• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] ANALYTICAL MODELS FOR THERMAL WELLBORE EFFECTS ON PRESSURE TRANSIENT TESTING / [pt] MODELOS ANALÍTICOS DE EFEITOS TÉRMICOS EM TESTES DE PRESSÃO TRANSIENTE

MAURICIO DA SILVA CUNHA GALVAO 13 December 2018 (has links)
[pt] Este trabalho apresenta um novo modelo térmico analítico que acopla poço e reservatório, constituído por um sistema combinado de reservatório, revestimento e coluna de produção. As soluções analíticas consideram fluxo monofásico de fluido pouco compressível em um reservatório homogêneo e infinito e fornecem dados transitórios de temperatura e pressão ao longo do poço para testes de fluxo e de crescimento de pressão, considerando efeitos Joule-Thomson, de expansão adiabática, de condução e convecção. A massa específica do fluido é modelada como função da temperatura e a solução analítica faz uso da transformada de Laplace para resolver a equação diferencial de fluxo de calor transiente, assumindo o termo aT⁄az totalmente transiente. Com relação à análise de transientes de pressão (PTA), dados de pressão impactados por variações térmicas podem levar à interpretação de falsas heterogeneidades geológicas, pois a perda de calor durante a estática proporciona um aumento da pressão exercida pela coluna de fluido, devido ao incremento de sua massa específica, além de uma contração da coluna de produção, provocando uma mudança na posição do registrador. Esses efeitos podem fazer com que um reservatório homogêneo seja erroneamente interpretado como um reservatório de dupla porosidade, resultando em conclusões inválidas para a modelagem geológica. Os resultados deste trabalho são comparados com a resposta de um simulador comercial não-isotérmico e impactos nas interpretações são extensivamente investigados. Adicionalmente, um estudo de caso de campo é fornecido para validar as soluções analíticas propostas. Comparado à Literatura, o modelo proposto fornece perfis transientes de temperatura mais acurados. / [en] This work presents a new coupled transient-wellbore/reservoir thermal analytical model, consisting of a reservoir/casing/tubing combined system. The analytical solutions consider flow of a slightly compressible, single-phase fluid in a homogeneous infinite-acting reservoir system and provide temperature- and pressure-transient data for drawdown and buildup tests at any gauge location along the wellbore, accounting for Joule-Thomson, adiabatic fluid-expansion, conduction and convection effects. The wellbore fluid mass density is modeled as a function of temperature and the analytical solution makes use of the Laplace transformation to solve the transient heat-flow differential equation, accounting for a rigorous transient wellbore-temperature gradient aT⁄az. Regarding pressure transient analysis (PTA), thermal impacted pressure data may lead to the interpretation of false geological heterogeneities, since the heat loss during the buildup period provides an increase in the pressure exerted by the wellbore-fluid column, due to an increase in the oil mass density, and a change in tubing length, consequently causing a change in the gauge location. These effects can make a homogeneous reservoir be wrongly interpreted as a double-porosity reservoir, yielding invalid conclusions to geological modeling. Results are compared to the response of a commercial non-isothermal simulator and thermal impacts on PTA interpretations are thoroughly investigated. In addition, a field case study is also provided to verify the proposed analytical solutions. The proposed model provides more accurate transient temperature flow profiles along the wellbore when compared to previous models in Literature.
12

Analytical and Numerical Modeling for Heat Transport in a Geothermal Reservoir due to Cold Water Injection

