• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2081
  • 879
  • 372
  • 211
  • 45
  • 41
  • 41
  • 41
  • 41
  • 41
  • 40
  • 29
  • 29
  • 28
  • 26
  • Tagged with
  • 4478
  • 4478
  • 894
  • 893
  • 408
  • 389
  • 386
  • 364
  • 358
  • 345
  • 340
  • 334
  • 333
  • 298
  • 295
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1951

Remote sensing of supra-glacial lakes on the west Greenland Ice Sheet

Johansson, A. Malin January 2012 (has links)
The Greenland Ice Sheet is the largest ice sheet in the northern hemisphere. Ongoing melting of the ice sheet, resulting in increased mass loss relative to the longer term trend, has raised concerns about the stability of the ice sheet. Melt water generated at the surface is temporarily stored in supra-glacial lakes on the ice sheet. Connections between melt water generation, storage and ice sheet dynamics highlight the importance of the surface hydrological system. In this thesis different methods are used that improve our ability to observe the supra-glacial lake system on the west Greenland Ice Sheet. This region of the Greenland Ice Sheet has the most extensive supra-glacial hydrological system with a dense network of streams connecting lakes that can exceed several square kilometres in area. Synthetic Aperture Radar (SAR) and visible-near infrared (VNIR) images are used to explore the potential of different sensor systems for regular observations of the supra-glacial lakes. SAR imagery is found to be a useful complement to VNIR data. VNIR data from moderate resolution sensors are preferred as these provide high temporal resolution data, ameliorating problems with cloud cover. The dynamic nature of the lakes makes automated classification difficult and manual mapping has been widely used. Here a new method is proposed that improves on existing methods by automating the identification and classification of lakes, and by introducing a flexible system that can capture the full range of lake forms. Applying our new method we are better able to analyse the evolution of lakes over a number of melt seasons. We find that lakes initiate after approximately 40 positive degree days. Most lakes exist for less than 20 days before draining, or later in the season, and less often, freezing over. Using the automated method developed in this thesis lakes have been mapped in imagery from 2001–2010 at approximately five day intervals. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript. Paper 5: Manuscript.</p>
1952

Land Use and Land Cover Change Detection in Isfahan, Iran Using Remote Sensing Techniques

Alavi Shoushtari, Niloofar 09 May 2012 (has links)
Rapid urban growth and unprecedented rural to urban transition, along with a huge population growth are new phenomena for both high and low income countries, which started in the mid-20th century. However, urban growth rates and patterns are different in developed countries and developing ones. In less developed countries, urbanization and rural to urban transition usually takes place in an unmanaged way and they are associated with a series of socioeconomical and environmental issues and problems. Identification of the city growth trends in past decades can help urban planners and managers to minimize these negative impacts. In this research, urban growth in the city of Isfahan, Iran, is the subject of study. Isfahan the third largest city in Iran has experienced a huge urban growth and population boom during the last three decades. This transition led to the destruction of natural and agricultural lands and environmental pollutions. Historical and recent remotely sensed data, along with different remote sensing techniques and methods have been used by researchers for urban land use and land cover change detection. In this study three Landsat TM and ETM+ images of the study site, acquired in 1985, 2000 and 2009 are used. Before starting processing, radiometric normalization is done to minimize the atmospheric effects. Then, processing methods including principal component analysis (PCA), vegetation indices and supervised classification are implemented on the images. Accuracy assessment of the PCA method showed that the first PC was responsible for more than 81% of the total variance, and therefore used for analysis of PCA differencing. ΔPC1t1-t2 shows the amount of changes in land use and land cover during the period of study. In this study ten vegetation indices were selected to be applied to the 1985 image. Accuracy assessments showed that Transformed Differencing Vegetation Index (TDVI) is the most sensitive and accurate index for mapping vegetation in arid and semi-arid urban areas. Hence, TDVI was applied to the 2000 and 2009 images. ΔTDVIt1-t2 showed the changes in land use and land cover especially the land use transformation from vegetation cover into the urban class. Supervised classification is the last method applied to the images. Training sites were assigned for the selected classes and accuracy was monitored during the process of training site selection. The results of classification show the expansion of urban class and diminishment in natural and agricultural lands.
1953

