• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 61
  • 61
  • 40
  • 21
  • 20
  • 18
  • 16
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modellierung des Ermüdungsverhaltens textilverstärkter Kunststoffe / Modelling of the fatigue behaviour of textile reinforced polymers

Koch, Ilja 11 April 2018 (has links) (PDF)
Textile Verstärkungsstrukturen werden aufgrund der hohen Variabilität der Fadenablage, dem erreichbaren hohen Automatisierungsgrad und der guten mechanischen Kennwerte in hochbeanspruchten Faser-Kunststoff-Verbundstrukturen eingesetzt. Eine besondere Rolle spielen hier 3D-Textilverstärkungen mit gestreckter Fadenanordnung etwa in Form von 3D-Geweben, Mehrlagengestricken und -gewirken. Sie bieten neben hervorragenden Steifigkeiten und Festigkeiten durch den in Dickenrichtung angeordneten und den Fadenverbund sichernden Maschenfaden einen hohen Widerstand gegen Delaminationen sowie eine gute Drapierbarkeit. In der Arbeit wird ein neuartiges Degradationsmodell für textilverstärkte Kunststoffe bei zyklischer Belastung auf Basis kontinuums-schädigungsmechanischer Ansätze entwickelt. Dazu wird zunächst die Schädigungsphänomenologie exemplarisch für Glasfaser-Mehrlagengestrickverstärktes Epoxidharz sowohl bei einachsiger als auch erstmals bei frequenz- und phasengleicher mehrachsiger zyklischer Belastung untersucht und klassifiziert. In umfangreichen Versuchsreihen sind belastungsspezifische Schäden - in den bereits für quasistatische Beanspruchung identifizierten Bruchmoden - zu beobachten, die sich in charakteristischer Weise über den Verlauf der zyklischen Belastung aufsummieren und eine deutliche Abhängigkeit von der Belastungsart und -richtung aufweisen. In den mehrachsigen Belastungsversuchen konnte die bislang unbekannte unterschiedliche Kopplung der Zug- und Schubsteifigkeitsverläufe bzw. Druck- und Schubsteifigkeitsverläufe quantifiziert und mit den auftretenden Schädigungsphänomenen korreliert werden. Die zur Kalibrierung des Materialmodells notwendigen Kennwerte und Modellparameter werden anhand von ein- und mehrachsigen Einstufenversuchen durch Auswertung der Spannungs-Dehnungs-Hysterese sowie der Schwingfestigkeitsschaubilder ermittelt. Das Potential der hier vorgenommenen schichtweisen Lebensdauermodellierung unter Berücksichtigung von Schädigungsinitiierung und Schädigungsevolution wird in ausgewählten Validierungsversuchen demonstriert. Neben der realistischen Abbildung des Degradationsverhaltens ist eine sehr gute Vorausberechnung der richtungsabhängigen Restfestigkeit nach zyklischer Belastung möglich. Das hier entwickelte Degradationsmodell liefert damit erstmals die wesentlichen schichtbezogenen Informationen zum Werkstoffzustand während zyklischer Belastung und ist ein essentieller Grundbaustein für die umfassende Lebensdaueranalyse von textilverstärkten Strukturbauteilen. / Due to the high variability of the thread placement, the achievable high degree of automation and the good mechanical properties textile reinforcements are used in highly loaded fiber reinforced polymer structures. A specific role is played here by 3D textile reinforcements with stretched thread arrangements, for example in the form of 3D fabrics and multi-layered weft knits. In addition to excellent stiffness and strength, they provide a high resistance to delamination as well as good drapability due to the mesh thread arranged in the thickness direction securing the thread system. In this work a novel degradation model for cyclically loaded textile-reinforced polymers on the basis of continuum damage mechanics approaches is developed. For this purpose, the damage phenomenology is investigated and classified for glass fiber multi-layer weft knit reinforced epoxy resin in uniaxial as well as in-phase multiaxial cyclic loading. In extensive tests load-specific damage can be observed - in the fracture modes already identified for quasistatic stress - which characteristically develop over the course of the cyclic load and show a clear dependence on the type and direction of loading. In the multi-axial load tests, the hitherto unknown coupling of the tensile and shear stiffness or compression and shear stiffness could be quantified and correlated with the occurring damage phenomena. The characteristic values and model parameters necessary for calibrating the material model are determined by means of single- and multi-axial constant amplitude tests by evaluating the stress-strain hysteresis and the S-N curves. The potential of the presented layer-wise fatigue damage model is demonstrated in selected validation experiments. In addition to the realistic modelling of the degradation behaviour, a very good prediction of the direction-dependent residual strength after cyclic loading is achieved. For the first time, the degradation model developed here provides the essential layer-related information on the state of the material during cyclic loading and is an essential building block for the comprehensive lifetime analysis of textile-reinforced composite structures.
42

