• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 61
  • 61
  • 40
  • 21
  • 20
  • 18
  • 16
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Desenvolvimento de processo de fabricação de compósitos de fibras longas através da tecnologia de manufatura aditiva / Development of composites manufacturing process through additive manufacturing process technology

Garcia, Luís Hilário Tobler 08 December 2016 (has links)
O trabalho trata do desenvolvimento de processo de fabricação de compósitos de fibras longas através da tecnologia de manufatura aditiva, possibilitando a criação de peças com maior resistência mecânica através da combinação adequada de materiais com diferentes propriedades mecânicas. Os processos de manufatura aditiva consistem na obtenção de um objeto sólido a partir de um modelo digital de três dimensões, através do fatiamento deste modelo e da adição sequencial de material com o objetivo de criar suas respectivas camadas, permitindo a reprodução real do modelo digital escolhido. Um compósito é a combinação de materiais com diferentes propriedades para a obtenção de um novo material com características específicas, permitindo a criação de melhores arranjos de propriedades através da escolha adequada dos materiais a serem combinados. Os materiais que formam um compósito podem ser divididos em matriz e reforço, entre os quais, os materiais de reforço são responsáveis por suportar os carregamentos transmitidos pela matriz. O uso de materiais poliméricos reforçados resulta em um material com baixo peso e elevada resistência mecânica. A adição de fibras longas nos processos de manufatura aditiva é foco do estudo, no qual foi utilizada a tecnologia Fused Deposition Modeling devido à sua simplicidade e facilidade de acesso a equipamentos de baixo custo para fins de validação de conceito. Foi desenvolvido e construído um cabeçote de deposição contínua de fibras longas, adequado ao uso no processo de deposição por camadas, através do qual foram manufaturados corpos de prova, que foram ensaiados mecanicamente conduzindo a resultados satisfatórios, validando a técnica e indicando que a fabricação de polímeros reforçados através da tecnologia de manufatura aditiva é um processo promissor. / The work deals with the development of long fiber composite manufacturing process through additive manufacturing technology, enabling the creation of parts with higher mechanical strength through proper combination of materials with different mechanical properties. Additive manufacturing processes consist in obtaining a solid object from a three dimension digital model through the slicing of the model and the sequential addition of material layer by layer allowing the real reproduction of the digital model. A composite is a combination of materials with different properties to obtain a new material having specific characteristics, allowing the creation of the best arrangement of properties through the choice of materials to be combined. The materials that form a composite can be divided into matrix and reinforcement, where the reinforcing materials are responsible for supporting the loads transmitted by the matrix. The use of reinforced polymeric materials results in a material with low weight and high mechanical strength. The addition of long fibers in the additive manufacturing process is the focus of this study, where the Fused Deposition Modeling process was used due to its simplicity and facility to access low-cost equipment in order to validate the concept. The system developed was used to manufacture specimens which have been mechanically tested leading to satisfactory results, indicating a very promising process for the production of reinforced polymers by additive manufacturing technology.
12

Design Optimization of Frp Composite Panel Building Systems: Emergency Shelter Applications

Bradford, Nicholas M 24 August 2004 (has links)
Using advanced composites, an emergency shelter system has been designed. The system parameters are hurricane resistance to 138 mph wind velocity, simple erection, light weight, high durability and rapid construction. The project involves the solicitation of design proposals from several building system manufacturers and the development of an optimized emergency shelter system. The usage is well suited to pultruded members made from fiber reinforced polymers (FRP). Due to the anisotropic nature of FRP composites, a limited amount of research has been conducted to develop design optimization techniques for panels used in construction. This project allows for the development of optimization techniques for use in pultruded FRP panel members. The Project consisted of a detailed literature review conducted of emergency building industry to assess the validity of existing shelter systems, a state of the art review of connection design in FRP structures with an emphasis on non-standard types of connectors (ie...snap type), systemic structural optimization of emergency shelter for building geometry, roof configuration, foundation anchorage and building envelope, development of statistical methods for evaluation of viable existing emergency shelter systems. Subsequent to the initial phase of the investigation, an interlocking FRP composite panel system was developed. The system was analyzed for local buckling, first ply failure and global deflection criteria using modified equations originally developed for open section members. The results were verified using Finite Element Methods analysis software. The findings from the study indicate the need for a second phase in which the most promising available systems and the concept developed are fully tested to verify their capacity to withstand high wind forces including impact of wind borne debris.
13

