• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 19
  • 3
  • Tagged with
  • 63
  • 31
  • 22
  • 20
  • 19
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modèles mathématiques de la chimie quantique atomique & dynamique quantique et spectre multifractal

Barbaroux, Jean-Marie 01 July 2005 (has links) (PDF)
Les électrons dans les atomes lourds, en particulier ceux qui sont proches du noyau, sont soumis à des effets relativistes importants. Il est nécessaire de prendre en compte ces effets si l'on veut, par exemple, décrire précisément les niveaux d'énergies des atomes. L'étude des modèles atomiques quantiques relativistes remonte aux travaux fondateurs de P.A.M. Dirac, dès 1928. Ses travaux ont permis d'anticiper la découverte des antiparticules. En effet, le hamiltonien quantique qu'il obtient pour l'atome d'hydrogène n'a de sens physique que si l'on peut interpréter ses énergies négatives comme celles d'une mer infinie de particules virtuelles. Un « trou » dans le spectre des énergies négatives est alors interprété comme l'apparition d'une anti-particule : le positron. Peu après, en 1938, pour étudier les atomes à plusieurs électrons Swirles propose un modèle d'approximation qui donnera lieu aux fameuses équations de Dirac-Fock. Cette approche qui est auto-consistante, et pour laquelle les équations obtenues sont non linéaires, permet une étude numérique dont les résultats sont en très bon accord avec les mesures expérimentales. Pour autant, la motivation physique de cette approche reste incomplète. Elle s'appuie essentiellement sur l'analogue non relativiste des modèles atomiques quantiques, mais ne tient pas compte de l'interprétation de Dirac. De plus, le lien des équations de Dirac-Fock avec l'approche théorique donnée par l'électrodynamique quantique (QED) reste à établir clairement. En particulier, en QED, la question de la définition d'un espace qui décrit les états électroniques reste posée. Le travail présenté ici est une tentative d'apporter quelques réponses mathématiques rigoureuses sur ces problèmes. Nous commencerons par construire une famille de fonctionnelles à partir du hamiltonien formel de la QED qui dépendra du choix de l'espace à un électron. On se placera dans l'approximation de Hartree-Fock. On étudiera alors le problème de la stabilité, celui de l'existence de minima pour ces fonctionnelles (avec ou sans condition de charge totale fixée). On se consacrera ensuite à l'exposé des résultats obtenus qui permettent de comparer les deux approches : « Equations de Dirac-Fock » et « QED dans l'approximation de Hartree-Fock ». On distinguera en particulier le cas des couches pleines qui conduit aux mêmes résultats dans les deux cas, tout au moins pour des constantes de couplages faibles.
12

Etude des résonances de la famille du Upsilon dans les collisions d'ions lourds ultra-relativistes à 2.75 TeV/nucléon et par faisceau dans le cadre de l'expérience ALICE au CERN

Dumonteil, Eric 13 November 2004 (has links) (PDF)
La chromodynamique quantique prédit, à haute température et/ou densité d'énergie, une transition de phase entre la matière hadronique ordinaire et un nouvel état où les quarks et les gluons seraient déconfinés : le Plasma de Quarks et de Gluons. Durant les quinze dernières années s'est développé un large programme expérimental au CERN et à Brookhaven, ayant pour but d'identifier le PQG. ALICE est l'expérience du LHC dédiée à l'étude du plasma via les collisions d'ions lourds ultra-relativistes à 2.75 TeV/nucléon et par faisceau. La mesure de la suppression des résonances de la famille du Upsilon, signature potentielle de la formation d'un milieu coloré, à l'aide du spectromètre à muons de l'expérience ALICE est au centre de cette thèse. La première partie de ce travail est liée à l'étude des chambres multifils à cathodes segmentées du bras dimuon, utilisées par le système de trajectographie des muons issus de la décroissance des résonances lourdes. La seconde partie présente un algorithme d'alignement des détecteurs à l'aide de traces physiques à même de mesurer les positions réelles des différentes composantes du système de trajectographie avec de très bonnes résolutions spatiales. Finalement, la dernière partie propose une étude à mener à l'aide du spectromètre d'ALICE, impliquant la mesure de rapport des productions Upsilon et Upsilon' en fonction de l'impulsion transverse de la résonance. Il est montré que cette étude devrait permettre de statuer quand à la formation d'un état déconfiné et d'extraire certaines de ses propriétés.
13