Ganguly, Sayantan January 2014 (has links) (PDF)
Geothermal energy is the energy naturally present inside the earth crust. When a large volume of hot water and steam is trapped in subsurface porous and permeable rock structure and a convective circulating current is set up, it forms a geothermal reservoir. A geothermal system can be defined as - convective water in the upper crust of earth, which transfers heat from a heat source (in the reservoir) to a heat sink, usually the free surface. A geothermal system is made up of three main elements: a heat source, a reservoir and a fluid, which is the carrier that transfers the heat. As an alternative source of energy geothermal energy has been under attention of the researchers for quite some time. The reason behind this is the existence of several benefits like clean and renewable source of energy which has considerable environmental advantage, with no chemical pollutants or wastes are generated due to geothermal emissions, and the reliability of the power resource. Hence research has been directed in several directions like exploration of geothermal resources, modeling the characteristics of different types of geothermal reservoirs and technologies to extract energy from them. The target of these models has been the prediction of the production of the hot water and steam and thus the estimation of the electricity generating potential of a geothermal reservoir in future years. In a geothermal power plant reinjection of the heat depleted water extracted from the geothermal reservoir has been a common practice for quite some time. This started for safe wastewater disposal and later on the technology was employed to obtain higher efficiency of heat and energy extraction. In most of the cases a very small fraction of the thermal energy present in the reservoir can be recovered without the reinjection of geothermal fluid. Also maintaining the reservoir pressure is essential which gradually reduces due to continuous extraction of reservoir fluid without reinjection, especially for reservoirs with low permeabilities. Although reinjection of cold-water has several benefits, the possibility of premature breakthrough of the cold-water front, from injection well zone to production well zone, reduces the efficiency of the reservoir operation drastically. Hence for maintaining the reservoir efficiency and longer life of the reservoir, the injectionproduction well scheme is to be properly designed and injection and extraction rates are to be properly fixed. Modeling of flow and heat transport in a geothermal reservoir due to reinjection of coldwater has been attempted by several researchers analytically, numerically and experimentally. The analytical models which exist in this field deal mostly with a single injection well model injecting cold-water into a confined homogeneous porous-fractured geothermal reservoir. Often the thermal conductivity is neglected in the analytical study considering it to be negligible which is not always so, as proved in this study. Moreover heterogeneity in the reservoir is also a major factor which has not been considered in any such analytical study. In the field of numerical modeling there also exists a need of a general coupled three-dimensional thermo-hydrogeological model including all the modes of heat transport (advection and conduction), the heat loss to the confining rocks, the regional groundwater flow and the geothermal gradient. No study existing so far reported such a numerical model including those mentioned above. The present study is concerned about modeling the non-isothermal flow and heat transport in a geothermal reservoir due to reinjection of heat depleted water into a geothermal reservoir. Analytical and numerical models are developed here for the transient temperature distributions and advancement of the thermal front in a geothermal reservoir which is generated due to the cold-water injection. First homogeneous geothermal aquifers are considered and later heterogeneities of different kinds are brought into picture. Threedimensional numerical models are developed using a software code DuMux which solves flow and heat transport problems in porous media and can handle both single and multiphase flows. The results derived by the numerical models have been validated using the results from the analytical models derived in this study. Chapter 1 of the thesis gives a brief introduction about different types of geothermal reservoirs, followed by discussion on the governing differential equations, the conceptual model of a geothermal reservoir system, the efficiency of geothermal reservoirs, the modeling and simulation concepts (models construction, boundary conditions, model calibration etc.). Some problems related with geothermal reservoirs and geothermal power is also discussed. The scenario of India in the context having a huge geothermal