Selected Topics in Foundation Design, Quality Assurance, and Remediation

Winters, Danny 01 May 2014 (has links)
There are over 602,000 bridges in the United States, of which 12.5% are classified as functionally obsolete and 11.2% are structurally deficient. The functionally obsolete bridges will require expansion or replacement to increase the service capacity of the bridge. The structurally deficient bridges will either need remediation of the load carrying elements which are damaged or deteriorated or will need to be replaced completely. Replacement of the bridges means new construction; new construction means better design and quality assurance to meet the 100+ year service life requirement in place now. Rehabilitation of bridges will require better design and quality assurance to increase the current service life of the structure. This dissertation presents new design, testing, and repair methods developed to extend the life of new and existing bridges through pressure grouting, thermal integrity testing of drilled shafts, and the bond enhancement of fiber reinforced polymer (FRP) repair materials bonded to concrete with vacuum bagging and pressure bagging, respectively. Pressure grouting of drilled shaft tips has been used for over five decades to improve the end bearing capacity, but no rational design procedure had ever been published until this study. The research outlined in this dissertation analyzed nine grouted shafts and compared them to standard design procedures to determine the improvement in end bearing. Improvements ranged from 60% to 709% increase in end bearing capacity. From these improvements, a design procedure was developed for pressure grouted drilled shafts. Post construction inspection of drilled shafts relies largely on non-visual techniques dealing with measured concrete quantities, acoustic wave speed or frequency, gamma radiation attenuation and now the internal temperature of the curing concrete. Thermal Integrity Profiling (TIP), developed at USF, utilizes the heat of hydration of curing concrete to evaluate the concrete cover, foundation shape, cage alignment, and concrete mix design performance. This research developed standard test equipment and procedures for thermal integrity testing. Comparing the results of the different types of integrity tests is difficult due to the varied nature of the different tests. The dissertation looked at various shafts constructed across the nation which were tested with thermal and at least one other integrity test method. When compared to acoustic and gamma radiation test results, TIP agreed with 4 of 6 cases for acoustic and 2 of 5 cases using gamma radiation. In the one case were both sonic caliper and inclination data were available, TIP showed good agreement. Vacuum bagging and pressure bagging are techniques for improving the FRP-concrete bond in the repair of partially submerged piles. Prototype vacuum bagging and pressure bagging systems were developed and bond improvement assessed from results of pullout tests on full size piles repaired under simulated tidal exposures in the laboratory. Pressure bagging gave better bond and was found to be simpler because it did not require an airtight seal. A field demonstration project was conducted in which pressure bagging was used in combination with two different glass FRP systems to repair two corroding piles supporting the Friendship Trails Bridge across Tampa Bay. Inspection of the post-cured wrap showed no evidence of air voids.
14