Velocity Variations of the Kaskawulsh Glacier, Yukon Territory, 2009-2011

Darling, Samantha 16 November 2012 (has links)
Laser altimetry and satellite gravity surveys indicate that the St Elias Icefields are currently losing mass and are among the largest non-polar sea level contributors in the world. However, a poor understanding of glacier dynamics in the region is a major hurdle in evaluating regional variations in ice motion and the relationship between changing surface conditions and ice flux. This study combines in-situ dGPS measurements and advanced Radarsat-2 (RS-2) processing techniques to determine daily and seasonal ice velocities for the Kaskawulsh Glacier from summer 2009 to summer 2011. Three permanent dGPS stations were installed along the centreline of the glacier in 2009, with an additional permanent station on the South Arm in 2010. The Precise Point Positioning (PPP) method is used to process the dGPS data using high accuracy orbital reconstruction. RS-2 imagery was acquired on a 24-day cycle from January to March 2010, and from October to March 2010-2011 in a combination of ultra-fine and fine beam modes. Seasonal velocity regimes are readily identifiable in the dGPS results, with distinct variations in both horizontal velocity and vertical motion. The Spring Regime consists of an annual peak in horizontal velocity that corresponds closely with the onset of the melt season and progresses up-glacier, following the onset of melt at each station. The Summer Regime sees variable horizontal velocity and vertical uplift, superimposed on a long-term decline in motion. The Fall Regime sees a gradual slowing at all stations with little variation in horizontal velocity or vertical position. Rapid but short accelerations lasting up to 10 days were seen in the Winter regimes in both 2010 and 2011, occurring at various times throughout each regime. These events initiated at the Upper Station and progress down-glacier at propagation speeds up to 16,380 m day-1 and were accompanied by vertical uplift lasting for similar periods. Three velocity maps, one from the winter of 2010 and two from the fall/winter of 2011, produced from speckle tracking were validated by comparison with dGPS velocity, surface flow direction, and bedrock areas of zero motion, with an average velocity error of 2.0% and average difference in orientation of 4.3º.
1954

Dynamics and Historical Changes of the Petersen Ice Shelf and Epishelf Lake, Nunavut, Canada, since 1959

White, Adrienne 07 December 2012 (has links)
This study presents the first comprehensive assessment of the Petersen Ice Shelf and the Petersen Bay epishelf lake, and examines their current characteristics and changes to their structure between 1959 and 2012. The surface of the Petersen Ice Shelf is characterized by a rolling topography of ridges and troughs, which is balanced by a rolling basal topography, with thicker ice under the surface ridges and thinner ice under the surface troughs. Based on thickness measurements collected in 2011 and area measurements from August 2012, the Petersen Ice Shelf has a surface area of 19.32 km2 and a mean thickness of 29 m, with the greatest thicknesses (>100 m) occurring at the fronts of tributary glaciers feeding into the ice shelf. The tributary glaciers along the northern coast of Petersen Bay contributed an estimated area-averaged 7.89 to 13.55 cm yr-1 of ice to the ice shelf between 2011 and 2012. This input is counteracted by a mean surface ablation of 1.30 m yr-1 between 2011 and 2012, suggesting strongly negative current mass balance conditions on the ice shelf. The Petersen Ice Shelf remained relatively stable until 2005 when the first break-up in recent history occurred, removing >8 km2 of ice shelf surface area. This break-up led to the drainage of the epishelf lake once the ice shelf separated from the southern coast, providing a conduit through which the freshwater from the lake escaped. More break-ups occurred in summers 2008, 2011 and 2012, which resulted in a >31.2 km2 loss in surface area (~63% of June 2005 area). While ephemeral regions of freshwater have occurred along the southern coast of Petersen Bay since 2005 (with areas ranging from 0.32-0.53 km2), open water events and a channel along the southern coast have prevented the epishelf lake from reforming. Based on these past and present observations it is unlikely that Petersen Ice Shelf will continue to persist long into the future.
1955

Long-term Habitat Trends in Barren-ground Caribou

White, Lori 28 January 2013 (has links)
Global and local climate patterns may affect barren-ground caribou (Rangifer tarandus groenlandicus) populations. I predicted global climate changes to be correlated with periods of population decline, and local changes to be more pronounced on the habitat of caribou with a declining population. In chapter 1, the Arctic Oscillation (AO), changes in normalized difference vegetation index and phenology were used as measures of global and local climate. In chapter 2 environmental variables and caribou presence points were used to build Maxent habitat models. There was no consistent correlation with the positive AO phase and periods of population decline, or phenology trends and the habitat of caribou with a declining population. Maxent models underestimated the amount of suitable habitat spatially and failed to model suitable habitat temporally. This thesis is the first to look at a range of density-independent variables over a long time period and model suitable habitat for multiple herds.
1956