power potential is described and different potential geothermal sites have been pointed out. In Chapter 2, the concept of reinjection of the heat depleted (cold) water into the geothermal reservoir is introduced. Starting with a brief history of the geothermal reinjection, the chapter describes the purpose and the need of reinjection of geothermal fluid giving examples of different geothermal fields over the world where reinjection has been in practice and benefitted by that. The chapter further discusses on the problems and obstacles faced by the geothermal projects resulting from the geothermal reinjection, most important of which is the thermal-breakthrough and cooling of production wells. Lastly the problem of this thesis is discussed which is to model the transient temperature distribution and the movement of the cold-water thermal front generated due to the reinjection. The need of this modeling is elaborated which represents the motivation of taking up the problem of the thesis. Chapter 3 describes an analytical model developed for the transient temperature in a porous geothermal reservoir due to injection of cold-water. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. The analytical solutions represent the transient temperature distribution in the geothermal aquifer and the confining rocks and model the movement of the cold-water thermal front in them. The results show that the heat transport to the confining rocks plays an influential role in the transient heat transport here. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be high on the results. Chapter 4 represents another analytical model for transient temperature distribution in a heterogeneous geothermal reservoir underlain and overlain by impermeable rocks due to injection of cold-water. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. Simpler solutions are also derived afterwards first neglecting the longitudinal conduction, then the heat loss to the confining rocks depending on the situation where the contribution of them to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of heat loss to the confining rocks in this case is also determined and the influence of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results show that the heterogeneity plays a major role in controlling the cold-water thermal front movement. The transient temperature distribution in the geothermal reservoir depends on the type of heterogeneity. The heat loss to the confining rocks of the geothermal aquifer also has influence on the heat transport phenomenon. In Chapter 5 another analytical model is derived for a heterogeneous reservoir where the heterogeneous geothermal aquifer considered is a confined aquifer consisted of homogeneous layers of finite length and overlain and underlain by impermeable rock media. All the different layers in the aquifer and the overlying and underlying rocks are of different thermo-hydrogeological properties. Results show that the advancement of the cold-water thermal front is highly influenced by the layered heterogeneity of the aquifer. As the cold-water thermal front encounters layers of different thermo-hydrogeological properties the movement of it changes accordingly. The analytical solution derived here has been compared with a numerical model developed by the multiphysics software code COMSOL which shows excellent agreement with each other. Lastly it is shown that approximation of the properties of a geothermal aquifer by taking mean of the properties of all the layers present will lead to erroneous estimation of the temperature distribution. Chapter 6 represents a coupled three-dimensional thermo-hydrogeological numerical model for transient temperature distribution in a confined porous geothermal aquifer due to cold-water injection. This 3D numerical model is developed for solving more practical problems which eliminate the assumptions taken into account in analytical models. The numerical modeling is performed using a software code DuMux as mentioned before. Besides modeling the three-dimensional transient temperature distribution in the model domain, the chapter investigates the regional groundwater flow has been found to be a very important parameter to consider. The movement of the thermal front accelerates or decelerates depending on the direction of the flow. Influence of a few parameters involved in the study on the transient heat transport phenomenon in the geothermal reservoir domain, namely the injection rate, the permeability of the confining rocks and the thermal conductivity of the geothermal aquifer is also evaluated in this chapter. The models have been validated using analytical solutions derived in this thesis. The results are in very good agreement with each other. In Chapter 7 the main conclusions drawn from the study have been enlisted and the scope of further research is also pointed out.
13