Peeling failure in beams strengthened by plate bonding. A design proposal

Oller Ibars, Eva 10 September 2005 (has links)
La necesidad de refuerzo estructural en una infraestructura existente puede venir motivada por la aparición de nuevos condicionantes de uso o por la degradación de los materiales. Desde finales de los años sesenta, la técnica del refuerzo mediante la adhesión de platabandas metálicas se ha llevado a la práctica como alternativa a otros métodos de refuerzo tradicionales. Sin embargo, las platabandas metálicas presentan algunas desventajas, como son su peso y su posible corrosión por agentes atmosféricos, que pueden solventarse sustituyéndolas por laminados de polímeros reforzados con fibras (FRP). Estos materiales poseen relaciones resistencia/peso y rigidez/peso mayores que el acero, facilitando su colocación, reduciendo costes y plazos de ejecución.En numerosos estudios empíricos se observa como la aplicación de laminados encolados puede resultar en una rotura frágil que conduce al desprendimiento prematuro del refuerzo antes de alcanzar la carga última.El principal objetivo de este trabajo es el desarrollo de un método simple y efectivo para dimensionar y comprobar el refuerzo de estructuras existentes con laminados adheridos de tal forma que se eviten los modos prematuros de rotura que conducen al desprendimiento del laminado. Se ha dedicado especial atención a la transferencia de tensiones de laminado a hormigón que resulta el punto clave del correcto comportamiento de este tipo de refuerzo.En el Capítulo 2, tras una revisión histórica de las líneas de investigación existentes, experimentales y teóricas, se ha evaluado mediante una base de datos experimental la fiabilidad de los modelos teóricos existentes para pronosticar y prevenir los modos de rotura prematuros antes mencionados. Esta base de datos experimental incluye resultados de la literatura existente y de una campaña experimental llevada a cabo por el autor en el Laboratorio de Tecnología de Estructuras de la Universidad Politécnica de Cataluña.Para resolver las deficiencias de los modelos teóricos existentes, en el Capítulo 3, se ha aplicado la teoría de la Mecánica de Fractura No Lineal a un caso de corte puro para modelizar el comportamiento de la interfase y sus roturas prematuras. Se han obtenido las distribuciones de tensiones en la interfase y en el laminado junto a la fuerza máxima transferida en función de tres parámetros (energía de fractura, máxima tensión tangencial y deslizamiento asociado a dicha tensión).La formulación de un caso de corte puro se ha extendido a un caso general de una viga bajo cargas transversales en el Capítulo 4. Se ha estudiado la evolución del desprendimiento del laminado en dos casos específicos: un elemento entre dos fisuras contiguas, y un elemento entre el extremo del laminado y la siguiente fisura. Se han obtenido las distribuciones de tensiones para las distintas fases del proceso. Cabe mencionar que la fuerza transferida entre dos fisuras alcanza su máximo valor cuando la tensión tangencial máxima llega a la fisura menos cargada. En este instante, ya se puede haber iniciado o no la formación de una macrofisura. El elemento entre el extremo del laminado y la siguiente fisura es similar al caso de corte puro.Las distribuciones de tensiones presentadas en el Capítulo 4 nos ayudan a comprender el comportamiento de un elemento reforzado con laminados adheridos en su cara traccionada, sin embargo, resultan complejas en la práctica. En el Capítulo 5 se describe un nuevo método de dimensionamiento y verificación basado en la obtención de una relación entre el máximo cortante antes de que se produzca el desprendimiento prematuro del refuerzo y el momento aplicado. Esta relación está asociada a la fuerza máxima transferida entre fisuras. A partir de la predicción del valor máximo de cortante, se verifica el desprendimiento del extremo del laminado evaluando la fuerza transferida entre dicho punto y la siguiente fisura. Se ha verificado la fiabilidad de esta propuesta mediante la base de