00:00, low-100:32:100, medium-170: 55 170 and High-240:78:240 N-P2O5-K2O) associated with different times of defoliation (90, 95 and 100% light interception) for different seasons (transition dry/water - D/W, period of the water - W and the water/dry - W/D). Therefore we conducted two studies, the first to determine the effect of fertilizer levels and the second to assess the effect of interception of photosynthetically active radiation - IRPA on the performance of palisadegrass Marandu the seasons. The work was composed of portions of 4x3 m² with three replicates per treatment, which were distributed in a completely randomized design (CRD). The first work was evaluated in repeated measurements over time and the second in a factorial arrangement 4x3. The tiller population density (TPD tiller-1 m2), height (cm) and leaf area index (LAI m2 m2) were strongly influenced by fertilization strategies but were stable after the first evaluation. The senescence rate leaf (SRL) has shown to be quite variable with the seasons, in which the lower fertilization had an increase in 30,2% daily SRL compared to higher fertilization. The leaf elongation rate (LER mm tiller-1 day-1), stem elongation rate (SER mm tiller-1 day-1) and Phyllochron (PHYLLO days-1 sheet-1) were influenced by the seasons of the year, which provided the highest LER and SER at the time D/W, the PHYLLO tended to decrease with increasing soil fertility and on average the lowest value of 9,6 days-1 leaf-1 obtained for the high fertilization and among the seasons the lowest value obtained for PHYLLO was at the station D/W with an average of 9,1 days-1 leaf-1. The lifetime leaf (LTL days) was not flexible to treatment, the length of sheath (LS mm tiller-1) and the number of living leaves (NLL sheets-1 tiller-1) proved to be greatly influenced by the treatments and especially the time of year where the largest LS was obtained at the station D/W with an average of 359,6 mm-1 tiller-1, provided mainly by the low number of tillers that resulted in higher LS to reach the goal target 95% of IRPA and for the same period showed the highest NLL with an average of 4,9 leaves-1 tiller-1. The total dry matter (TDM kg ha-1) of leaf blade (DMLB kg ha-1), stem (DMS kg ha-1) and dead material (DMDM kg ha-1) were influenced by the treatments, which both rise fertility as the interception of light increased the production of dry matter (DM), however, the increase provided after LAIcrítical was mainly due to the increase of stem and dead material, and this response promoted the reduction in the ratio L/S, which resulted also decreasing the SPAD index, which rose from 18,3 in 90% IRPA to 11,2 in IRPA 100%, this fall, demonstrates reduction in the nutritional status of the plant. The accumulation rate of forage (ARF kg ha-1 day-1) was influenced by fertilization strategies, where most fertilization provided an increase of 204,6% in ARF compared to zero dose. Thus, we conclude that the morphogenetic and structural characteristics of palisadegrass Marandu and their forage production are strongly influenced by growing seasons and the management of fertilization is fundamental to the realization of fertilization associated with favorable environmental conditions for good forage production both quantitative and qualitative. Finally, the next time the canopy 40 cm coincides with the LAIcrítico, which is the optimal time for the defoliation of the plant under edafoclimatic factors tropical conditions.
47

Visualização de tags para explicar e filtrar recomendações de músicas / Using Tag Visualizations to Explain and Filter Music Recommendations

