21 |
Représentation et gestion de l'incertitude pour l'actionMorel, Pierre 07 January 2011 (has links) (PDF)
Nos entrées sensorielles, comme nos mouvements, sont entachés d'incertitudes. Pourtant, notre système nerveux central semble être aussi précis que possible compte tenu de ces incertitudes: il les gère de manière optimale, par exemple en pondérant des informations sensorielles redondantes en fonction de leur fiabilité, ou en prenant en compte ses incertitudes motrices lors de la réalisation de mouvements. Si les modalités des combinaisons d'informations redondantes sont bien connues lors de tâches statiques, elles le sont moins en conditions dynamiques, lors de mouvements. La partie expérimentale de cette thèse a permis de confirmer l'existence de mécanismes d'estimation et de contrôle optimaux des mouvements chez l'humain. En effet, nous avons mis en évidence l'intégration optimale d'information visuelle lors de la réalisation de saccades à la lumière: lors de séquences de saccades, le système visuomoteur est capable d'utiliser l'information visuelle pour mettre à jour ses estimations internes de la position de l'œil. Une étude complémentaire des sources de variabilité des saccades suggère un rôle similaire pour la proprioception extra-oculaire. Par une troisième expérience, novatrice, nous avons montré que le toucher est pris en compte en temps réel lors de mouvements de la main en contact avec une surface. Nous avons également inféré une mesure de la variance de l'information tactile. Enfin, à partir des connaissances sur la représentation des variables sensorimotrices dans le système nerveux, nous avons construit plusieurs réseaux de neurones qui implémentent de manière proche de l'optimum statistique la planification et le contrôle de mouvements
|
22 |
Perception visuelle et plasticité oculomotrice : aspects fondamentaux et application cliniqueLévy-Bencheton, Delphine 18 December 2013 (has links) (PDF)
Une façon d'explorer visuellement notre monde consiste à déplacer très rapidement nos yeux pour en analyser le contenu. Dans certaines circonstances, ces mouvements oculaires, appelés saccades, peuvent perdre de leur précision. Fort heureusement notre cerveau est capable de corriger cette imprécision en ajustant progressivement la taille de ces saccades grâce à des mécanismes de plasticité cérébrale : c'est l'adaptation saccadique. L'adaptation saccadique est souvent utilisée comme modèle d'étude des mécanismes de plasticité visuo-motrice. Nous faisons également l'hypothèse qu'elle puisse servir d'outil thérapeutique. Dans cette thèse, nous nous sommes essentiellement intéressés à l'adaptation des saccades volontaires en augmentation d'amplitude chez des sujets contrôles et chez des patients souffrant d'une amputation homonyme du champ visuel (hémianopsie latérale homonyme). Les expériences 1 à 3, réalisées chez le sujet contrôle, ont permis de découvrir les repères utilisés par le cerveau pour réaliser cette adaptation sensori-motrice et coder l'environnement visuel (expérience 1), et les mécanismes d'adaptation saccadique quand la cible visuelle n'est pas directement codée (remapping dans l'expérience 2 et cible virtuelle dans l'expérience 3). Enfin l'expérience 4 propose une application clinique du protocole d'adaptation des anti-saccades utilisé lors de l'expérience 3, dans un but thérapeutique de rééducation comportementale de patients hémianopsiques.
|
23 |
De la diffusion latérale des récepteurs AMPA à la perception des whiskers : un nouveau modèle de cartographie corticale / From AMPAR lateral diffusion to whisker perception : a new model for cortical remappingCampelo, Tiago 07 October 2019 (has links)
Les champs récepteurs corticaux se réorganisent en réponse aux changements de l'environnement. Par exemple, suite à une lésion périphérique, les modalités sensorielles préservées gagnent de l'espace cortical au détriment de celles lésées. L'étude du cortex somatosensoriel en tonneau des rongeurs a fourni des données importantes pour la compréhension des mécanismes synaptiques à l'origine de cette réorganisation corticale. En condition normale, les neurones de chaque colonne corticale répondent préférentiellement à la stimulation d'une seule vibrisse principale ("Principal Whisker, PW"). Au contraire, suite à l'amputation de l'ensemble des vibrisses sauf une ("Single Whisker Experience, SWE"), les neurones des colonnes associées aux vibrisses amputées répondent à la stimulation de la vibrisse conservée, à l'origine du renforcement et de l'expansion des représentations corticales des vibrisses conservées. Bien que des preuves indirectes aient révélées un rôle de la potentialisation à long terme ("Long-Term Potentiation, LTP") de synapses préexistantes dans la modification des cartes corticales, probablement via une augmentation du nombre des récepteurs AMPA (AMPARs) aux synapses, un lien direct entre la LTP, la réorganisation des cartes corticales, et l'adaptation des comportements sensori-moteurs suite à une altération des entrées sensorielles n'a pas encore été démontré. L'objectif de cette thèse a donc été de mettre en évidence cette relation de façon expérimentale et en condition physiologique. Pour cela, nous avons mis au point une stratégie in vivo combinant des enregistrements électrophysiologiques, de l'imagerie biphotonique et l'analyse du comportement d'exploration chez la souris contrôle ("Full Whisker Experience, FWE) et amputée de certaines vibrisses (SWE). Nous avons d'abord confirmé que la stimulation rythmique de la PW ("Rhytmic Whisker Swtimulation, RWS") renforce les synapses excitatrices (RWS-LTP) in vivo des souris anesthésiées FWE. Au contraire des souris FWE, les neurones pyramidaux des souris SWE présentent une augmentation de l'excitabilité neuronale et une absence de RWS-LTP, indiquant ainsi que les synapses corticales associées à la vibrisse intacte ont été potentialisées en réponse au protocole SWE. Pour mieux comprendre l'implication de la RWS-LTP dans la réorganisation des cartes corticales et l'adaptation des comportements sensori-moteurs, nous avons développé une nouvelle approche pour