datos de ensayos a flexión.Finalmente, en el Capítulo 6 se resumen las principales conclusiones del trabajo presentado en esta tesis y se sugieren futuras líneas de investigación. / The strengthening of aging infrastructures is in most cases required because of the necessity for increased levels of service loads or because of the degradation of structural materials. The technique of strengthening by externally bonding steel plates has been in practice since the late 1960's. However, steel plates present some disadvantages in terms of weight and corrosion that can be solved by replacing them with fiber reinforced polymer (FRP) laminates. FRP laminates provide benefits such as high strength-to-weight and stiffness-to-weight ratios, corrosion resistance as well as reduced installation costs due to their easy-handling.Existing experimental work has shown that the application of externally bonded laminates can result in a catastrophic brittle failure in the form of a premature debonding of the laminate before reaching the design load.The main aim of this research has been the development of a simple effective method to design and verify the strengthening of an existing structure with an externally bonded plate while preventing the premature peeling failure that causes the laminate to debond. Special attention has been drawn on to transfer of stresses from laminate to concrete through the interface, which is the main key in the correct performance of externally reinforced concrete structures.After a historical overview of the existing experimental and theoretical lines of research, the suitability of using existing theoretical models to forecast and prevent peeling failures is evaluated in Chapter 2 by means of an experimental bending test database. This database includes results from the existing literature and results from an experimental program conducted by the author at the Structural Technology Laboratory of the Technical University of Catalonia.To solve the weaknesses of the existing theoretical models, in Chapter 3, Non-Linear Fracture Mechanics theory is applied in a pure shear case to model the interface behavior and its premature failures. The stress distributions, together with the maximum transferred force are obtained as a function of three model parameters (the fracture energy, the maximum shear stress and the sliding associated to this stress).The formulae of a pure shear specimen are then extended to a general case of a beam under transverse loads in Chapter 4. For this purpose, the evolution of the debonding process is studied for two specific cases: a beam element between two cracks, and a beam element between the laminate end and the nearest crack. The stress distributions are obtained for the different stages observed in the debonding process. A specific highlight observed was that the transferred force between cracks is at maximum when the maximum shear stress reaches the less-loaded crack. In this instance, a macrocrack may or may not have already initiated. Another point observed is related to the beam element between the laminate end and the nearest crack, which is similar to the pure shear specimen.The stress distributions derived in Chapter 4 allow us to understand the behavior of an externally reinforced element, but are awkward for design purposes. Chapter 5 describes both a new design and verification method based on a maximum shear force-bending moment relationship associated to the theoretical maximum transferred force between two consecutive cracks before peeling occurs. After calculating the predicted value for the maximum shear force from the peeling relationship, the developed method verifies the debonding at the laminate end by checking the transferred force between the laminate end and the first crack in the laminate. The reliability of this proposal is verified by means of the assembled bending test database.Finally, the main conclusions drawn from the work presented in this dissertation are summarized in Chapter 6. Future work and research lines are suggested as well.
15