Innovative Modular High Performance Lightweight Decks for Accelerated Bridge Construction

Ghasemi, Sahar 13 November 2015 (has links)
At an average age of 42 years, 10% of the nation’s over 607,000 bridges are posted for load restrictions, with an additional 15% considered structurally deficient or functionally obsolete. While there are major concerns with decks in 75% of structurally deficient bridges, often weight and geometry of the deck further limit the load rating and functionality of the bridge. Traditional deck systems and construction methods usually lead to prolonged periods of traffic delays, limiting options for transportation agencies to replace or widen a bridge, especially in urban areas. The purpose of this study was to develop a new generation of ultra-lightweight super shallow solid deck systems to replace open grid steel decks on movable bridges and as well serve as a viable alternative in bridge deck replacements across the country. The study has led to a lightweight low-profile asymmetric waffle deck made with advanced materials. The asymmetry comes from the arrangement of primary and secondary ribs, respectively perpendicular and parallel to the direction of traffic. The waffle deck is made with ultrahigh performance concrete (UHPC) reinforced with either high-strength steel (HSS) or carbon fiber reinforced polymer (CFRP) reinforcement. With this combination, the deck weight was limited to below 21 psf and its overall depth to only 4 inch, while still meeting the strength and ductility demands for 4 ft. typical stringer spacing. It was further envisioned that the ultra-high strength of UHPC is best matched with the high strength of HSS or CFRP reinforcement for an efficient system and the ductile behavior of UHPC can help mask the linear elastic response of CFRP reinforcement and result in an overall ductile system. The issues of consideration from the design and constructability perspectives have included strength and stiffness, bond and development length for the reinforcement, punching shear and panel action. A series of experiments were conducted to help address these issues. Additionally full-size panels were made for testing under heavy vehicle simulator (HVS) at the accelerated pavement testing (APT) facility in Gainesville. Detailed finite element analyses were also carried out to help guide the design of this new generation of bridge decks. The research has confirmed the superior performance of the new deck system and its feasibility.
43

Novel Hybrid Columns Made of Ultra-High Performance Concrete and Fiber Reinforced Polymers

Zohrevand, Pedram 26 March 2012 (has links)
The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.
44

Rheology and morphology of polyolefin / functional oligomer blends : application to the formulation of polymer materials / Rhéologie et morphologie de mélanges polyoléfine / oligomère fonctionnel : application à la formulation de matériaux polymères