manipuler la LTP in vivo grâce à l'immobilisation des AMPARs par des anticorps extracellulaires ("cross-linking"). En effet, notre équipe a montré précédemment que le cross-linking des AMPARs empêche la LTP in vitro. Par ailleurs, une accumulation des AMPARs au niveau post-synaptique a été démontrée in vivo par imagerie biphotonique au cours d'une stimulation RWS, suggérant un rôle de la mobilité de ces récepteurs dans cette RWS-LTP. Au cours de cette thèse, nous avons démontré que le cross-linking des AMPARs in vivo bloque également l'expression de la RWS-LTP, mais sans affecter la transmission synaptique basale, ni l'induction de la RWS-LTP, indiquant ainsi que la mobilité des AMPARs est également fondamental pour l'expression de la LTP in vivo. De façon importante, le cross-linking des AMPARs de façon chronique, au cours du SWE, permet non seulement de rétablir la RWS-LTP et l'excitabilité neuronale, et donc de bloquer la réorganisation corticale, mais aussi de modifier les capacités de récupération sensori-motrices des souris amputées. Dans l'ensemble, nos données démontrent pour la première fois un rôle critique et direct de la RWS-LTP dans le réarrangement des circuits en réponse à l'amputation de certaines vibrisses. La réorganisation des cartes corticales serait ainsi assurée par le renforcement de la transmission synaptique, et constituerait alors un mécanisme compensatoire pour optimiser le comportement sensorimoteur de l'animal lors de l'altération des entrées sensorielles. / Neuronal receptive fields in the cerebral cortex change in response to peripheral injury, with active modalities gaining cortical space at the expense of less active ones. Experiments on the mouse whisker-to-barrel cortex system provided important evidences about the synaptic mechanisms driving this cortical remapping. Under normal conditions, neurons in each barrel-column have receptive fields that are strongly tuned towards one principal whisker (PW). However, trimming all the whiskers except one (single-whisker experience, SWE) causes layer (L) 2/3 pyramidal neurons located in the deprived and spared-related columns to increase their response towards the spared input. This results in a strengthening and expansion of the spared whisker representation within the barrel sensory map. Indirect evidences suggest that these cortical alterations might depend on the activity-dependent potentiation of pre-existing excitatory synapses (LTP), likely through increased levels of postsynaptic AMPA receptors (AMPARs). However, a clear link between LTP, cortical remapping, and the adaptation of sensorimotor skills following altered sensory experience has not yet convincingly been demonstrated. Here, we combined in vivo whole-cell recordings, 2-Photon calcium imaging and a whisker-dependent behavior protocol to directly demonstrate this relationship. It has been described that rhythmic whisker stimulation potentiates cortical synapses (RWS-LTP) in vivo. An accumulation of postsynaptic AMPARs during similar sensory stimulation was also reported by imaging evidences. Our data demonstrates that this potentiation is occluded by SWE, suggesting that cortical synapses are already potentiated by this trimming protocol. This is translated into an increased neuronal excitability in the spared column and sensorimotor recovery by the spared whisker. To better understand the implication of LTP in cortical remapping, we developed a novel approach to manipulate LTP in vivo without affecting overall circuit properties. Our team showed previously that the blockage of AMPARs synaptic recruitment by extracellular antibody cross-linking prevents LTP in vitro. Here, we report that in vivo cross-linking of AMPARs blocks the expression but not the induction of RWS-LTP, suggesting that the synaptic recruitment of AMPARs is fundamental for in vivo LTP as well. Moreover, chronic AMPAR cross-linking during SWE reverts RWS-LTP occlusion and the increased neuronal excitability caused by whisker trimming. As consequence, the sensorimotor performance by the spared whisker is permanently impaired by the blockage of cortical remapping. Altogether, these evidences led us to define a critical role for synaptic LTP on circuit re-arrangement after whisker trimming. Our data shows that LTP-driven cortical remapping is a compensatory mechanism to optimize animal’s sensorimotor behavior upon altered sensory experience.
|
24 |
Brain circuits underlying visual stability across eye movements—converging evidence for a neuro-computational model of area LIPZiesche, Arnold, Hamker, Fred H. January 2014 (has links)
The understanding of the subjective experience of a visually stable world despite the occurrence of an observer's eye movements has been the focus of extensive research for over 20 years. These studies have revealed fundamental mechanisms such as anticipatory receptive field (RF) shifts and the saccadic suppression of stimulus displacements, yet there currently exists no single explanatory framework for these observations. We show that a previously presented neuro-computational model of peri-saccadic mislocalization accounts for the phenomenon of predictive remapping and for the observation of saccadic suppression of displacement (SSD). This converging evidence allows us to identify the potential ingredients of perceptual stability that generalize beyond different data sets in a formal physiology-based model. In particular we propose that predictive remapping stabilizes the visual world across saccades by introducing a feedback loop and, as an emergent result, small displacements of stimuli are not noticed by the visual system. The model provides a link from neural dynamics, to neural mechanism and finally to behavior, and thus offers a testable comprehensive framework of visual stability.
|
25 |
Modelling closed-loop receptive fields: On the formation and utility of receptive fields in closed-loop behavioural systems / Entwicklung rezeptiver Felder in autonom handelnden, rückgekoppelten SystemenKulvicius, Tomas 20 April 2010 (has links)
No description available.
|
Page generated in 0.046 seconds