Fiber Reinforced Polymer Confined Rc Circular Columns Subjected To Axial Load And Bending Moment

Doruk, Koray 01 August 2006 (has links) (PDF)
Fiber reinforced polymers (FRPs) have gained increasing popularity in upgrades of reinforced structural elements due to high strength to weight ratio and ease of application. In this study, the effectiveness of the carbon reinforced polymer wrapping (CFRP) on ductility and strength of circular reinforced concrete columns, made of low strength concrete, is presented. Four circular reinforced columns with similar dimensions, longitudinal and confining steel reinforcement were tested under combined axial load and bending moment. Three specimens were strengthened with CFRP and the results were compared with the control specimen. The main parameter of the experimental study was selected as the level of eccentricity. First of all, the strain profiles of FRPs in the circumferential direction were observed and the confining stress distributions were examined. Then, an axial stress-strain model for FRP confined concrete with a transition from softening to hardening response for different confinement ratios is proposed. The proposed model was verified by comparing the model estimations with the test results obtained from this study and results reported by other researches. In addition, a parametric study was presented to obtain a simple equation to estimate curvature ductility of FRP confined circular columns.
16

Experimental Evaluation of the Bond Dependent Coefficient and Parameters which Influence Crack Width in GFRP Reinforced Concrete

McCallum, Brittany 28 March 2013 (has links)
Reinforcement of concrete flexural components has been traditionally provided by steel rebar; however, durability concerns and life maintenance costs of this product have powered the emergence of fibre reinforced polymers (FRP) as reinforcement in concrete. FRP products hold tremendous promise but their application can be constrained due to design challenges resulting from a reduced modulus of elasticity. The ability to meet serviceability behavior, such as crack width and deflection, is commonly the limiting factor for design. Therefore, the area of FRP reinforcement provided is often greater than the amount required for strength alone and this has significant impacts on the project economics. The bond dependent coefficient (kb) of FRP is required for serviceability design purposes in order to account for the bonding capability of FRP to concrete. The values of this coefficient reported in experimental studies are highly variable, resulting in unreliable crack response predictions. Therefore, a more consistent interpretation and calculation must be found for the bond dependent coefficient due to its critical importance in design. The bond dependent coefficient, as well as physical parameters which influence crack width in GFRP reinforced concrete, were investigated experimentally in this study using a total of 33 specimens. The test procedure was taken from a procedure being developed by the American Concrete Institute (ACI) Committee 440 and was evaluated and modified as required during testing. Phase I testing was used to investigate and determine the physical parameters which had the most significant influence on cracking behaviour and bonding capability. Using significant findings from Phase I, Phase II testing was structured to focus on the interpretation of the bond dependent coefficient and the statistical variation in a set of 5 identical test specimens. Current design equations, as recommended by ACI 440.1R-06 and CHBDC CAN/CSA-S6-06, were used for the calculation of the bond dependent coefficient for all specimens. Interpretation of the bond dependent coefficient was considered using the stress-level approach and newly developed slope approach. Results of the study indicated that the high variability of kb was likely due to its interpretation. Current design equations force a zero intercept, neglecting the fact that concrete does not crack immediately upon loading. In addition, clear definitions of service stress and maximum crack width are ambiguous, further complicating the calculation of the bond dependent coefficient. This resulted in a range of kb values for a given beam despite the fact that kb is inherently a material property of the bar. The behaviour of specimens following load cycling was also very different than the initial loading cycle and consequently, kb was also significantly different. As structures in the field will be subjected to continual loading and unloading, the effect of cyclic loading becomes a consideration in the calculation of kb.
17

Behaviour of continuous concrete beams reinforced with FRP bars

El-Mogy, Mostafa 09 December 2011 (has links)
The non-corrodible nature of FRP bars along with their high strength, light weight and ease of installation made it attractive as reinforcement especially for structures exposed to aggressive environment. In addition, the transparency of FRP bars to magnetic and electrical fields makes them an ideal alternative to traditional steel reinforcement in applications sensitive to electromagnetic fields such as magnetic resonance imaging (MRI) units. Continuous concrete beams are commonly-used elements in structures such as parking garages and overpasses, which might be exposed to extreme weather conditions and the application of de-icing salts. In such structures, using the non-corrodible FRP bars is a viable alternative to avoid steel-corrosion problems. However, the linear-elastic behaviour of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. The objective of this research project is to investigate the flexural behaviour of continuous concrete beams reinforced with FRP and their capability of moment redistribution. An experimental program was conducted at the University of Manitoba to realize the research objectives. Ten full-scale continuous concrete beams were constructed and tested to failure in the laboratory. The specimens had a rectangular cross-section of 200×300 mm and continuous over two spans of 2,800 mm each. The main investigated parameters were the amount and material of longitudinal reinforcement, the amount and material of transverse reinforcement and the spacing of used stirrups. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible if the reinforcement configuration is chosen properly, and is improved by increasing the amount of transverse reinforcement. A finite element investigation was conducted using ANSYS-software. A 3-D model was created to simulate the behaviour of continuous beams reinforced with FRP. The model was verified against the experimental results obtained from the present study. This verified model was used to investigate the effect of the concrete compressive strength, longitudinal reinforcement ratio, midspan-to-middle support reinforcement ratio and the amount of transverse reinforcement on the behaviour of FRP-reinforced beams. The analytical results of this parametric investigation along with the experimental results were used to propose an allowable limit for moment redistribution in FRP-reinforced continuous concrete beams.
18