Modélisation dépendante du temps des blazars du TeV par un modèle de jet stratifié inhomogene

Boutelier, Timothé 15 May 2009 (has links) (PDF)
L'étude des mécanismes d'émission et de variabilité des blazars du TeV est l'objet d'intenses recherches depuis de nombreuses années. Les modèles courants d'émission une zone homogène utilisés posent de nombreux problèmes, notamment à cause des grands facteurs de Lorentz qu'ils requièrent et qui sont en contradiction avec les contraintes dérivées des observations radio des jets. Dans cette thèse je décris une approche multizone inhomogène dépendante du temps, dans le cadre du modèle du two-flow. Je calcule l'émission d'un jet complet, dans lequel se propagent des paires électron-positron relativistes distribuées en pileup. L'évolution et l'émission du plasma de paires est calculée en tenant compte d'un terme de chauffage turbulent, du refroidissement radiatif, ainsi que d'un terme de production de paires par photo-annihilation. Appliqué à PKS 2155−304, ce modèle permet de reproduire le spectre complet, ainsi que la variabilité simultanée multi longueur d'onde, avec un faible facteur de Lorentz. La variabilité est expliquée par l'instabilité de la création de paires dans le jet. La valeur du facteur de Lorentz est néanmoins trop élevée pour être en accord avec les observations radio et la statistique de détection de ces objet. Je montre à la fin de ma thèse, comment, en tenant compte de l'ouverture géométrique des jets, peut on réconcilier de grands facteur de Lorentz avec l'absence de mouvement superluminique observé en radio, ainsi que la relative abondance de ce type de source.
14

Etude des performances du Trigger du spectromètre à muons d'ALICE au LHC

Blanc, Aurélien 26 October 2010 (has links) (PDF)
La théorie de la QCD (Quantum ChromoDynamics) prédit l'existence d'une nouvelle phase de la matière nucléaire à très haute température. Cette phase, caractérisée par un déconfinement des quarks au sein des hadrons, est appelée QGP (Quark Gluon Plasma). Le spectromètre à muons de l'expérience ALICE (A Large Ion Collider Experiment) a pour but d'étudier les propriétés du QGP aux densités d'énergie extrêmes atteintes dans les collisions d'ions lourds au LHC (Large Hadron Collider). Le système de déclenchement du spectromètre à muons, appelé MUON TRG est, pour une large part, sous la responsabilité du groupe ALICE de Clermont-Ferrand. Il se compose de quatre plans de détecteurs RPC (Resistive Plate Chamber) d'une superficie totale de 140 m2, de 21k voies de lecture et d'une électronique de décision rapide. Il a été conçu afin de reconstruire "en ligne" des traces (muons), dans un environnement présentant un important bruit de fond. Une décision de trigger, pour les "single muons" et les "dimuons", est délivrée toutes les 25 ns (40 MHz) avec un temps de latence relatif à l'interaction proche de 800 ns. Les performances, en particulier celles liées à la décision de trigger, obtenues avec des outils de test dédiés, les évènements cosmiques, les premiers faisceaux d'injection dans le LHC ainsi que les premières collisions proton-proton à √s = 900 GeV seront présentés.
15

Hamiltoniens de spin anisotropes en champ nul dans les complexes de métaux de transition de la première série : théorie, modèles et applications