Robert, Michael 21 March 2019 (has links)
L’objectif de ces travaux était l’utilisation d’oligomères de polyéthylène fonctionnels comme agents d’interface pour la formulation de matériaux polymères. Une première partie s’est portée sur la compréhension de l’évolution de la morphologie de mélanges composés d’une résine polypropylène ou polyéthylène et d’un oligomère de polyéthylène de faible masse molaire au cours de leur mise en œuvre et de leur cristallisation. Il a été constaté qu’un tel oligomère pouvait être incorporé sans difficulté aux résines sélectionnées, et ce grâce à une diffusion rapide ainsi qu’à une bonne miscibilité à l’état fondu. Cependant, il est apparu que ces mélanges étaient sujets à une séparation de phase solide-liquide lors de leur cristallisation, entraînant la formation de matériaux biphasiques à l’état solide. Dans une deuxième partie, un système réactif composé de deux oligomères fonctionnels a été étudié comme une potentielle stratégie de compatibilisation de mélanges polyéthylène/polyamide. Malgré les morphologies et propriétés intéressantes observées, il a été conclu que l’utilisation d’un tel système réactif n’était pas efficace comparé aux agents compatibilisants usuels. Enfin, des oligomères de polyéthylène fonctionnels ont été étudiés en tant qu’agents d’interface dans du polyéthylène renforcé par des fibres de verre dans l’optique d’en améliorer la facilité de mise en œuvre et les propriétés mécaniques. Il a ainsi été démontré que des oligomères avec les fonctionnalités appropriées pouvaient être utilisés comme agents d’interface en réduisant les interactions interparticulaires au cours de la mise en œuvre et en améliorant l’adhésion interfacial matrice-fibre à l’état solide / The objective of this work was to use end-functionalized polyethylene oligomers as interface agents in glass fibre-reinforced thermoplastics as well as compatibilizer precursors in immiscible polymer blends. The first part of this work was focused on the understanding of the morphology developments occurring during the melt processing and crystallization of binary systems where a low molar mass polyethylene oligomer was blended with polypropylene and polyethylene resins. It was found that the polyethylene oligomer was easily incorporated into the selected polyolefins thanks to rapid molecular diffusion and good miscibility in the molten state. However, it appeared that the blends underwent solid-liquid phase separation upon crystallization, leading to biphasic materials in the solid state. In a second part, a reactive system consisting of two functional oligomers was studied as a new strategy for the compatibilization of immiscible polyethylene/polyamide blends. Despite the interesting morphologies and properties observed, it was concluded that the use of such a reactive system did not result in efficient compatibilization compared to commonly used compatibilizer precursors. Lastly, polyethylene oligomers with various functionalities were investigated as interface agents in glass fibre-reinforced polyethylene, with the aim of improving both processability and mechanical properties. It was demonstrated that polyethylene oligomers with adequate functional groups could be successfully used as dispersants by reducing interparticle interactions during melt processing as well as coupling agents improving matrix-filler interfacial adhesion in the solid state
45