Behaviour of continuous concrete beams reinforced with FRP bars

El-Mogy, Mostafa 09 December 2011 (has links)
The non-corrodible nature of FRP bars along with their high strength, light weight and ease of installation made it attractive as reinforcement especially for structures exposed to aggressive environment. In addition, the transparency of FRP bars to magnetic and electrical fields makes them an ideal alternative to traditional steel reinforcement in applications sensitive to electromagnetic fields such as magnetic resonance imaging (MRI) units. Continuous concrete beams are commonly-used elements in structures such as parking garages and overpasses, which might be exposed to extreme weather conditions and the application of de-icing salts. In such structures, using the non-corrodible FRP bars is a viable alternative to avoid steel-corrosion problems. However, the linear-elastic behaviour of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. The objective of this research project is to investigate the flexural behaviour of continuous concrete beams reinforced with FRP and their capability of moment redistribution. An experimental program was conducted at the University of Manitoba to realize the research objectives. Ten full-scale continuous concrete beams were constructed and tested to failure in the laboratory. The specimens had a rectangular cross-section of 200×300 mm and continuous over two spans of 2,800 mm each. The main investigated parameters were the amount and material of longitudinal reinforcement, the amount and material of transverse reinforcement and the spacing of used stirrups. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible if the reinforcement configuration is chosen properly, and is improved by increasing the amount of transverse reinforcement. A finite element investigation was conducted using ANSYS-software. A 3-D model was created to simulate the behaviour of continuous beams reinforced with FRP. The model was verified against the experimental results obtained from the present study. This verified model was used to investigate the effect of the concrete compressive strength, longitudinal reinforcement ratio, midspan-to-middle support reinforcement ratio and the amount of transverse reinforcement on the behaviour of FRP-reinforced beams. The analytical results of this parametric investigation along with the experimental results were used to propose an allowable limit for moment redistribution in FRP-reinforced continuous concrete beams.
19

Structural enhancements with fibre-reinforced epoxy intumescent coatings

Triantafyllidis, Zafeirios January 2017 (has links)
Epoxy intumescent coatings are fire protection systems for steel structural elements that are widely used in applications that protection from severe hydrocarbon fires is required, such as oil and gas facilities. These polymer coatings react upon heating and expand into a thick porous char layer that insulates the protected steel element. In the typical fire scenarios for these applications, the intumescent coatings must resist very high heat fluxes and highly erosive forces from ignited pressurised gases. Hence, continuous fibre reinforcement is embedded in the thick epoxy coating during installation, so as to ensure the integrity of the weak intumesced char during fire exposure. This reinforcement is typically in the form of a bidirectional carbon and/or glass fibre mesh, thus under normal service conditions a fibre-reinforced intumescent coating (FRIC) is essentially a lightly fibre-reinforced polymer (FRP) composite material. This thesis examines the impacts of embedded high strength fibres on the tensile behaviour of epoxy intumescent materials in their unreacted state prior to fire exposure, and the potential enhancements that arise in the structural performance of elements protected with FRICs. An experimental programme is presented comprising tensile coupon tests of unreacted intumescent epoxies, reinforced with different fibre meshes at various fibre volume fractions. It is demonstrated that the tensile properties of FRICs can be enhanced considerably by including increasing amounts of carbon fibre reinforcement aligned in the principal loading direction, which can be tailored in the desired orientation on the coated structural members to enhance their load carrying capacity and/or deformability. An experimental study is presented on coated intact and artificially damaged I-beams (simulating steel losses from corrosion) tested in bending, demonstrating that FRICs can enhance the flexural response of the beams after yielding of steel, until the tensile rupture of the coatings. An analytical procedure for predicting the flexural behaviour of the coated beams is discussed and validated against the obtained test results, whereas a parametric analysis is performed based on this analytical model to assess the effect of various parameters on the strengthening efficiency of FRICs. The results of this analysis demonstrate that it is feasible to increase the flexural load capacity of thin sections considerably utilising the flexural strength gains from FRICs. Finally, a novel application is proposed in this thesis for FRICs as a potential system for structural strengthening or retrofitting reinforced concrete and concrete-encased steel columns by lateral confinement. An experimental study is presented on the axial compressive behaviour of short, plain concrete and concrete-encased structural steel columns that are wrapped in the hoop direction with FRICs. The results clearly show that epoxy intumescent coatings reinforced with a carbon fibre mesh of suitable weight can provide lateral confinement to the concrete core resisting its lateral dilation, thus resulting in considerable enhancements of the axial strength and deformability of concrete. The observed strengthening performance of the composite protective coatings is found to be at least as good as that of FRP wraps consisting of the same fibre reinforcement mesh and a conventional, non-intumescent epoxy resin. The predictive ability of existing design-oriented FRP confinement models is compared against the experimental results, and is found to be reasonably precise in predicting the peak strength of the tested columns, hence existing models appear to be suitable for design and analysis of column strengthening schemes with the proposed novel FRIC system. The research presented herein shows clearly that FRICs have a strong potential as alternative systems for consideration in the field of structural strengthening and rehabilitation, since they can provide substantial enhancements in the load carrying capacity for both applications considered. At the same time FRICs can thermally protect the underlying structural elements in the event of a fire, by intumescing and charring, thus potentially eliminating the need for additional passive fire protection that is common with conventional fire-rated FRP wrapping systems. Although this thesis provides a proof-of-concept for use of the proposed novel FRICs as structural strengthening materials, considerable additional research is particularly required to study their fire protection performance when applied to concrete substrates, to make use of the proposed hybrid functionality with confidence.
20

