• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 15
  • 14
  • 9
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Evaluation of Recycled Asphalt Shingles (RAS) in Hot Mix Asphalt (HMA): An Ontario Perspective

Islam, Riyad-UL 07 April 2011 (has links)
Today, a large quantity of waste is generated from the replacement of residential and commercial roofs. Many of the roofs being upgraded with previously constructed from asphalt shingles. Recycled Asphalt Shingles (RAS) contain nearly 30% of asphalt cement by mass, which can be a useful additive to asphalt pavements. In addition, shingles can offer significant potential savings through recycling and recovery as a construction material in flexible pavement. Currently, one and a half million tons of roofing shingle waste is generated each year in Canada related to the replacement of residential and commercial roofs and 90% of this valuable material is sent to landfills. If engineered properly, the addition of RAS into Hot Mix Asphalt (HMA) can provide significant benefits. The University of Waterloo’s Centre for Pavement and Transportation Technology (CPATT) is committed to working with public and private sector partners to develop sustainable technologies for the pavement industry. Using RAS in HMA can lead to economical, environmental and social benefits. Examples of which are reduced waste going to landfills and a reduction in the quantity of virgin material required. This research has involved the Ontario Centres of Excellence (OCE) and Miller Paving Limited. It was conducted to evaluate the performance of HMA containing RAS in both field and laboratory tests. A varying percentage of RAS was added to six common Ontario surface and binder layer of asphalt mixes. The intent was to determine if RAS could be added to improve performance and provide longer term cost savings. Laboratory testing was performed to evaluate the mix behavior. The elastic properties, fatigue life and resistance to thermal cracking were all evaluated at the CPATT laboratory. The characteristics of the mixes were evaluated by carrying out Dynamic Modulus, Resilient Modulus, Flexural Fatigue and Thermal Stress Restrained Specimen Test (TSRST) tests following American Association of State Highway and Transportation Officials (AASHTO) and American Society for Testing and Materials (ASTM) standards. Field test sections were constructed from HMA containing RAS to monitor the pavement behavior under natural environmental and traffic loading conditions. Evaluation of the field sites was performed using a Portable Falling Weight Deflectometer (PFWD) and carrying out distress surveys following the Ministry of Transportation Ontario (MTO) guidelines. The results to date show the sections performing very well with minimal to no distress developing. The results of the laboratory testing and field performance evaluations have shown encouraging results for the future use of RAS in HMA. If RAS can properly be engineered into HMA it can be a useful additive in both the surface and binder layers of the flexible pavement structure. Ultimately, the use of RAS in HMA can provide both an environmentally friendly and cost effective solution to the Ontario paving industry.
2

Evaluation of the Effect of Recycled Asphalt Shingles on Ontario Hot Mix Pavement