Modellierung des Ermüdungsverhaltens textilverstärkter Kunststoffe

Koch, Ilja 21 December 2010 (has links)
Textile Verstärkungsstrukturen werden aufgrund der hohen Variabilität der Fadenablage, dem erreichbaren hohen Automatisierungsgrad und der guten mechanischen Kennwerte in hochbeanspruchten Faser-Kunststoff-Verbundstrukturen eingesetzt. Eine besondere Rolle spielen hier 3D-Textilverstärkungen mit gestreckter Fadenanordnung etwa in Form von 3D-Geweben, Mehrlagengestricken und -gewirken. Sie bieten neben hervorragenden Steifigkeiten und Festigkeiten durch den in Dickenrichtung angeordneten und den Fadenverbund sichernden Maschenfaden einen hohen Widerstand gegen Delaminationen sowie eine gute Drapierbarkeit. In der Arbeit wird ein neuartiges Degradationsmodell für textilverstärkte Kunststoffe bei zyklischer Belastung auf Basis kontinuums-schädigungsmechanischer Ansätze entwickelt. Dazu wird zunächst die Schädigungsphänomenologie exemplarisch für Glasfaser-Mehrlagengestrickverstärktes Epoxidharz sowohl bei einachsiger als auch erstmals bei frequenz- und phasengleicher mehrachsiger zyklischer Belastung untersucht und klassifiziert. In umfangreichen Versuchsreihen sind belastungsspezifische Schäden - in den bereits für quasistatische Beanspruchung identifizierten Bruchmoden - zu beobachten, die sich in charakteristischer Weise über den Verlauf der zyklischen Belastung aufsummieren und eine deutliche Abhängigkeit von der Belastungsart und -richtung aufweisen. In den mehrachsigen Belastungsversuchen konnte die bislang unbekannte unterschiedliche Kopplung der Zug- und Schubsteifigkeitsverläufe bzw. Druck- und Schubsteifigkeitsverläufe quantifiziert und mit den auftretenden Schädigungsphänomenen korreliert werden. Die zur Kalibrierung des Materialmodells notwendigen Kennwerte und Modellparameter werden anhand von ein- und mehrachsigen Einstufenversuchen durch Auswertung der Spannungs-Dehnungs-Hysterese sowie der Schwingfestigkeitsschaubilder ermittelt. Das Potential der hier vorgenommenen schichtweisen Lebensdauermodellierung unter Berücksichtigung von Schädigungsinitiierung und Schädigungsevolution wird in ausgewählten Validierungsversuchen demonstriert. Neben der realistischen Abbildung des Degradationsverhaltens ist eine sehr gute Vorausberechnung der richtungsabhängigen Restfestigkeit nach zyklischer Belastung möglich. Das hier entwickelte Degradationsmodell liefert damit erstmals die wesentlichen schichtbezogenen Informationen zum Werkstoffzustand während zyklischer Belastung und ist ein essentieller Grundbaustein für die umfassende Lebensdaueranalyse von textilverstärkten Strukturbauteilen. / Due to the high variability of the thread placement, the achievable high degree of automation and the good mechanical properties textile reinforcements are used in highly loaded fiber reinforced polymer structures. A specific role is played here by 3D textile reinforcements with stretched thread arrangements, for example in the form of 3D fabrics and multi-layered weft knits. In addition to excellent stiffness and strength, they provide a high resistance to delamination as well as good drapability due to the mesh thread arranged in the thickness direction securing the thread system. In this work a novel degradation model for cyclically loaded textile-reinforced polymers on the basis of continuum damage mechanics approaches is developed. For this purpose, the damage phenomenology is investigated and classified for glass fiber multi-layer weft knit reinforced epoxy resin in uniaxial as well as in-phase multiaxial cyclic loading. In extensive tests load-specific damage can be observed - in the fracture modes already identified for quasistatic stress - which characteristically develop over the course of the cyclic load and show a clear dependence on the type and direction of loading. In the multi-axial load tests, the hitherto unknown coupling of the tensile and shear stiffness or compression and shear stiffness could be quantified and correlated with the occurring damage phenomena. The characteristic values and model parameters necessary for calibrating the material model are determined by means of single- and multi-axial constant amplitude tests by evaluating the stress-strain hysteresis and the S-N curves. The potential of the presented layer-wise fatigue damage model is demonstrated in selected validation experiments. In addition to the realistic modelling of the degradation behaviour, a very good prediction of the direction-dependent residual strength after cyclic loading is achieved. For the first time, the degradation model developed here provides the essential layer-related information on the state of the material during cyclic loading and is an essential building block for the comprehensive lifetime analysis of textile-reinforced composite structures.
46

In situ tomography investigation of crack growth in carbon fiber laminate composites during monotonic and cyclic loading

Alejandra Margarita Ortiz Morales (11197419) 28 July 2021 (has links)
<div>As the use of fiber-reinforced polymer composites grows in aerospace structures, there is an emerging need to implement damage tolerant approaches. The use of <i>in-situ</i> synchrotron X-ray tomography enables direct observations of progressive damage relative to the microstructural features, which is studied in a T650/5320 laminate composite with varying layup orientations (using 45<sup>o</sup> and -45<sup>o</sup> plies) in a compact tension specimen geometry. Specifically, the interactions of micromechanical damage mechanisms at the notch tip were analyzed through 3D image processing as the crack grew. First, monotonic tests were conducted where X-ray tomography was acquired incrementally between the unloaded state and maximum load. The analysis of the monotonic tension specimens showed intralaminar cracking was dominant during crack initiation, delamination became prevalent during the later stages of crack progression, and fiber breakage was, in general, largely related to intralaminar cracking. After the monotonic tension analysis, modifications were made to the specimen geometry and the loading assembly, and fatigue tests were conducted, also using <i>in-situ</i> synchrotron X-ray tomography. Specifically, tomography images were acquired after select intervals of cyclic loading to examine the crack growth behavior up to 5802 cycles. The analysis of the fatigue tests showed that intralaminar cracking was also dominant, while localized delamination allowed ply cross-over. A finite element analysis was conducted by comparing the crack profile at varying intervals of loading, and the change in stored energy per cycle, dU/dN, was calculated. The combined experimental and simulation analysis showed that when the per ply values of dU/dN were examined, the intralaminar cracking rate collapsed to one curve regardless of the ply orientation, where direct observations of fiber bridging were characterized and associated with a reduction in crack growth rate for the influenced ply. Overall, this work provides a physical understanding of the micromechanics facilitating intralaminar crack growth in composites, providing engineers the necessary assessments for slow crack growth approaches in structural composite materials.<br></div>
47