Assessment of Trace Gas Observations from the Toronto Atmospheric Observatory

Taylor, Jeffrey Ryan 26 February 2009 (has links)
A high-resolution infrared Fourier Transform Spectrometer (FTS) has been operational at the Toronto Atmospheric Observatory (TAO)since May 2002. An optimal estimation retrieval technique is used to analyse the observed spectra and provide regular total and partial column measurements of trace gases in the troposphere and stratosphere as part of the Network for the Detection of Atmospheric Composition Change. The quality of these results were assessed through two ground-based validation campaigns, comparisons with three satellite instruments, and comparison with a three-dimensional chemical transport model. The two ground-based campaigns involved two lower-resolution FTS instruments: the University of Toronto FTS and the Portable Atmospheric Research Interferometric Spectrometer for the Infrared. The first campaign took place over the course of four months and is the longest side-by-side intercomparison of ground-based FTS instruments, to date. The second campaign was more focused and involved all three instruments measuring over a two-week period. Simultaneous measurements of O3, HCl, N2O, and CH4 were recorded and average total column differences were all < 3.7% in the extended campaign, and < 4.5% in the focused campaign. Satellite-based comparisons were done with the SCanning and Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and the Optical Spectrograph and InfraRed Imager System (OSIRIS). Total column CO, CH4, and N2O compared with SCIAMACHY all had average differences < 10% with results from the TAO-FTS being as good as, or better, than that of other instruments. Validation with the ACE-FTS showed that average partial columns of O3, NO2, N2O, CH4, and HCl were within 10% while observations of CO and NO each had an average bias of about 25%. Comparisons of monthly average partial column O3 and NO2 with OSIRIS were highly correlated (R = 0.82-0.97) with monthly mean differences of < 3.1% for O3 and < 2.6% for NO2. Finally, comparisons with the GEOS-Chem chemical transport model revealed that the model consistently over-estimates tropospheric columns of CO and C2H6 observed at TAO. It was determined that the enhanced CO values were partially due to the North American emissions specified in the model, but more work must be done in the future if the source of this discrepancy is to be fully explained.
1957

Monitoring land use and land cover change: a combining approach of change detection to analyze urbanization in Shijiazhuang, China

Liu, Qingling, Gong, Fanting January 2013 (has links)
Detecting the changes of land use and land cover of the earth’s surface is extremely important to achieve continual and precise information about study area for any kinds of planning of the development. Geographic information system and remote sensing technologies have shown their great capabilities to solve the study issues like land use and land cover changes. The aim of this thesis is to produce maps of land use and land cover of Shijiazhuang on year 1993, 2000 and 2009 to monitor the possible changes that may occur particularly in agricultural land and urban or built-up land, and detect the process of urbanization in this city. Three multi-temporal satellite image data, Thematic Mapper image data from year 1993, Enhanced Thematic Mapper image data from 2000 and China Brazil Earth Resource Satellite image data from 2009 were used in this thesis. In this study, supervised classification was the major classification approach to provide classified maps, and five land use and land cover categories were identified and mapped. Post-classification approach was used to improve the qualities of the classified map. The noises in the classified maps will be removed after post-classification process. Normalized difference vegetation index was used to detect the changes of vegetated land and non-vegetated land. Change detection function in Erdas Imagine was used to detect the urban growth and the intensity of changes surrounding the urban areas. Cellular automata Markov was used to simulate the trends of land use and cover change during the period of 1993 to 2000 and 2000 to 2009, and a future land use map was simulated based on the land use maps of year 2000 and 2009. From this performance, the cross-tabulation matrices between different periods were produced to analyze the trends of land use and cover changes, and these statistic data directly expressed the change of land use and land cover. The results show that the agricultural land and urban or built-up land were changed a lot, approximately half of agricultural land was converted into urban or built-up land. This indicates that the loss of agricultural land is associated with the growth of urban or built-up land. Thus, the urbanization took place in Shijiazhuang, and the results of this urban expansion lead to the loss of agricultural land and environmental problems. During the process of detecting the land use and cover change, obtaining of high-precision classified maps was the main problem.
1958

Exurban Development: Mapping, Locating Factors, and Ecological Impact Analysis using GIS and Remote Sensing