Ddamba, Shirley Jacqueline 23 September 2011 (has links)
Due to the 15-20 year life span of roofing shingles, 1.5 million tonnes of asphalt roofing shingles are being demolished and replaced annually in Canada from both residential and commercial facilities. These roofing shingles are manufactured from very high quality materials which are considered a valuable by-product. Recycled Asphalt Shingles (RAS), a product containing approximately 30% asphalt cement by mass, is a valuable additive to Hot Mix Asphalt (HMA) pavements and a potential savings for the construction industry. Recycling of demolished asphalt shingles is a significant new step forward in abating the need to put the waste into landfills. This re-use creates a great opportunity in reducing materials being dumped at landfills while providing an additive to HMA mixtures for paving. Therefore, this leads to economic, environmental, and social benefits for all the stakeholders and road users such as reduced need for landfill space, conservation of virgin materials and environment, and financial saving. The research involved evaluating the use of demolished shingles in six typical Ontario Hot Mix Asphalt (HMA) mixtures; HL 3 (1.5% RAS, 13.5% RAP), binder layer mixes SP19 (6% RAS, and 3% RAS, 25% RAP), surface layer mixes SP12.5 FC 1(3% RAS, 17% RAP) and SP12.5 FC2 (6% RAS and 3% RAS, 12% RAP). The six HMA mixes were also designed to contain Recycled Asphalt Pavement (RAP). This further complicated the research as both RAP and RAS were added. All mixes were designed and tested at CPATT laboratory; in addition a test section was paved at the CPATT Test Track. This research involved both laboratory and field evaluations of mixes containing RAS to develop pavement performance modeling for all six mixes using the updated Mechanistic-Empirical Pavement Design Guide (MEPDG). A life-cycle assessment of the six HMA mixes was performed to quantify the environmental impacts using the Pavement Life-Cycle Assessment Tool for Environmental and Economic Effects (PaLATE) and rigorous economic costs/benefits were assessed using Life Cycle Cost Analysis (LCCA). Calibrations of models for Ontario conditions were completed. Test slabs were also constructed to simulate climatic changes by running freeze-thaw cycles based on weather data over the past ten years. Three field test sections located in the Town of Markham and one at the CPATT Test Track were monitored and assessed under as part of the research. Regular pavement condition assessments were carried out on all the test sections by performing non-destructive tests using a Portable Falling Weight Deflectometer (PFWD) and distress survey in accordance with the Ministry of Transportation (MTO) guidelines. The CPATT Test Track was evaluated with both the PFWD and surface distresses, whereas only distress surveys were performed on the three residential streets in the Town of Markham. The evaluations demonstrated that the pavements were in good conditions throughout the monitoring period of the research (four years for the three residential streets in the Town of Markham and two years for the CPATT Test Track). The structural analysis using the MEPDG indicated that Mix 3: SP19 3% RAS and 25% RAP had the best performance followed by Mix 2: SP19 6% RAS when considering all factors in the Life-Cycle Assessment. Mix 3 exhibited maximum savings on environmental emissions, energy and water usage, best adoptability to climatic change and skid resistance properties with minimal life cycle costs. The pavement performance and life-cycle assessment modeling demonstrated encouraging results for the use of RAS in HMA pavements from which guidelines were developed for its use. It is important to note that careful mix design should be carried out when RAS is added to HMA especially when RAP is also used. This includes measuring of all key properties especially at low and high temperatures. In short, RAS can be a valuable additive in both surface and binder layers of HMA pavements. It provides an environmentally friendly and cost-effective innovation for the Ontario paving industry and can be considered for usage elsewhere with appropriate engineering.
3

Performance Evaluation of Recycled Asphalt Shingles (RAS) in Hot Mix Asphalt (HMA): An Ontario Perspective

Islam, Riyad-UL 07 April 2011 (has links)
Today, a large quantity of waste is generated from the replacement of residential and commercial roofs. Many of the roofs being upgraded with previously constructed from asphalt shingles. Recycled Asphalt Shingles (RAS) contain nearly 30% of asphalt cement by mass, which can be a useful additive to asphalt pavements. In addition, shingles can offer significant potential savings through recycling and recovery as a construction material in flexible pavement. Currently, one and a half million tons of roofing shingle waste is generated each year in Canada related to the replacement of residential and commercial roofs and 90% of this valuable material is sent to landfills. If engineered properly, the addition of RAS into Hot Mix Asphalt (HMA) can provide significant benefits. The University of Waterloo’s Centre for Pavement and Transportation Technology (CPATT) is committed to working with public and private sector partners to develop sustainable technologies for the pavement industry. Using RAS in HMA can lead to economical, environmental and social benefits. Examples of which are reduced waste going to landfills and a reduction in the quantity of virgin material required. This research has involved the Ontario Centres of Excellence (OCE) and Miller Paving Limited. It was conducted to evaluate the performance of HMA containing RAS in both field and laboratory tests. A varying percentage of RAS was added to six common Ontario surface and binder layer of asphalt mixes. The intent was to determine if RAS could be added to improve performance and provide longer term cost savings. Laboratory testing was performed to evaluate the mix behavior. The elastic properties, fatigue life and resistance to thermal cracking were all evaluated at the CPATT laboratory. The characteristics of the mixes were evaluated by carrying out Dynamic Modulus, Resilient Modulus, Flexural Fatigue and Thermal Stress Restrained Specimen Test (TSRST) tests following American Association of State Highway and Transportation Officials (AASHTO) and American Society for Testing and Materials (ASTM) standards. Field test sections were constructed from HMA containing RAS to monitor the pavement behavior under natural environmental and traffic loading conditions. Evaluation of the field sites was performed using a Portable Falling Weight Deflectometer (PFWD) and carrying out distress surveys following the Ministry of Transportation Ontario (MTO) guidelines. The results to date show the sections performing very well with minimal to no distress developing. The results of the laboratory testing and field performance evaluations have shown encouraging results for the future use of RAS in HMA. If RAS can properly be engineered into HMA it can be a useful additive in both the surface and binder layers of the flexible pavement structure. Ultimately, the use of RAS in HMA can provide both an environmentally friendly and cost effective solution to the Ontario paving industry.
4

