• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 47
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 157
  • 157
  • 51
  • 50
  • 45
  • 45
  • 40
  • 32
  • 31
  • 28
  • 25
  • 24
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Finite-temperature dynamics of low-dimensional quantum systems with DMRG methods

Tiegel, Alexander Clemens 25 July 2016 (has links)
No description available.
152

Models in Neutrino Physics : Numerical and Statistical Studies

Bergström, Johannes January 2013 (has links)
The standard model of particle physics can excellently describe the vast majorityof data of particle physics experiments. However, in its simplest form, it cannot account for the fact that the neutrinos are massive particles and lepton flavorsmixed, as required by the observation of neutrino oscillations. Hence, the standardmodel must be extended in order to account for these observations, opening up thepossibility to explore new and interesting physical phenomena. There are numerous models proposed to accommodate massive neutrinos. Thesimplest of these are able to describe the observations using only a small numberof effective parameters. Furthermore, neutrinos are the only known existing particleswhich have the potential of being their own antiparticles, a possibility that isactively being investigated through experiments on neutrinoless double beta decay.In this thesis, we analyse these simple models using Bayesian inference and constraintsfrom neutrino-related experiments, and we also investigate the potential offuture experiments on neutrinoless double beta decay to probe other kinds of newphysics. In addition, more elaborate theoretical models of neutrino masses have beenproposed, with the seesaw models being a particularly popular group of models inwhich new heavy particles generate neutrino masses. We study low-scale seesawmodels, in particular the resulting energy-scale dependence of the neutrino parameters,which incorporate new particles with masses within the reach of current andfuture experiments, such as the LHC. / Standardmodellen för partikelfysik beskriver den stora majoriteten data från partikelfysikexperimentutmärkt. Den kan emellertid inte i sin enklaste form beskrivadet faktum att neutriner är massiva partiklar och leptonsmakerna är blandande,vilket krävs enligt observationerna av neutrinooscillationer. Därför måste standardmodellenutökas för att ta hänsyn till detta, vilket öppnar upp möjligheten att utforska nya och intressanta fysikaliska fenomen. Det finns många föreslagna modeller för massiva neutriner. De enklaste av dessakan beskriva observationerna med endast ett fåtal effektiva parametrar. Dessutom är neutriner de enda kända befintliga partiklar som har potentialen att vara sinaegna antipartiklar, en möjlighet som aktivt undersöks genom experiment på neutrinolöst dubbelt betasönderfall. I denna avhandling analyserar vi dessa enkla modellermed Bayesisk inferens och begränsningar från neutrinorelaterade experiment och undersöker även potentialen för framtida experiment på neutrinolöst dubbelt betasönderfall att bergänsa andra typer av ny fysik. Även mer avancerade teoretiska modeller för neutrinomassor har föreslagits, med seesawmodeller som en särskilt populär grupp av modeller där nya tunga partiklargenererar neutrinomassor. Vi studerar seesawmodeller vid låga energier, i synnerhetneutrinoparametrarnas resulterande energiberoende, vilka inkluderar nya partiklarmed massor inom räckh°all för nuvarande och framtida experiment såsom LHC. / <p>QC 20130830</p>
153

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 February 2012 (has links) (PDF)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
154

A Ventilation Strategy Based on Confluent Jets : An Experimental and Numerical Study