Revêtement anti-usure déposé par projection plasma sur matériaux composites fibres de carbones/matrice époxy pour applications aéronautiques / Air plasma spraying of wear resistant coatings on carbon fiber reinforced polymers for aeronautical applications

Elrikh, Axelle 15 December 2016 (has links)
Les matériaux composites à matrice polymères renforcés aux fibres de carbone (PRFC) sont de plus en plus utilisés dans les avions, en raison de leur faible densité et de leurs propriétés mécaniques comparables aux alliages généralement utilisés. Ils sont cependant sensibles aux impacts répétés des particules solides et liquides intervenant au cours du cycle de vol d’un avion, et nécessitent d’être protégés. Cette thèse est inscrite dans ce contexte de protection des PRFC, plus particulièrement ceux à matrice époxy, par le biais de dépôts anti-usure réalisés par projection plasma sous air. De tels recherche ont été menées auparavant avec pour résultats des dépôts céramique et métallique peu adhérents, sur des composites fortement endommagés par le procédé. Les travaux de cette thèse ont donc été organisés autour de deux objectifs :- Objectif fondamental : comprendre les interactions entre les particules fondues et le composite. Grâce à une étude multiéchelles d’impacts de gouttes sur le composite, la résine époxy et sa dégradation thermique ont été identifiés comme responsable de la mauvaise adhérence des dépôts projetés par plasma sur les PRFC.- Objectif expérimental. Déterminer la faisabilité de réaliser un revêtement anti-usure par projection plasma sur PRFC. Deux traitements de surface avant dépôt ont été choisis puis testés, en conditions d’impacts de particules isolées et de formation de dépôts. Des dépôts d’alumine ont pu être obtenus, sans dégradation thermique ou mécanique du composite. / Carbon fiber reinforced polymers (CFRP) are increasingly used in aircraft structures, due to their good strength to weight ratio. However, they are more sensitive to the impacts of solid and liquid particles, occurring during the aircraft flight cycle, and thus need to be protected. This work focuses on the protection of carbon fiber reinforced epoxy by air plasma spraying (APS). Numerous studies have been conducted on applying such coatings, but the obtained metallic and ceramic coatings show poor adhesion strength, and the underlying composite material is damaged by the APS process. This PhD is organized around two objectives:- Fundamental objective: understand the interactions between molten particles and the composite. A multi-scale study of droplets impacts on the composite led to identify the epoxy resin as responsible for the poor adhesion strength of air plasma sprayed coatings on CFRPs.- Experimental objective: determine the feasibility of producing an anti-wear coating by plasma spraying on CFRP. Two surface treatments prior to APS were chosen and tested in single particles impacts and coating formation. Alumina coatings have been obtained, without thermal or mechanical degradation of the underlying composite.

Page generated in 0.5917 seconds