Maurice, Rémi 20 June 2011 (has links) (PDF)
L'anisotropie magnétique est à l'origine de la lente relaxation de l'aimantation des aimants moléculaires. L'objectif principal de ce travail est de comprendre les facteurs qui gouvernent les anisotropies locales et intersites dans les composés polynucléaires. Des calculs relativistes et corrélés ont été effectués sur des systèmes mono- et bi-nucléaires. Les dégrés de liberté principaux de la méthode ab initio d'interaction d'états en deux étapes ont été optimisés pour obtenir des paramètres d'anisotropie en bon accord avec les résultats spectroscopiques. La théorie des hamiltoniens effectifs procure un procédé universel d'extraction de ces paramètres. Elle a donc été utilisée pour vérifier la validité des modèles usuels et proposer des éventuelles améliorations aux modèles. Enfin, les paramètres d'anisotropies ont été rationalisés dans certains cas à l'aide de la théorie des perturbations quasi-dégénérées.
16

Première mesure de l'asymétrie azimutale de la production du J/psi vers l'avant dans les collisions Au+Au à 200 GeV par paire de nucléons avec l'expérience PHENIX.

Silvestre Tello, Catherine 24 October 2008 (has links) (PDF)
Un des objectifs principaux de l'expérience PHENIX est l'étude de la matière nucléaire soumise à des conditions extrêmes de température et de densité d'énergie. Dans les collisions ultra-relativistes Au+Au à 200~GeV par paires de nucléon, il serait possible de former un état de la matière pour lequel les quarks et les gluons ne seraient plus liés au sein des nucléons mais pourraient évoluer de façon quasi-libre sur des distances plus grandes que la taille caractéristique de ces derniers. Cet état est dénommé le Plasma de Quarks et de Gluons (QGP).<br /><br />L'étude de la production du $\jpsi$, particule lourde formée d'une paire de quarks charme ($c \bar c$), est une des sondes initialement proposée pour étudier le QGP. Une suppression de la production du $\jpsi$ était en effet attendue en présence d'un QGP, en raison de l'écrantage du potentiel de liaison entre les quarks charme le constituant par la présence du milieu dense coloré environnant. De nombreuses mesures du $\jpsi$ ont eu lieu depuis au SPS (CERN) et à RHIC (BNL). Elles ont permis de mettre en évidence non seulement l'existence d'une telle suppression, mais également la présence de mécanismes supplémentaires, rendant plus difficile l'interprétation des résultats correspondants.<br /><br />L'expérience PHENIX est la seule des quatre expériences de RHIC capable de mesurer le $\jpsi$ à rapidité positive via sa désintégration en deux muons. En 2007 des collisions Au+Au à une énergie par paire de nucléons dans le centre de masse $\sqrt{s_{NN}}=200$~GeV ont été réalisées à BNL, ce qui a permis d'augmenter d'un facteur quatre la statistique disponible pour l'étude du $\jpsi$ par rapport aux résultats publiés précédemment. Cette augmentation, ajoutée à la mise en oeuvre de nouveaux détecteurs dans PHENIX, a permis de préciser les mesures précédentes, et de mesurer des observables jusqu'alors inaccessibles telles que l'asymétrie azimutale de la production du $\jpsi$.<br /><br />Ce manuscrit présente la compréhension actuelle de la production de quarkonia et l'utilisation de cette sonde dans l'étude du QGP. L'analyse conduisant à la première mesure de l'anisotropie azimutale du $\jpsi$ à rapidité positive dans les collisions Au+Au à 200~GeV par paire de nucléons est détaillée. Cette mesure devrait permettre de préciser le mécanisme de production du méson, en particulier en ce qui concerne la part de recombinaison des quarks $c$ en $\jpsi$.
17

Modeling of the emission of active galactic nuclei at Fermi's era / Modélisation de l'émission des noyaux actifs de galaxie à l'ère Fermi