Janbakhsh, Setareh January 2015 (has links)
This study presents air distribution systems that are based on confluent jets; this system can be of interest for the establishment of indoor environments, to fulfill the goals of indoor climate and energy-efficient usage. The main objective of this study is to provide deeper understanding of the flow field development of a supply device that is designed based on wall confluent jets and to investigate the ventilation performance by experimental and numerical methods. In this study, the supply device can be described as an array of round jets on a flat surface attached to a side wall. Multiple round jets that issue from supply device apertures are combined at a certain distance downstream from the device and behave as a united jet or so-called confluent jets. Multiple round jets that are generated from the supply device move downward and are attached to the wall at the primary region, due to the Coanda effect, and then they become wall confluent jets until the floor wall is reached. A wall jet in a secondary region is formed along the floor after the stagnation region. The characteristics of the flow field and the ventilation performance of conventional wall confluent jets and modified wall confluent jets supply devices are investigated experimentally in an office test room. The study of the modified wall confluent jets is intended to improve the efficiency of the conventional one while maintaining acceptable thermal comfort in an office environment. The results show that the modified wall confluent jets supply device can provide acceptable thermal comfort for the occupant with lower airflow rate compared to the conventional wall confluent jets supply device. Numerical predictions using three turbulence models (renormalization group (RNG k– ε), realizable (Re k– ε), and shear stress transport (SST k– ω) are evaluated by measurement results. The computational box and nozzle plate models are used to model the inlet boundary conditions of the nozzle device. In the isothermal study, the wall confluent jets in the primary region and the wall jet in the secondary region, when predicted by the three turbulence models, are in good agreement with the measurements. The non-isothermal validation studies show that the SST k– ω model is slightly better at predicting the wall confluent jets than the other two models. The SST k– ω model is used to investigate the effects of the nozzle diameter, number of nozzles, nozzle array configuration, and inlet discharge height on the ventilation performance of the proposed wall confluent jets supply device. The nozzle diameter and number of nozzles play important roles in determining the airflow pattern, temperature field, and draught distribution. Increased temperature stratification and less draught distribution are achieved by increasing the nozzle diameter and number of nozzles. The supply device with smaller nozzle diameters and fewer nozzles yields rather uniform temperature distribution due to the dominant effect of mixing. The flow behavior is nearly independent of the inlet discharge height for the studied range. The proposed wall confluent jets supply device is compared with a mixing supply device, impinging supply device and displacement supply device. The results show that the proposed wall confluent jets supply device has the combined behavior of both mixing and stratification principles. The proposed wall confluent jets supply device provides better overall ventilation performance than the mixing and displacement supply devices used in this study. This study covers also another application of confluent jets that is based on impinging technology. The supply device under consideration has an array of round jets on a curve. Multiple jets issue from the supply device aperture, in which the supply device is positioned vertically and the jets are directed against a target wall. The flow behavior and ventilation performance of the impinging confluent jets supply device is studied experimentally in an industrial premise. The results show that the impinging confluent jets supply device maintains acceptable thermal comfort in the occupied zone by creating well-distributed airflow during cold and hot seasons.
155

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 January 2012 (has links)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
156

Renormalization group theory, scaling laws and deep learning

Haggi Mani, Parviz 08 1900 (has links)
The question of the possibility of intelligent machines is fundamentally intertwined with the machines’ ability to reason. Or not. The developments of the recent years point in a completely different direction : What we need is simple, generic but scalable algorithms that can keep learning on their own. This thesis is an attempt to find theoretical explanations to the findings of recent years where empirical evidence has been presented in support of phase transitions in neural networks, power law behavior of various entities, and even evidence of algorithmic universality, all of which are beautifully explained in the context of statistical physics, quantum field theory and statistical field theory but not necessarily in the context of deep learning where no complete theoretical framework is available. Inspired by these developments, and as it turns out, with the overly ambitious goal of providing a solid theoretical explanation of the empirically observed power laws in neu- ral networks, we set out to substantiate the claims that renormalization group theory may be the sought-after theory of deep learning which may explain the above, as well as what we call algorithmic universality. / La question de la possibilité de machines intelligentes est intimement liée à la capacité de ces machines à raisonner. Ou pas. Les développements des dernières années indiquent une direction complètement différente : ce dont nous avons besoin sont des algorithmes simples, génériques mais évolutifs qui peuvent continuer à apprendre de leur propre chef. Cette thèse est une tentative de trouver des explications théoriques aux constatations des dernières années où des preuves empiriques ont été présentées en faveur de transitions de phase dans les réseaux de neurones, du comportement en loi de puissance de diverses entités, et même de l'universialité algorithmique, tout cela étant parfaitement expliqué dans le contexte de la physique statistique, de la théorie quantique des champs et de la théorie statistique des champs, mais pas nécessairement dans le contexte de l'apprentissage profond où aucun cadre théorique complet n'est disponible. Inspiré par ces développements, et comme il s'avère, avec le but ambitieux de fournir une explication théorique solide des lois de puissance empiriquement observées dans les réseaux de neurones, nous avons entrepris de étayer les affirmations selon lesquelles la théorie du groupe de renormalisation pourrait être la théorie recherchée de l'apprentissage profond qui pourrait expliquer cela, ainsi que ce que nous appelons l'universialité algorithmique.
157

Kondo Physics and Many-Body Effects in Quantum Dots and Molecular Junctions

Ruiz-Tijerina, David A. January 2013 (has links)
No description available.

Page generated in 0.1123 seconds