Evaluation of the Effect of Recycled Asphalt Shingles on Ontario Hot Mix Pavement

Ddamba, Shirley Jacqueline 23 September 2011 (has links)
Due to the 15-20 year life span of roofing shingles, 1.5 million tonnes of asphalt roofing shingles are being demolished and replaced annually in Canada from both residential and commercial facilities. These roofing shingles are manufactured from very high quality materials which are considered a valuable by-product. Recycled Asphalt Shingles (RAS), a product containing approximately 30% asphalt cement by mass, is a valuable additive to Hot Mix Asphalt (HMA) pavements and a potential savings for the construction industry. Recycling of demolished asphalt shingles is a significant new step forward in abating the need to put the waste into landfills. This re-use creates a great opportunity in reducing materials being dumped at landfills while providing an additive to HMA mixtures for paving. Therefore, this leads to economic, environmental, and social benefits for all the stakeholders and road users such as reduced need for landfill space, conservation of virgin materials and environment, and financial saving. The research involved evaluating the use of demolished shingles in six typical Ontario Hot Mix Asphalt (HMA) mixtures; HL 3 (1.5% RAS, 13.5% RAP), binder layer mixes SP19 (6% RAS, and 3% RAS, 25% RAP), surface layer mixes SP12.5 FC 1(3% RAS, 17% RAP) and SP12.5 FC2 (6% RAS and 3% RAS, 12% RAP). The six HMA mixes were also designed to contain Recycled Asphalt Pavement (RAP). This further complicated the research as both RAP and RAS were added. All mixes were designed and tested at CPATT laboratory; in addition a test section was paved at the CPATT Test Track. This research involved both laboratory and field evaluations of mixes containing RAS to develop pavement performance modeling for all six mixes using the updated Mechanistic-Empirical Pavement Design Guide (MEPDG). A life-cycle assessment of the six HMA mixes was performed to quantify the environmental impacts using the Pavement Life-Cycle Assessment Tool for Environmental and Economic Effects (PaLATE) and rigorous economic costs/benefits were assessed using Life Cycle Cost Analysis (LCCA). Calibrations of models for Ontario conditions were completed. Test slabs were also constructed to simulate climatic changes by running freeze-thaw cycles based on weather data over the past ten years. Three field test sections located in the Town of Markham and one at the CPATT Test Track were monitored and assessed under as part of the research. Regular pavement condition assessments were carried out on all the test sections by performing non-destructive tests using a Portable Falling Weight Deflectometer (PFWD) and distress survey in accordance with the Ministry of Transportation (MTO) guidelines. The CPATT Test Track was evaluated with both the PFWD and surface distresses, whereas only distress surveys were performed on the three residential streets in the Town of Markham. The evaluations demonstrated that the pavements were in good conditions throughout the monitoring period of the research (four years for the three residential streets in the Town of Markham and two years for the CPATT Test Track). The structural analysis using the MEPDG indicated that Mix 3: SP19 3% RAS and 25% RAP had the best performance followed by Mix 2: SP19 6% RAS when considering all factors in the Life-Cycle Assessment. Mix 3 exhibited maximum savings on environmental emissions, energy and water usage, best adoptability to climatic change and skid resistance properties with minimal life cycle costs. The pavement performance and life-cycle assessment modeling demonstrated encouraging results for the use of RAS in HMA pavements from which guidelines were developed for its use. It is important to note that careful mix design should be carried out when RAS is added to HMA especially when RAP is also used. This includes measuring of all key properties especially at low and high temperatures. In short, RAS can be a valuable additive in both surface and binder layers of HMA pavements. It provides an environmentally friendly and cost-effective innovation for the Ontario paving industry and can be considered for usage elsewhere with appropriate engineering.
5