Shrestha, Namrata 31 August 2012 (has links)
Anthropogenic disturbance in a landscape can take various forms, including residential development, which has substantial impact on the world’s ecosystems. Exurban development, characterized by low density residential development outside urban areas, was and continues to be one of the fastest growing forms of residential development in North America. It has disproportionately large ecological impacts relative to its footprint, yet is mostly overlooked in scientific studies. Specifically, a lack of spatially explicit (disaggregate) data on exurban development at regional level has contributed to a very limited understanding of this interspersed low density development. The main goal of this dissertation is to provide an increased understanding of exurban development in terms of its location, locating factors, and conservation and ecological implications at regional level, especially to enable incorporation of exurban information in the decision making processes. For this I asked four specific questions in this dissertation: (i) Where exactly is exurban development? (ii) What are the most likely factors that influence exurban development location? (iii) How does current and future development conflict with conservation goals? And (iv) What is the extent of the exurban development’s ecological impacts? Using a heterogeneous landscape, the County of Peterborough (Ontario, Canada), as the case study this dissertation undertook a number of separate yet related analyses that collectively provided the improved understanding of exurban development. The investigation of traditionally used surrogates for development, like roads and census data, and a more direct remote sensing method, using moderate resolution SPOT/HRVIR imagery, provided insights and contributed to development of spatially explicit data on exurban development. The evaluation of several commonly hypothesized locating factors in relation to exurban development revealed some of the major influences on the location of this development, especially in the context of Ontario. This research contributed to our understanding of the future risks of land conversion and identification of potential conflict areas between development and conservation plans in the study area. Lastly, examining the ecological impact of exurban development including associated roads, in terms of functions such as barrier effects and landscape connectivity, highlighted the importance of these seldom included anthropogenic disturbances in land and conservation planning. The contributions of this research to the existing body of knowledge are threefold. First, this dissertation reveals the limitations associated with existing methods used to map exurban development and presents a relatively easy, effective, automated and operational method to delineate exurban built areas at regional level using GIS and remote sensing. Second, the analyses conducted in this dissertation repeatedly highlights the importance of incorporating fine level details on exurban development in land and conservation planning as well as ecological impact assessments and presents methods and tools that can systematically and scientifically integrate this information in decision making framework. Third, this study conducted one of a kind, comprehensive and spatially explicit study on exurban development in Canada, where there is near absence of such research. With the rarely available exurban built footprint data delineated for the study area, this study not only identified the potential locating factors, future conversion risk, and conflict areas between development and conservation plans, but also quantified ecological impact in terms of landscape function, namely barrier effects and landscape connectivity, using a relatively novel circuit theoretic approach that can directly inform land and conservation decision planning process.
1959

Homeowners as Urban Forest Managers - Examining the Role of Property-level Variables in Predicting Variations in Urban Forest Quantity Using Advanced Remote Sensing and GIS Methodologies

Shakeel, Tooba 26 November 2012 (has links)
Urban forests provide vital services to communities and are crucial for our mental, physical and emotional well-being. Recent research has shown that many variables at a neighbourhood-level are linked to variations in urban forest quantity, however, relationships at the property-level have not been considered. The purpose of this study was to examine the relationships at property-level in four socioeconomically varied neighbourhoods in the City of Mississauga (Ontario, Canada). Percent canopy cover and tree density was calculated using information from a survey, GIS datasets and remote sensing. Regression was used to determine which property-level characteristics are related to variations in the two tree cover variables. The results show that variables dealing with residents attitudes towards trees and space constraints are commonly linked to tree cover variations. The study found differences in relationships between the two tree measures at property-level and it provides greater insight into human-urban forest relationship at the micro-scale.
1960

Classification of Points Acquired by Airborne Laser Systems

Ruhe, Jakob, Nordin, Johan January 2007 (has links)
During several years research has been performed at the Department of Laser Systems, the Swedish Defense Research Agency (FOI), to develop methods to produce high resolution 3D environment models based on data acquired with airborne laser systems. The 3D models are used for several purposes, both military and civilian applications, for example mission planning, crisis management analysis and planning of infrastructure. We have implemented a new format to store laser point data. Instead of storing rasterized images of the data this new format stores the original location of each point. We have also implemented a new method to detect outliers, methods to estimate the ground surface and also to divide the remaining data into two classes: buildings and vegetation. It is also shown that it is possible to get more accurate results by analyzing the points directly instead of only using rasterized images and image processing algorithms. We show that these methods can be implemented without increasing the computational complexity.

Page generated in 0.0604 seconds