Středně dobá předpověď průtoků vody měrným profilem toku / Long Term Discharge Prediction in River Hydrometric Profile

Šelepa, Milan January 2015 (has links)
The diploma thesis is focused on the long term prediction of mean monthly flows in hydrometric profile for purposes of reservoir control optimization and optimization of reservoir systems. Discharges were predicted using by artificial neural network method. Predicted flows were statistically evaluated by relevant coefficients and then compared with the measured flows for given river hydrometric profiles.
14

Eine neue Strategie zur multikriteriellen simulationsbasierten Bewirtschaftungsoptimierung von Mehrzweck-Talsperrenverbundsystemen / A new strategy for simulation-based multi-objective optimization of multi-purpose multi-reservoir systems

Müller, Ruben 11 February 2015 (has links) (PDF)
Wasserwirtschaftliche Speichersysteme sind unverzichtbar, um weltweit die Trinkwasserversorgung, Nahrungsmittelproduktion und Energieversorgung sicherzustellen. Die multikriterielle simulationsbasierte Optimierung (MK-SBO) ist eine leistungsfähige Methodik, um für Mehrzweck-Talsperrenverbundsysteme (MZ-TVS) eine Pareto-optimale Menge an Kompromisslösungen zwischen konträren Zielen bereitzustellen. Der rechentechnische Aufwand steigt jedoch linear mit der Länge des Simulationszeitraums der Talsperrenbewirtschaftung an. Folglich begrenzen sich MK-SBO-Studien bisher auf Simulationszeiträume von wenigen Jahrzehnten. Diese Zeiträume sind i.d.R. unzureichend, um Unsicherheiten, die aus der stochastischen Natur der Zuflüsse resultieren, adäquat zu beschreiben. Bewirtschaftungsoptimierungen von MZ-TVS hinsichtlich ihrer Zuverlässigkeit, z.B. durch die Maximierung von Versorgungssicherheiten, können sich als wenig belastbar und ermittelte Steuerungsstrategien als wenig robust erweisen. Um diesen Herausforderungen zu begegnen, wird ein neues modulares Framework zur multikriteriellen simulationsbasierten Bewirtschaftungsoptimierung von MZ-TVS (Frams-BoT) entwickelt. Eine Informationserweiterung zu stochastischen Zuflussprozessen erfolgt über ein weiterentwickeltes Zeitreihenmodell mittels generierter Zeitreihen von mehreren Tausend Jahren Länge. Eine neue Methode zur Monte-Carlo-Rekombination von Zeitreihen ermöglicht dann die Nutzung dieser Informationen in der MK-SBO in wesentlich kürzeren Simulationszeiträumen. Weitere Rechenzeit wird durch Parallelisierung und eine fortgeschrittene Kodierung von Entscheidungsvariablen eingespart. Die Simulation von Zuflussdargeboten für multikriterielle Klimafolgenanalysen erfolgt durch ein prozessorientiertes Wasserhaushaltsmodell. Level-Diagramme (Blasco et al., 2008) unterstützten den komplexen Prozess der Entscheidungsfindung. Die Wirksamkeit und Flexibilität des Frameworks wurden in zwei Fallstudien gezeigt. In einer ersten Fallstudie konnten in einer Klimafolgenanalyse Versorgungssicherheiten von über 99% als ein Ziel eines multikriteriellen Optimierungsproblems maximiert werden, um die Verlässlichkeit der Bewirtschaftung eines MZ-TVS in Sachsen (Deutschland) zu steigern. Eine zweite Fallstudie befasste sich mit der Maximierung der Leistungsfähigkeit eines MZ-TVS in Äthiopien unter verschiedenen Problemformulierungen. In beiden Fallstudien erwiesen sich die erzielten Pareto-Fronten und Steuerungsstrategien gegenüber 10 000-jährigen Zeiträumen als robust. Die benötigten Rechenzeiten der MK-SBO ließen sich durch das Framework massiv senken. / Water resources systems are worldwide essential for a secure supply of potable water, food and energy production. Simulation-based multi-objective optimization (SB-MOO) is a powerful method to provide a set of Pareto-optimal compromise solutions between various contrary goals of multi-purpose multi-reservoir systems (MP-MRS). However, the computational costs increases with the length of the time period in which the reservoir management is simulated. Consequently, MK-SBO studies are currently restricted to simulation periods of several decades. These time periods are normally insufficient to describe the stochastic nature of the inflows and the consequent hydrological uncertainties. Therefore, an optimization of the reliability of management of MP-MRS, e.g. through the maximization of the security of supply, may not be resilient. Obtained management strategies may not prove robust. To address these challenges, a new modular framework for simulation-based multiobjective optimization of the reservoir management of multi-purpose multi-reservoir systems (Frams-BoT) is developed. A refined time series model provides time series of several thousand years to extend the available information about the stochastic inflow processes. Then, a new Monte-Carlo recombination method allows for the exploitation of the extended information in the SB-MOO on significantly shorter time periods. Further computational time is saved by parallelization and an advanced coding of decision variables. A processoriented water balance model is used to simulate inflows for multi-objective climate impact analysis. Level-Diagrams [Blasco et al., 2008] are used to support the complex process of decision-making. The effectiveness and flexibility of the framework is presented in two case studies. In the first case study about a MP-MRS in Germany, high securities of supply over 99% where maximized as part of a multi-objective optimization problem in order to improve the reliability of the reservoir management. A second case study addressed the maximization of the performance of a MP-MRS in Ethiopia under different formulations of the optimization problem. In both case studies, the obtained Pareto-Fronts and management strategies proved robust compared to 10 000 year time periods. The required computational times of the SB-MOO could be reduced considerably.
15

Eine neue Strategie zur multikriteriellen simulationsbasierten Bewirtschaftungsoptimierung von Mehrzweck-Talsperrenverbundsystemen