Investigation of the mechanical effects of recycling post-industrial and post-consumer glass-filled Polyamide-6

Zoltán Kristóf, Molnár January 2024 (has links)
This thesis investigates the challenges and opportunities of recycling PA6-GF30, a glass-filled polyamide, to address the pressing environmental concerns surrounding polymer waste. Through a collaboration between Thule Group and Jönköping University, it aims to understand how the properties of recycled materials evolve over time and reprocessing cycles, proposing practical methods for their utilization in sustainable manufacturing practices. Thule Group's commitment to reducing emissions entails transitioning to sustainable materials, particularly through increased use of recycled engineering materials like PA6-GF30, to lower the carbon footprint of products, emphasizing the importance of maintaining product quality and safety while exploring the effects of recycled materials on mechanical properties. Through producing and testing post-industrial and post-consumer samples added to virgin PA6-GF30 with varying ratios, comparison with the commercially available polymers was conducted. In total, 15 different mixtures of pellets of different quantity and quality of recycled composites were investigated with tensile test and impact test, moreover the fibers of some batches were filtrated from the matrix and the fiber aspect ratio was examined with the help of an optical microscope. Results illustrated that recycled polymers generally showed more mechanical property degradation as the ratio of recycled polymers were increased. Furthermore, adding the same amount of post-consumer regrinds as opposed to post-industrial was more detrimental to the overall mechanical performance. Post-industrial composite regrinds performed 11,3% worse in UTS, meanwhile post-consumer regrinds dropped by 25,5% in the same characteristic when the samples made of 100% recycled materials were compared to the virgin composite.  The reason behind this phenomenon was investigated and supported by microscopy. One of them is the natural aging of the material that operates through chain scission, that slowly makes that polymer stiffer and weaker. The other and more dominant reason is the damage taken by the fibers, that create numerous stress concentration sites at fiber ends, within the structure, ultimately damaging the fiber-matrix interface.
48

Structural assessment procedures for existing concrete bridges : Experiences from failure tests of the Kiruna Bridge