Yamashita, Juliana Sato 02 April 2013 (has links)
Coleções digitais de mídias, tanto pessoais como online, crescem rapidamente. Para que grandes quantidades de músicas sejam acessíveis à usuários, serviços populares como iTunes, Last.fm e Pandora oferecem recomendações. Essa abordagem livra usuários de lembrarem de músicas, e permite a descoberta de canções novas ou esquecidas. Mas recomendações apresentam problemas com usuários, como credibilidade e falta de controle. A motivação deste trabalho é melhorar a experiência de usuários com recomendações de música através do uso de explicações. Ao usar um sistema de recomendação, a satisfação e aprovação de usuários não depende só da eficácia do algoritmo, mas também de explicações. Pesquisas mostram que estas podem beneficiar sistemas de recomendação, aumentando a credibilidade e satisfação de usuários, ao oferecer mais transparência e formas de correção. O objetivo deste trabalho é projetar e desenvolver uma nova forma de visualização de tags, e testar sua viabilidade para explicar e filtrar recomendações de músicas. Mais precisamente, investigamos se esta visualização pode favorecer as metas de inspeção (scrutability), eficiência, eficácia e satisfação. A partir da pesquisa em necessidades de usuários para recomendações e música, a visualização Tag Strings foi projetada e desenvolvida. Tag Strings inclui tanto a interface da visualização, quanto o processo de coleta e cálculo de relevância de tags e músicas. Para a avaliação da visualização Tag Strings, dois tipos de experimentos foram construídos: a comparação entre uma lista de recomendações com Tag Strings, e a comparação entre o design de referência (baseado nos serviços Last.fm e Pandora) e Tag Strings. A construção desses dois experimentos permitiu a avaliação de Tag Strings como uma forma de explicação para recomendações de música. Os resultados dos experimentos evidenciam que a nova forma de visualização Tag Strings favorece as metas de inspeção (scrutability), eficiência, eficácia e satisfação, melhorando a usabilidade e experiência de usuários com recomendações de música. / Digital media collections, both personal and online, grow rapidly. To make large music collections available to users, popular services such as iTunes, Last.fm and Pandora offer recommendations. This approach frees users from searching for music, and allows for the discovery of new or forgotten items. But recommendations present issues such as user trust and lack of control. The motivation for this project is to improve user experience with music recommendations through explanations. While using a recommendation system, user acceptance and satisfaction depends not only on the algorithm effectiveness, but also on explanations. Research shows that recommendations benefit from explanations, increasing user trust and satisfaction by offering more transparency and scrutability. The goal of this project is to design and develop a new form of tag visualization, and test its feasibility to explain and filter music recommendations. We specifically investigate if the visualization can support the aims of scrutability, efficiency, effectiveness and satisfaction. Based on the user research and needs for music recommendation, the visualization Tag Strings was designed and developed. Tag Strings includes both the visualization interface and the process of collecting and calculation of tag and track relevancy. To evaluate the visualization Tag String, we designed two types of experiments: comparing Tag Strings with a recommendation list, and comparing Tag Strings with a design reference (based on the services Last.fm and Pandora). The design of these two experiments allowed the evaluation of Tag Strings as a form of explanation to music recommendation. The experiment results highlight that the new visualization Tag Strings favors the aims of scrutability, efficiency, effectiveness and satisfaction, improving the user experience with music recommendations.
48

Recomendação de conteúdo baseada em interações multimodais / Content recommendation based on multimodal interactions

Costa, Arthur Fortes da 29 January 2015 (has links)
A oferta de produtos,informação e serviços a partir de perfis de usuários tem tornado os sistemas de recomendação cada vez mais presentes na Web, aumentando a facilidade de escolha e de permanência dos usuários nestes sistemas. Entretanto, existem otimizações a serem feitas principalmente com relação à modelagem do perfil do usuário. Geralmente, suas preferências são modeladas de modo superficial, devido à escassez das informações coletadas,como notas ou comentários, ou devido a informações indutivas que estão suscetíveis a erros. Esta dissertação propõe uma ferramenta de recomendação baseado em interações multimodais, capaz de combinar informações de usuários processadas individualmente por algoritmos de recomendação tradicionais. Nesta ferramenta desenvolveram-se quatro técnicas de combinação afim fornecer aos sistemas de recomendação, subsídios para melhoria na qualidade das predições em diversos domínios. / Providing products, information and services from user profiles has made the recommendation systems to be increasingly present, increasing the ease of selection and retention of users in Webservices. However, there are optimizations to be made in these systems mainly with respect to modeling the user profile. Generally, the preferences are modeled superficially, due to the scarcity of information collected, as notes or comments, or because of inductive information that is susceptible to errors. This work proposes are commendation tool based on multimodal interactions that combines users\' interactions, wich are processed individually by traditional recommendation algorithms. In this tool developed four combination of techniques in order to provide recommendation systems subsidies to improve the quality of predictions.
49

Pre-processing approaches for collaborative filtering based on hierarchical clustering / Abordagens de pré-processamento para filtragem colaborativa baseada em agrupamento hierárquico

Fernando Soares de Aguiar Neto 19 October 2018 (has links)
Recommender Systems (RS) support users to find relevant content, such as movies, books, songs, and other products based on their preferences. Such preferences are gathered by analyzing past users interactions, however, data collected for this purpose are typically prone to sparsity and high dimensionality. Clustering-based techniques have been proposed to handle these problems effectively and efficiently by segmenting the data into a number of similar groups based on predefined characteristics. Although these techniques have gained increasing attention in the recommender systems community, they are usually bound to a particular recommender system and/or require critical parameters, such as the number of clusters. In this work, we present three variants of a general-purpose method to optimally extract users groups from a hierarchical clustering algorithm specifically targeting RS problems. The proposed extraction methods do not require critical parameters and can be applied prior to any recommendation system. Our experiments have shown promising recommendation results in the context of nine well-known public datasets from different domains. / Sistemas de Recomendação auxiliam usuários a encontrar conteúdo relevante, como filmes, livros, músicas entre outros produtos baseando-se em suas preferências. Tais preferências são obtidas ao analisar interações passadas dos usuários, no entanto, dados coletados com esse propósito tendem a tipicamente possuir alta dimensionalidade e esparsidade. Técnicas baseadas em agrupamento de dados têm sido propostas para lidar com esses problemas de foma eficiente e eficaz ao dividir os dados em grupos similares baseando-se em características pré-definidas. Ainda que essas técnicas tenham recebido atenção crescente na comunidade de sistemas de recomendação, tais técnicas são usualmente atreladas a um algoritmo de recomendação específico e/ou requerem parâmetros críticos, como número de grupos. Neste trabalho, apresentamos três variantes de um método de propósitvo geral de extração ótima de grupos em uma hierarquia, atacando especificamente problemas em Sistemas de Recomendação. Os métodos de extração propostos não requerem parâmetros críticos e podem ser aplicados antes de qualquer sistema de recomendação. Os experimentos mostraram resultados promissores no contexto de nove bases de dados públicas conhecidas em diferentes domínios.
50