Müller, Ruben 19 September 2014 (has links)
Wasserwirtschaftliche Speichersysteme sind unverzichtbar, um weltweit die Trinkwasserversorgung, Nahrungsmittelproduktion und Energieversorgung sicherzustellen. Die multikriterielle simulationsbasierte Optimierung (MK-SBO) ist eine leistungsfähige Methodik, um für Mehrzweck-Talsperrenverbundsysteme (MZ-TVS) eine Pareto-optimale Menge an Kompromisslösungen zwischen konträren Zielen bereitzustellen. Der rechentechnische Aufwand steigt jedoch linear mit der Länge des Simulationszeitraums der Talsperrenbewirtschaftung an. Folglich begrenzen sich MK-SBO-Studien bisher auf Simulationszeiträume von wenigen Jahrzehnten. Diese Zeiträume sind i.d.R. unzureichend, um Unsicherheiten, die aus der stochastischen Natur der Zuflüsse resultieren, adäquat zu beschreiben. Bewirtschaftungsoptimierungen von MZ-TVS hinsichtlich ihrer Zuverlässigkeit, z.B. durch die Maximierung von Versorgungssicherheiten, können sich als wenig belastbar und ermittelte Steuerungsstrategien als wenig robust erweisen. Um diesen Herausforderungen zu begegnen, wird ein neues modulares Framework zur multikriteriellen simulationsbasierten Bewirtschaftungsoptimierung von MZ-TVS (Frams-BoT) entwickelt. Eine Informationserweiterung zu stochastischen Zuflussprozessen erfolgt über ein weiterentwickeltes Zeitreihenmodell mittels generierter Zeitreihen von mehreren Tausend Jahren Länge. Eine neue Methode zur Monte-Carlo-Rekombination von Zeitreihen ermöglicht dann die Nutzung dieser Informationen in der MK-SBO in wesentlich kürzeren Simulationszeiträumen. Weitere Rechenzeit wird durch Parallelisierung und eine fortgeschrittene Kodierung von Entscheidungsvariablen eingespart. Die Simulation von Zuflussdargeboten für multikriterielle Klimafolgenanalysen erfolgt durch ein prozessorientiertes Wasserhaushaltsmodell. Level-Diagramme (Blasco et al., 2008) unterstützten den komplexen Prozess der Entscheidungsfindung. Die Wirksamkeit und Flexibilität des Frameworks wurden in zwei Fallstudien gezeigt. In einer ersten Fallstudie konnten in einer Klimafolgenanalyse Versorgungssicherheiten von über 99% als ein Ziel eines multikriteriellen Optimierungsproblems maximiert werden, um die Verlässlichkeit der Bewirtschaftung eines MZ-TVS in Sachsen (Deutschland) zu steigern. Eine zweite Fallstudie befasste sich mit der Maximierung der Leistungsfähigkeit eines MZ-TVS in Äthiopien unter verschiedenen Problemformulierungen. In beiden Fallstudien erwiesen sich die erzielten Pareto-Fronten und Steuerungsstrategien gegenüber 10 000-jährigen Zeiträumen als robust. Die benötigten Rechenzeiten der MK-SBO ließen sich durch das Framework massiv senken. / Water resources systems are worldwide essential for a secure supply of potable water, food and energy production. Simulation-based multi-objective optimization (SB-MOO) is a powerful method to provide a set of Pareto-optimal compromise solutions between various contrary goals of multi-purpose multi-reservoir systems (MP-MRS). However, the computational costs increases with the length of the time period in which the reservoir management is simulated. Consequently, MK-SBO studies are currently restricted to simulation periods of several decades. These time periods are normally insufficient to describe the stochastic nature of the inflows and the consequent hydrological uncertainties. Therefore, an optimization of the reliability of management of MP-MRS, e.g. through the maximization of the security of supply, may not be resilient. Obtained management strategies may not prove robust. To address these challenges, a new modular framework for simulation-based multiobjective optimization of the reservoir management of multi-purpose multi-reservoir systems (Frams-BoT) is developed. A refined time series model provides time series of several thousand years to extend the available information about the stochastic inflow processes. Then, a new Monte-Carlo recombination method allows for the exploitation of the extended information in the SB-MOO on significantly shorter time periods. Further computational time is saved by parallelization and an advanced coding of decision variables. A processoriented water balance model is used to simulate inflows for multi-objective climate impact analysis. Level-Diagrams [Blasco et al., 2008] are used to support the complex process of decision-making. The effectiveness and flexibility of the framework is presented in two case studies. In the first case study about a MP-MRS in Germany, high securities of supply over 99% where maximized as part of a multi-objective optimization problem in order to improve the reliability of the reservoir management. A second case study addressed the maximization of the performance of a MP-MRS in Ethiopia under different formulations of the optimization problem. In both case studies, the obtained Pareto-Fronts and management strategies proved robust compared to 10 000 year time periods. The required computational times of the SB-MOO could be reduced considerably.
16

Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

Mounir, Adil 05 July 2018 (has links)
No description available.

Page generated in 0.0581 seconds