Bagge, Niklas January 2017 (has links)
Assessing existing bridges is an important task in the sustainable management ofinfrastructure. In practice, structural bridge assessments are usually conducted usingtraditional and standardised methods, despite knowledge that these methods oftenprovide conservative estimates. In addition, more advanced methods are available, suchas nonlinear finite element (FE) analysis, that are used for research purposes and cansimulate the structural behaviour of bridges more accurately. Therefore, it would beuseful to develop practical and reliable procedures for refined assessments using theseadvanced techniques.Focusing on the ultimate load-carrying capacity of existing concrete bridges, this thesispresents a procedure for structural assessments. The fundamental idea is to improve theassessment successively, as necessary to predict bridges’ structural behaviour adequately.The procedure involves a multi-level assessment strategy with four levels of structuralanalysis, and an integrated framework for safety verification. At the initial level (Level 1)of the multi-level strategy, traditional standardised methods are used, no failures arecovered implicitly in the structural analysis and action effects are verified using localresistances calculated using analytical models. In the subsequent enhanced levels (Levels2 – 4), nonlinear FE analysis is used for stepwise integration of the verification of flexural,shear-related and anchorage failures into the structural analysis. The framework for safetyverifications includes partial safety factor (PSF), global resistance safety factor (GRSF) andfull probabilistic methods. Within each of these groups, verifications of desired safetymargins can be conducted with varying degrees of complexity.To demonstrate and evaluate the proposed structural assessment procedure, comparativestudies have been carried out, based on full-scale tests of a prestressed concrete bridge.This was the Kiruna Bridge, located in the northernmost city in Sweden, which was duefor demolition as part of a city transformation project, necessitated by large grounddeformations caused by the large nearby mine. Thus, it was available for destructiveexperimental investigation within the doctoral project presented in this thesis. The bridgehad five continuous spans, was 121.5 m long and consisted of three parallel girders with a connecting slab at the top. Both the girders and slab were tested to failure to investigatetheir structural behaviour and load-carrying capacity. Non-destructive and destructivetests were also applied to determine the residual prestress forces in the bridge girders andinvestigate the in situ applicability of methods developed for this purpose. The so-calledsaw-cut method and decompression-load method were used after refinement to enabletheir application to structures of such complexity. The variation of the experimentallydetermined residual prestress forces was remarkably high, depending on the sectioninvestigated. There were also high degrees of uncertainty in estimated values, and thusare only regarded as indications of the residual prestress force.Level 1 analysis of the multi-level assessment strategy consistently underestimatedcapacity, relative to the test results, and did not provide accurate predictions of the shearrelatedfailure observed in the test. With linear FE analysis and local resistance modelsdefined by the European standard, Eurocode 2, the load-carrying capacity wasunderestimated by 32 % for the bridge girder and 55 % for the bridge deck slab. At theenhanced level of structural analysis (Level 3), nonlinear FE analyses predicted thecapacities with less than 2 % deviation from the test results and correctly predicted thefailure mode. However, for existing bridges there are many uncertainties, for instance,the FE simulations were sensitive to the level of residual prestressing, boundaryconditions and assumed material parameters. To accurately take these aspects intoaccount, bridge-specific information is crucial.The complete structural assessment procedure, combining the multi-level strategy andsafety verification framework, was evaluated in a case study. Experiences from theprevious comparative studies were used in an assessment of the Kiruna Bridge followingthe Swedish assessment code. The initial assessment at Level 1 of the multi-level strategyand safety verification, using the PSF method, indicated that the shear capacity of one ofthe girders was critical. The most adverse load case (a combination of permanent loads,prestressing and variable traffic loads) was further investigated through enhancedstructural analyses implicitly accounting for flexural and shear-related failures (Level 3).Nonlinear FE analysis and safety evaluation using the PSF method, several variants of theGRSF method and the full probabilistic analysis for resistance indicated that the permittedaxle load for the critical classification vehicle could be 5.6 – 6.5 times higher than thelimit obtained from the initial assessment at Level 1. However, the study also indicatedthat the model uncertainty was not fully considered in these values. The modeluncertainty was shown to have strong effects on the safety verification and (thus)permissible axle loads. The case study also highlighted the need for a strategy forsuccessively improving structural analysis to improve understanding of bridges’ structuralbehaviour. The refined analysis indicated a complex failure mode, with yielding of thestirrups in the bridge girders and transverse flexural reinforcement in the bridge deck slab,but with a final shear failure of the slab. It would be impossible to capture suchcomplexity in a traditional standardised assessment, which (as mentioned) indicated thatthe shear capacity of the girder limited permissible axle loads. However, nonlinear FEanalyses are computationally demanding, and numerous modelling choices are required.Besides a strategy for rationally improving the analysis and helping analysts to focus oncritical aspects, detailed guidelines for nonlinear FE analysis should be applied to reduce the analyst-dependent variability of results and (thus) the model uncertainty. Clearly, toensure the validity of bridge assessment methods under in situ conditions, theirevaluations should include in situ tests. This thesis presents outcomes of such tests, therebyhighlighting important aspects for future improvements in the assessment of existingbridges.
49

Seismic Strengthening Of A Mid-rise Reinforced Concrete Frame Using Cfrps: An Application From Real Life