RecETC : uma funcionalidade baseada na recomendação de conteúdo para auxiliar no processo de escrita coletiva digital

Maria, Sandra Andrea Assumpção January 2017 (has links)
A presente tese versa sobre a construção de um Sistema de Recomendação (SR), denominado RecETC (Recomendador do ETC), para auxiliar no processo de Escrita Coletiva Digital (ECD) no Editor de Texto Coletivo (ETC). O RecETC tem como propósito a recomendação de materiais nos formatos de texto, imagens e vídeos, acerca do assunto que está sendo tratado na produção textual coletiva. Para a sua construção, utilizou-se da metodologia de estudo de caso através da abordagem qualitativa e quantitativa. Para isso, esta pesquisa foi desenvolvida em seis etapas, a saber: 1) Estudo teórico sobre as temáticas de Sistemas de Recomendação e Escrita Coletiva Digital, visando aprofundar o conhecimento nas respectivas áreas e identificar trabalhos correlatos. 2) Construção de Objetos de Aprendizagem produzidos como material de apoio para os cursos de extensão. 3) Desenvolvimento da primeira versão do RecETC. 4) Aplicação da primeira versão através de um curso piloto. 5) Desenvolvimento da segunda versão do RecETC 6) Aplicação da segunda versão em curso de extensão. Os dados foram coletados por meio de questionários e analisados tendo como base a metodologia de Análise de Conteúdo, o que possibilitou a definição de três categorias: Categoria I - O ETC como ambiente de Escrita Coletiva Digital, Categoria II - Requisitos técnicos do RecETC e Categoria III - Requisitos pedagógicos do RecETC. A partir do estudo do referencial teórico, do desenvolvimento e da análise das aplicações do RecETC por meio das categorias definidas, foi possível mapear os requisitos necessários para a sua construção e responder ao problema de pesquisa. Esses foram classificados em técnicos e/ou pedagógicos visando enfatizar os aspectos de funcionamento e as contribuições educacionais do RecETC para a ECD. Além disso, foi elaborado um plano de ação para auxiliar professores e alunos na ECD com o apoio do RecETC. Por fim, os resultados indicam que o desenvolvimento do RecETC atende ao propósito desse estudo e os requisitos identificados podem servir de referência para a construção de outros SR voltados para a ECD. / The present thesis deals with the construction of a Recommendation System (SR), called RecETC (ETC Recommender), to assist in the Digital Collective Writing (ECD) process in the Collective Text Editor (ETC). RecETC purpose is to recommend materials in text, image and video formats about the subject being treated in collective textual production. For its construction, it was used the methodology of case study through the qualitative and quantitative approach. For this, this research was developed in six stages, namely: 1) Theoretical study on the topics of Recommendation Systems and Digital Collective Writing, aiming to deepen the knowledge in the respective areas and to identify related works. 2) Construction of Learning Objects produced as support material for extension courses. 3) Development of the first version of RecETC. 4) Application of the first version through a pilot course. 5) Development of the second version of RecETC 6) Application of the second version in the course of extension. The data were collected through questionnaires and analyzed based on the Content Analysis methodology, which enabled the definition of three categories: Category I - ETC as a Digital Collective Writing environment, Category II - Technical requirements of RecETC and Category III - Pedagogical requirements of RecETC. From the study of the theoretical reference, development and analysis of RecETC applications through the defined categories, it was possible to map the necessary requirements for its construction and to respond to the research problem. These were classified as technical and / or pedagogical in order to emphasize the functional aspects and educational contributions of RecETC to ECD. In addition, a plan of action was developed to assist teachers and students in ECD with the support of RecETC. Finally, the results indicate that the development of RecETC fulfills the purpose of this study and the requirements identified can serve as a reference for the construction of other SRs focused on ECD.

Page generated in 0.0739 seconds