Vuillaume, Thomas 16 October 2015 (has links)
Les noyaux actifs de galaxie (NAG) sont les objets les plus énergétiques de l'univers. Cette incroyable puissance provient de l'énergie gravitationnel de matière en rotation autour d'un trou noir super-massif siégeant au centre des galaxies. Environ 10% des NAG sont pourvus de jets relativistes émanant de l'objet central (trou noir et matière environnante) et s'étalant sur des échelles de l'ordre de la galaxie hôte. Ces jets sont observés à toutes les longueurs d'ondes, de la radio aux rayons gamma les plus énergétiques. En dépit de nombreuses études et d'instruments de plus en plus précis depuis leur découverte dans les années 1950, les NAG sont encore très mal compris et la formation, la composition et l'accélération des jets sont des questions encore pleinement ouvertes. Le modèle le plus répandu visant à reproduire l'émission des NAG, le modèle "une zone" repose souvent sur des hypothèse ad-hoc et ne parvient pas à apporter une modélisation satisfaisante.Le paradigme du "two-flow" (deux fluides) développé à l'IPAG et basé sur une idée originale de Sol et al (1989) a pour but de fournir une vision unifiée et cohérente des jets de NAG. Cette théorie repose sur une l'hypothèse principale que les jets seraient en fait composés de deux fluides co-axiaux: une colonne centrale composée d'un plasma purement leptonique (électrons/positrons) se déplaçant à des vitesses relativistes et responsable pour la grande partie de l'émission non thermique observée entourée par une enveloppe composée d'un plasma baryonique (électrons/protons), régie pas la magnéto-hydrodynamique, se déplaçant à des vitesses sous-relativistes mais transportant la majorité de l'énergie. Cette hypothèse est basée sur des indices observationnels ainsi que sur des arguments théoriques et permet d'expliquer nombre des caractéristiques des NAG.Afin d'étudier plus en profondeur le paradigme du two-flow, un modèle numérique basé sur ses concepts et produisants des observables comparables aux observations est nécessaire.Durant ma thèse, j'ai participé au développement de ce modèle, m'intéressant notamment à la diffusion Compton inverse de photons provenant de l'extérieur du jet. Ce processus, primordial dans la modélisation des NAG, est aussi central dans le paradigme du two-flow car il est à l'origine de l'accélération de la colonne via l'effet fusée Compton. Pour cela, j'ai du développer des nouvelles approximations analytiques de la diffusion Compton d'une distribution thermique de photons.En m'intéressant à l'effet fusée Compton, j'ai pu montré que dans le champ de photon thermique d'un NAG, le facteur de Lorentz d'ensemble du plasma pouvait être sujet à des variations le long du jet en fonction de la distance à l'objet central. Ces variations peuvent avoir un effet important sur l'émission observée et peuvent induire de la variabilité spatiale et temporelle. J'ai également montré que les facteurs de Lorentz terminaux obtenus étaient compatibles avec les conditions physiques attendus dans les jets et avec les observations.Le modèle complet produit des DES directement comparables aux observations. Néanmoins, le modèle est par nature erratique et il est quasiment impossible de relier directement les paramètres du modèles avec les DES produites. Malheureusement, les procédures standards d'adaptation automatique aux données (e.g. basé sur les méthodes de gradient) ne sont pas adaptées au modèle à cause de son grand nombre de paramètres, de sa non-linéarité et du temps de calcul important. Afin de palier à ce problème, j'ai développé une procédure d'adaptation automatique basée sur les algorithmes génétiques. L'utilisation de cet outil a permis la reproduction de plusieurs DES par le modèle. J'ai également montré que le modèle était capable de reproduire les DES observées avec des facteurs de Lorentz d'ensemble relativement bas, ce qui pourrait potentiellement apporter une harmonisation entre les observations et les nécessités théoriques. / Active galactic nuclei (AGN) are the most energetic objects known in the universe. Their fantastic energy is due to efficient conversion of gravitational energy of mass accreted on super-massive black-holes at the center of galaxy into luminous energy. 10% of AGN are even more incredible as they display relativistic jets on galaxy scales. Those jets are observed at all energies, from far radio to highest gamma-rays. Despite intense study since their discovery in the 50's and more and more observations, favored by rapid progress in instrumentation, AGN are still widely misunderstood. The questions of formation, composition, and acceleration of jets are central but still a matter of debates. Models aiming at reproducing observed emission have been developed throughout the years. The most common one, the one-zone model, often relies on ad hoc hypothesis and does not provide a satisfactory answer.The two-flow paradigm developed at IPAG and based on an original idea from Sol et al (1989) aims at giving a more coherent and physical representation of AGN jets. The principal assumption is that jets are actually composed of two coaxial flows: an inner spine made of a pure pair plasma, moving at relativistic speed and responsible for the non-thermal observed emission surrounded by an external sheath, made of a baryonic MHD plasma, midly relativistic but carrying most of the power. The two-flow paradigm finds roots in observations as well as theoretical arguments and has been able to explain many AGN features.During my PhD, I studied this paradigm and contributed to the development of a numerical model based on its concepts. I have been particularly interested in the inverse Compton scattering of thermal photons, fundamental process in the modeling of AGN emission, as well as the Compton rocket effect, key to the acceleration of the spine in the two-flow paradigm.However, taking into account the inverse Compton emission, with the complete cross-section (including the Klein-Nishina regime) and the anisotropy can be very time consuming. To accomplish fast and efficient computation of the external Compton emission, I have had to formulate new analytical approximations of the scattering of a thermal distribution of photons.I have also studied the Compton rocket effect, responsible for the acceleration of the inner spine in the two-flow paradigm. I showed that the resulting bulk Lorentz factor of the flow in the complex photon field of an AGN is subject to variations along the jet as a function of the distance to the central engine. These variations can have drastic effects on the observed emission and could induce variability, both spatially and temporally.I also showed that the terminal bulk Lorentz factor obtained are compatible with physical conditions expected in jets and with observations.The complete model produce spectral energy distribution (SED) comparable to observed ones. However, the model is by nature erratic and it is difficult to make a direct link between the model parameters (input) and the SED (output). Unfortunately, standard data fitting procedures (e.g. based on gradient methods) are not adapted to the model due to its important number of parameters, its important computing time and its non-linearity. In order to circumvent this issue, I have developed a fitting tool based on genetic algorithms. The application of this algorithm allowed me to successfully fit several SED. In particular, I have also showed that the model, because based on a structured jet model, can reproduce observations with low bulk Lorentz factor, thus giving hope to match observations and theoretical requirements in this matter.
18