Creep Characteristics and Shear Strength of Recycled Asphalt Blends

January 2011 (has links)
abstract: The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural fill has been hindered by concern that it is susceptible to large long-term deformations (creep), preventing its use for a great many geotechnical applications. While asphalt/soil blends are often proposed as an alternative to 100% recycled asphalt fill, little data is available characterizing the geotechnical properties of recycled asphalt soil blends. In this dissertation, the geotechnical properties for five different recycled asphalt soil blends are characterized. Data includes the particle size distribution, plasticity index, creep, and shear strength for each blend. Blends with 0%, 25%, 50%, 75% and 100% recycled asphalt were tested. As the recycled asphalt material used for testing had particles sizes up to 1.5 inches, a large 18 inch diameter direct shear apparatus was used to determine the shear strength and creep characteristics of the material. The results of the testing program confirm that the creep potential of recycled asphalt is a geotechnical concern when the material is subjected to loads greater than 1500 pounds per square foot (psf). In addition, the test results demonstrate that the amount of soil blended with the recycled asphalt can greatly influence the creep and shear strength behavior of the composite material. Furthermore, there appears to be an optimal blend ratio where the composite material had better properties than either the recycled asphalt or virgin soil alone with respect to shear strength. / Dissertation/Thesis / M.S. Civil Engineering 2011
6

Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement

Van Winkle, Clinton Isaac 01 December 2014 (has links)
Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.
7

Feasibility of Using Recycled Asphalt Pavements (RAP) in Hot Mix Asphalt for the City of Phoenix, Arizona

January 2018 (has links)
abstract: Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although the national trends in Reclaimed Asphalt Pavements (RAP) usage are encouraging, the environmental conditions in Phoenix, Arizona are extreme and needs further consideration. The objective of this research study was to evaluate the viability of using RAP in future pavement maintenance and rehabilitation projects for the City. Agencies in the State of Arizona have been slow adopting the use of RAP as a regular practice. While the potential benefits are great, there is some concern on the impact to long-term pavement performance. RAP millings were sampled from the city’s stockpiles; processed RAP and virgin materials were provided by a local plant. Two asphalt binders were used: PG 70-10 and PG 64-16. RAP variability was evaluated by aggregate gradations; extracted and recovered binder was tested for properties and grading. A mixture design procedure based on the City’s specifications was defined to establish trial blends. RAP incorporation was based on national and local practices. Four different RAP contents were studied 10%, 15%, 25%, and 25% content with a softer binder, in addition to a control mix (0% RAP). Performance tests included: dynamic modulus to evaluate stiffness; Flow Number, to assess susceptibility for permanent deformation (rutting); and Tensile Strength Ratio as a measure of susceptibility to moisture damage. Binder testing showed very stiff recovered asphalts and variable contents with a reasonable variability on aggregate gradations. Performance test results showed slightly higher modulus as RAP content increases, showing a slight improvement related to rutting as well. For moisture damage potential, all mixtures performed well showing improvement for RAP mixtures in most cases. Statistical analysis showed that 0%, 10%, 15% and 25% with softer binder do not present significant statistical difference among mixtures, indicating that moderate RAP contents are feasible to use within the City paving operations and will not affect greatly nor negatively the pavement performance. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
8

Performance Evaluation of Reclaimed Asphalt Pavement in Hot Mix Asphalt Modified with Organosilane