Tan, Mustafa Tumer 01 May 2009 (has links) (PDF)
SEISMIC STRENGTHENING OF A MID-RISE REINFORCED CONCRETE FRAME USING CFRPs: AN APPLICATION FROM REAL LIFE Tan, Mustafa T&uuml / mer M.S., Department Of Civil Engineering Supervisor: Prof. Dr. G&uuml / ney &Ouml / zcebe Co-Supervisor: Assoc. Prof. Dr. BariS Binici May 2009, 162 pages FRP retrofitting allows the utilization of brick infill walls as lateral load resisting elements. This practical retrofit scheme is a strong alternative to strengthen low to mid-rise deficient reinforced concrete (RC) structures in Turkey. The advantages of the FRP applications, to name a few, are the speed of construction and elimination of the need for building evacuation during construction. In this retrofit scheme, infill walls are adopted to the existing frame system by using FRP tension ties anchored the boundary frame using FRP dowels. Results of experiments have previously shown that FRP strengthened infill walls can enhance lateral load carrying capacity and reduce damage by limiting interstory drift deformations. In previous, analytical studies, a detailed mathematical model and a simplified version of the model for compression struts and tension ties was proposed and verified by comparing model estimations with test results. In this study, an existing 9-storey deficient RC building located in Antakya was chosen to design and apply a hybrid strengthening scheme with FRPs and reduced number of shear walls. Linear elastic analysis procedure was utilized (force based assessment technique) along with the rules of Mode Superposition Method for the reftrofit design. FRP retrofit scheme was employed using the simplified model and design was conducted such that life safety performance criterion is satisfied employing elastic spectrum with 10% probability of exceedance in 50 years according to the Turkish Earthquake Code 2007. Further analytical studies are performed by using Modal Pushover and Nonlinear Time-History Analyses. At the end of these nonlinear analyses, performance check is performed according to Turkish Earthquake Code 2007, using the strains resulting from the sum of yield and plastic rotations at demand in the critical sections. CFRP retrofitting works started at October 2008 and finished at December 2008 for the building mentioned in this study. Eccentric reinforced concrete shearwall installation is still being undertaken. All construction business is carried out without evacuation of the building occupants. This project is one of the first examples of its kind in Turkey. Keywords: CFRP, Carbon Fiber Reinforced Polymers, Masonry Infill Walls, Reinforced Concrete Infill Walls, Mid-Rise Deficient Structures, Turkish Earthquake Code 2007, Modal Pushover Analysis, Nonlinear Time History Analysis, Linear Elastic Building Assessment
50

Modellierung des schädigungsbehafteten inelastischen Materialverhaltens von Faser-Kunststoff-Verbunden / Modelling of inelastic material behaviour and failure of fibre reinforced polymers

Müller, Sebastian 16 April 2015 (has links) (PDF)
Die Arbeit beschreibt eine Modellierung des Materialverhaltens von Faser-Kunststoff-Verbunden unter Berücksichtigung der lokalen Materialstruktur, den konstitutiven Eigenschaften der Verbundbestandteile sowie charakteristischer Schädigungsphönomene. Die Diskretisierung eines repräsentativen Ausschnitts der Materialstruktur erfolgt unter Verwendung der erweiterten Finiten-Elemente-Methode (XFEM). Sie ermöglicht die effiziente Modellierung des Steifigkeitssprunges an den inneren Materialgrenzen und deren Versagen. Der Verlauf der Elementgrenzen muss dabei nicht an die Materialstruktur angepasst werden. Für die Beschreibung der Dehnratenabhängigkeit der polymeren Matrix wird ein Modell der nichtlinearen fraktionalen Viskoelastizität angewendet. Die Kombination mit einem nichtlokalen Kontinuumsschädigungsmodell ermöglicht weiterhin die Modellierung einer verzerrungsgesteuerten Schädigung des Matrixwerkstoffs. Die Parametrisierung, Validierung des Gesamtmodells erfolgt anhand ausgewählter experimenteller Untersuchungen an einem unidirektional verstärkten Glasfaser-Polypropylen-Verbund. / The thesis addresses the modelling of the material behavior of fibre reinforced polymers. It systematically includes the influence of the local material structure, the mechanical behaviour of the consituents and characteristic damage phenomena. The diskretisation of a representative volume element of the material structure is based on the extended finite element method (XFEM). It allows for an efficient modelling of the stiffness jump at internal material boundaries as well as their damage. With the XFEM, the element boundaries are no longer required to coincide with the material structure. The approximation of the strain rate dependence of the polymeric matrix is based on a nonlinear, fractional viscoelasticity approach. Its combination with a nonlocal strain driven continuum damage modell allows for the modelling of damage effects. The parametrisation and validation of the overall approach is based on a comparison with experimental results for a unidirectional reinforced glass-fibre-polypropylene composite.

Page generated in 0.0828 seconds