Reconnexion magnétique non-collisionelle dans les plasmas relativistes et simulations particle-in-cell / Collisionless magnetic reconnection in relativistic plasmas with particle-in-cell simulations

Melzani, Mickaël 05 November 2014 (has links)
L'objectif de cette thèse est l'étude de la reconnexion magnétique dans les plasmas non-collisionels et relativistes. De tels plasmas sont présents dans divers objets astrophysiques (MQs, AGNs, GRBs...), où la reconnexion pourrait expliquer la production de particules et de radiation de haute énergie, un chauffage, ou des jets. Une compréhension fondamentale de la reconnexion n'est cependant toujours pas acquise, en particulier dans les plasmas relativistes ion-électron. Nous présentons d'abord les bases de la reconnexion magnétique. Nous démontrons des résultats particuliers à la physique des plasmas relativistes, concernant par exemple la distribution de Maxwell-Jüttner. Ensuite, nous réalisons une étude détaillée de l'outil numérique utilisé : les simulations particle-in-cell (PIC). Le fait que le plasma réel contienne beaucoup plus de particules que le plasma PIC a des conséquences importantes (collisionalité, relaxation, bruit) que nous décrivons. Enfin, nous étudions la reconnexion magnétique dans les plasmas ion-électron et relativistes à l'aide de simulations PIC. Nous soulignons des points spécifiques : loi d'Ohm (l'inertie de bulk dominante), zone de diffusion, taux de reconnexion (et sa normalisation relativiste). Les ions et les électrons produisent des lois de puissance, avec un index qui dépend de la vitesse d'Alfvén et de la magnétisation, et qui peut être plus dur que dans le cas des chocs non-collisionels. De plus, les ions peuvent avoir plus ou moins d'énergie que les électrons selon la valeur du champ guide. Ces résultats fournissent une base solide à des modèles d'objets astrophysiques qui, jusque là, supposaient a priori ces résultats. / The purpose of this thesis is to study magnetic reconnection in collisionless and relativistic plasmas. Such plasmas can be encountered in various astrophysical objects (microquasars, AGNs, GRBs...), where reconnection could explain high-energy particle and photon production, plasma heating, or transient large-scale outflows. However, a first principle understanding of reconnection is still lacking, especially in relativistic ion-electron plasmas. We first present the basis of reconnection physics. We derive results relevant to relativistic plasma physics, including properties of the Maxwell-Jüttner distribution. Then, we provide a detailed study of our numerical tool, particle-in-cell simulations (PIC). The fact that the real plasma contains far less particles than the PIC plasma has important consequences concerning relaxation times or noise, that we describe. Finally, we study relativistic reconnection in ion-electron plasmas with PIC simulations. We stress outstanding properties: Ohm's law (dominated by bulk inertia), structure of the diffusion zone, energy content of the outflows (thermally dominated), reconnection rate (and its relativistic normalization). Ions and electrons produce power law distributions, with indexes that depend on the inflow Alfvén speed and on the magnetization of the corresponding species. They can be harder than those produced by collisionless shocks. Also, ions can get more or less energy than the electrons, depending on the guide field strength. These results provide a solid ground for astrophysical models that, up to now, assumed with no prior justification the existence of such distributions or of such ion/electron energy repartition.
19