January 2018 (has links)
abstract: Use of Recycled Asphalt Pavement (RAP) in newly designed asphalt mixtures is becoming a common practice. Depending on the percentage of RAP, the stiffness of the hot mix asphalt (HMA) increases by incorporating RAP in mixes. In a climatic area such as the City of Phoenix, RAP properties are expected to be more oxidized and aged compared to other regions across the US. Therefore, there are concerns about the cracking behavior and long-term performance of asphalt mixes with high percentage of RAP. The use of Organosilane (OS) in this study was hypothesized to reduce the additional cracking potential and improve resistance to moisture damage of the asphalt mixtures when using RAP. OS has also the potential to improve the bond between the aggregate and asphalt binder. The use of OS also reduces the mixing and compaction temperatures required for asphalt mixtures, making it similar to a warm mix asphalt (WMA), Six asphalt mixes were prepared with three RAP contents, 0%, 15% and 25%, with and without Organosilane. The mixing temperature was reduced by 10°C and the compaction temperature was reduced by 30°C. Mix designs were performed, and the volumetric properties were compared. The mixture laboratory performance was evaluated for all mixtures by conducting Dynamic Modulus, Flow Number and Tensile Strength Ratio tests. The study findings showed that mixtures achieved better compaction at a reduced temperature of 30°C. Mixtures modified with Organosilane generally exhibited softer behavior at the extreme ends of lower and higher temperatures. The lower moduli are to reduce the potential for cracking. For the Flow Number test, the RAP mixtures with OS passed the minimum required at all traffic levels. Tensile Strength Ratio results increased with the increase in RAP percentage, and further increase was observed when OS was used. The OS reduced the sticking nature of the binder to the molds and equipment, which reduced the efforts in cleaning them. Finally, the future use of RAP by the City of Phoenix would positively contributes to their sustainability aspiration and initiatives. The use of Organosilane may even facilitates higher percentage of RAP usage; it definitely improves the moisture resistance of asphalt mixtures, especially when lower mixing and compaction temperatures are desired or used. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
9

Structure-Property Relationships to Understand Comprehensive Rejuvenation Mechanisms of Aged Asphalt Binder

January 2020 (has links)
abstract: This research focused on the structure-property relationships of a rejuvenator to understand the comprehensive rejuvenation mechanism of aged asphalt binder. Aged asphalt such as recycled asphalt shingles (RAS) and reclaimed asphalt pavement (RAP) contain various amounts of asphalt binder. However, the asphalt binder in RAS and RAP is severely aged and inferior in properties compared to a virgin binder. To address this issue, liquid additives have been used under the general title of rejuvenators. That poses an additional challenge associated with the lack of clear metrics to differentiate between softeners and rejuvenators. Therefore, there is a need for a thorough study of rejuvenators. In this study, diverse-sourced rejuvenators have been used in RAS and RAP-modified binders as well as laboratory-prepared aged binders. The properties of the rejuvenated aged binder were characterized at a macro-level and molecular level. The study showed that the performance of the RAS-modified binder was significantly improved after bio-modification by a bio-rejuvenator. This study further evaluated laboratory-prepared aged asphalt rejuvenated with different rejuvenators. The results found that oxidized bitumen became soft after adding rejuvenators, regardless of their source. Molecular dynamics simulation showed that the effective rejuvenator restored the molecular conformation and reduced the size of asphaltene nanoaggregates. The study results showed that due to the specific chemical composition of certain rejuvenators, they may negatively impact the durability of the mixture, especially about its resistance to moisture damage and aging. Computational analysis showed that while the restoration capacity of rejuvenators is related to their penetration into and peptizing of asphaltene nanoaggregates, the durability of the restored aged asphalt is mainly related to the polarizability values of the rejuvenator. Rejuvenators with lower polarizability showed better resistance to aging and moisture damage. In summary, this study develops the rheology-based indicators which relate to the molecular level phenomenon in the rejuvenation mechanism. The rheology-based indicators, for instance, crossover modulus and crossover frequency differentiated the rejuvenators from recycling agents. Moreover, the study found that rejuvenation efficiency and durability are depended on the chemistry of rejuvenators. Finally, based on the learning of chemistry, a chemically balanced rejuvenator is synthesized with superior rejuvenation properties. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
10

Durability characteristics of asphalt mixtures containing bioditives

Hufft, Amanda 13 December 2019 (has links)
This thesis is focused on determining the durability characteristics of asphalt mixtures containing bio-based additives for the purpose of more effective use of recycled materials. Fifty mixtures were evaluated by Cantabro Mass Loss testing in their virgin state, after 1 year of field aging, and after laboratory conditioning to determine the effectiveness of bioditives in dense graded asphalt and sand asphalt mixtures. Key findings from this work demonstrated that considerable amounts of recycled asphalt shingles (i.e. 5% of the total mixture) significantly affect the brittleness of dense graded asphalt mixtures when used in conjunction with reclaimed asphalt pavement (RAP). Furthermore, brittleness was not improved with the use of bioditives at high dosages (e.g. greater than 7.5% of the total binder content), but was improved in some cases at lower dosage rates (e.g. 2.5-5%). Additional testing of similar mixtures and bioditives evaluated in this thesis are recommended.

Page generated in 0.0712 seconds