Sources térahertz produites par des impulsions laser ultra-intenses / Terahertz sources produced by ultra-intense laser pulses

Déchard, Jérémy 14 October 2019 (has links)
Les impulsions laser femtosecondes produisent des phénomènes non linéaires extrêmes dans la matière, conduisant à une forte émission de rayonnement secondaire qui couvre un domaine en fréquence allant du terahertz (THz) aux rayons X et gamma. De nombreuses applications utilisent la bande de fréquences terahertz (0.1-100 THz) afin de sonder la matière (spectroscopie, médecine, science des matériaux). Ce travail est dédié à l'étude théorique et numérique du rayonnement THz généré par interaction laser-plasma. Comparé aux techniques conventionnelles, ces impulsions laser permettent de créer des sources THz particulièrement énergétiques et à large bande. Notre objectif a donc été d'étudier ces régimes d'interaction relativiste, encore peu explorés, afin d'optimiser l'efficacité de conversion du laser vers les fréquences THz. L'étude de l'interaction laser-gaz en régime classique nous permet, d'abord, de valider un modèle de propagation unidirectionnelle prenant en compte la génération d'impulsion THz et de le comparer à la solution exacte des équations de Maxwell. Ensuite, en augmentant l'intensité laser au-delà du seuil relativiste, nous simulons à l'aide d'un code PIC une onde plasma non linéaire dans le sillage du laser, accélérant ainsi des électrons à plusieurs centaines de MeV. Nous montrons que le mécanisme standard des photocourrants est dominé par le rayonnement de transition cohérent induit par les électrons accélérés dans l'onde de sillage. La robustesse de ce rayonnement est ensuite observée grâce à une étude paramétrique faisant varier la densité du plasma sur plusieurs ordres de grandeur. Nous démontrons également la pertinence des grandes longueurs d'ondes laser qui sont à même de déclencher une forte pression d'ionisation, ce qui augmente la force pondéromotrice du laser. Enfin, les rayonnements THz émis à partir d'interactions laser-solide sont examinés dans le contexte de cibles ultra fine, mettant en lumière les différents processus impliqués. / Femtosecond laser pulses trigger extreme nonlinear events inmatter, leading to intense secondary radiations spanning the frequency rangesfrom terahertz (THz) to X and gamma-rays.This work is dedicated to the theoretical and numerical study of THz radiationgenerated by laser-driven plasmas. Despite the inherent difficulty in accessingthe THz spectral window (0.1-100 THz), many coming applications use theability of THz frequencies to probe matter (spectroscopy, medicine, materialscience). Laser-driven THz sources appear well-suited to provide simultaneouslyan energetic and broadband signal compared to other conventional devices. Ourgoal is to investigate previously little explored interaction regimes in orderto optimize the laser-to-THz conversion efficiency.Starting from classical interactions in gases, we validate a unidirectionalpropagation model accounting for THz pulse generation, which we compare to theexact solution of Maxwell's equations. We next increase the laser intensityabove the relativistic threshold in order to trigger a nonlinear plasma wave inthe laser wake, accelerating electrons to a few hundreds of MeV. We show thatthe standard photocurrent mechanisms is overtaken by coherent transitionradiation induced by wakefield-accelerated electron bunch. Next, successivestudies reveal the robustness of this latter process over a wide range of plasmaparameters. We also demonstrate the relevance of long laser wavelengths inaugmenting THz pulse generation through the ionization-induced pressure thatincreases the laser ponderomotive force. Finally, THz emission from laser-solidinteraction is examined in the context of ultra-thin targets, shedding light onthe different processes involved.
20

Etude ab initio des effets de corrélation et des effets relativistes dans les halogénures diatomiques de métaux de transition/ Ab initio study of the correlation and relativistic effects in diatomic halides containing a transition metal.

Rinskopf, Nathalie D. D. 07 September 2007 (has links)
Ce travail est une contribution ab initio à la caractérisation d'halogénures diatomiques de métaux de transition. Nous avons choisi de caractériser la structure électronique des chlorures de métaux de transition du groupe Vb (NbCl et TaCl) et du fluorure de nickel car une série de spectres les concernant ont été enregistrés mais aucune donnée théorique fiable n'était disponible dans la littérature. Pour étudier ces molécules, nous avons appliqué une procédure de calcul à deux étapes qui permet de tenir compte des effets de corrélation électronique et des effets relativistes. Dans la première étape, nous avons réalisé des calculs CASSCF/ICMRCI+Q de grande taille qui tiennent compte de l'énergie de corrélation et introduisent des effets relativistes scalaires. Dans la deuxième étape, le couplage spin-orbite est traité par la "state interacting method" implémentée dans le logiciel MOLPRO. Nous avons développé des stratégies de calcul basées sur ces méthodes de calcul et adaptées aux différentes molécules ciblées. Ainsi, pour les molécules NbCl et TaCl, nous avons utilisé des pseudopotentiels relativistes scalaires et spin-orbite, tandis que pour la molécule NiF, nous avons réalisé des calculs tous électrons. Nous avons d'abord testé la stratégie de calcul sur les cations Nb+ et Ta+. Ensuite, nous avons calculé pour la première fois les structures électroniques relativiste scalaire et spin-orbite des molécules NbCl (de 0 à 17000 cm-1) et TaCl (de 0 à 23000 cm-1). A l'aide de ces données théoriques, nous avons interprété les spectres expérimentaux en collaboration avec Bernath et al. Nous avons proposé plusieurs attributions de transitions électroniques en accord avec l'expérience mais nos résultats théoriques ne nous ont pas permis de les attribuer toutes. Néanmoins, nous avons mis en évidence une série d'autres transitions électroniques probables qui pourraient, à l'avenir, servir à l'interprétation de nouveaux spectres mieux résolus. Outre son intérêt expérimental, cette étude a permis de comparer les structures électroniques des molécules isovalencielles VCl, NbCl et TaCl, mettant en évidence des différences importantes. L'élaboration d'une nouvelle stratégie de calcul pour décrire les systèmes contenant l'atome de nickel représentait un véritable défi en raison de la complexité des effets de corrélation électronique. Notre stratégie de calcul a consisté à introduire ces effets en veillant à réduire au maximum la taille des calculs qui devenait considérable. Nous l'avons testée sur l'atome Ni et appliquée ensuite au calcul des structures électroniques relativiste scalaire et spin-orbite de la molécule NiF entre 0 à 2500 cm-1. Nous avons obtenus des résultats qui corroborent l'expérience.

Page generated in 1.0598 seconds