• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 34
  • 32
  • 12
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 278
  • 54
  • 51
  • 48
  • 45
  • 25
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Methods to achieve wavelength selectivity in infrared microbolometers and reduced thermal mass microbolometers

Jung, Joo-Yun, 1976- 02 February 2011 (has links)
The use of a patterned resistive sheet as an infrared-selective absorber, including the effects of a mechanical support dielectric layer is discussed. Also, modified dielectric coated Salisbury Screen can improve both the wavelength selectivity and the speed of thermal response for microbolometers. These patterned resistive sheets and Modified dielectric coated Salisbury Screen are a modified form of classical Salisbury Screens that utilize a resistive absorber layer placed a quarter-wavelength in front of a mirror. These structures can show a narrower detection bandwidth when compared to conventional microbolometers. For a Modified dielectric coated Salisbury Screen for multi-spectral system, wavelength selectivity can be varied by changing the distance to the mirror, and for patterned resistive sheet, wavelength selectivity can be varied by changing the lithographically drawn parameters of the array. Hence, different pixels in a focal plane array can be designed to produce a “multi-color” infrared imaging system. Also, the thermal mass of microbolometer is reduced using patterned resistive structure. / text
72

Nonaxisymmetric experimental modal analysis and control of resistive wall MHD in RFPs : System identification and feedback control for the reversed-field pinch

Olofsson, K Erik J January 2012 (has links)
The reversed-field pinch (RFP) is a device for magnetic confinement of fusion plasmas. The main objective of fusion plasma research is to realise cost-effective thermonuclear fusion power plants. The RFP is highly unstable as can be explained by the theory of magnetohydrodynamics (MHD). Feed-back control technology appears to enable a robustly stable RFP operation.  Experimental control and identification of nonaxisymmetric multimode MHD is pursued in this thesis. It is shown that nonparametric multivariate identification methods can be utilised to estimate MHD spectral characteristics from plant-friendly closed-loop operational input-output data. It is also shown that accurate tracking of the radial magnetic field boundary condition is experimentally possible in the RFP. These results appear generically useful as tools in both control and physics research in magnetic confinement fusion. / <p>QC 20120508</p>
73

SENSING CHARACTERISTICS OF MULTIWALLED CARBON NANOTUBE (MWCNT) SENSORS EMBEDDED IN POROUS ALUMINA MEMBRANES

Nimmagadda, Swetha Sree 01 January 2011 (has links)
A theoretical model is developed for calculating the sensitivity of resistive sensors based on aligned multiwall carbon nanotubes (MWCNT) embedded in the pores of alumina membranes. Aligned MWCNTs offer more surface area as each CNT acts as a landing site for detecting gas species. The MWCNTs behave as a p-type semiconducting layer; when the bus bar contacts are placed at either end of the top surface the resistance between the contacts responds to oxidizing (resistance decreases) and reducing gases (resistance increases). The model presented in this thesis aims to understand the device resistance dependence upon the MWCNT resistance, and the sensitivity dependence upon the device structure and design. The model was utilized for enhancing the sensitivity of MWCNT sensors for ammonia (30% sensitivity) and nitrogen dioxide (40% sensitivity) gases. Experimental results from sensitivity measurements are compared with theoretical predictions.
74

Investigação de propriedades de filmes finos de Sn'O IND. 2' e 'Al IND. 2''O IND. 3' para aplicação em dispositivos

Maciel Júnior, Jorge Luiz Barbosa [UNESP] 18 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:29Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-18Bitstream added on 2014-06-13T19:09:17Z : No. of bitstreams: 1 macieljunior_jlb_me_bauru.pdf: 1682253 bytes, checksum: a84fdbae9148badab55fa6a6aa5a53c3 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A proposta deste trabalho é a investigação das propriedades elétricas e ópticas de filmes finos de dióxido de estanho (Sn'O IND. 2') obtidos via sol-gel e por solução alcoólica depositados via dip-coating, e, filmes de alumina ('Al IND. 2''O IND. 3') obtidos por deposição de filmes de alumínio (Al) via evaporação resistiva e tratamento térmico em diferentes ambientes, para promover a oxidação de Al. A investigação individual quanto às propriedades ópticas e elétricas desses materiais conhecer seu comportamento na forma de filmes, e estudar a região interfacial de Sn'O IND. 2' e 'Al IND. 2''O IND. 3'. As caracterizações estruturais dos filmes foram feitas por difração de raios-X (DRX), e, no caso dos filmes de alumina, utilizou-se também microscopia eletrônica de varredura (MEV) e microscopia óptica. Nas caracterizações ópticas foram utilizadas técnicas de espectroscopia na região do ultravioleta e no infravermelho próximo (UV-Vis-Nir). Tanto os filmes obtidos por meio alcoólico como obtidos via SGDC foram caracterizados como sendo de Sn'O IND. 2' de estrutura tetragonal do tipo rutilo, sendo que os filmes obtidos via processo alcoólico apresentaram condutividade elétrica maior do que os filmes obtidos via SGDC. Os resultados referentes aos filmes finos de alumínio indicam que independentemente da quantidade de camadas de alumínio depositadas e da atmosfera de tratamento térmico, tem-se a oxidação do alumínio à alumina ('Al IND. 2''O IND. 3'), sendo que a estrutura dominante depende da atmosfera de tratamento. A sua utilização como camada isolante no gate em dispositivo metal-óxido-semicondutor é viável, pois a corrente fonte-dreno apresenta valores significativamente maiores do que a corrente fonte-gate. / The main goal of this work is the investigation of properties of tin dioxide (Sn'O IND. 2') and alumina ('Al IND. 2''O IND. 3) thin films. The first one was obtained through the sol-gel process as well as alcoholic solution, via dip-coating. The alumina thin films were obtained by resistive evaporation of aluminum (Al) followed by thermal annealing in distinct atmospheres, to promote the Al oxidation. The individual investigation of optical and electrical properties of these materials aims the knowledge of their behavior as thin films, which allows studying the interface layer of the heterojunction Sn'O IND. 2' e 'Al IND. 2''O IND. 3'. Structural characterization of films was carried out by X-ray diffraction (XRD) technique and particularly on the alumina films, scanning electron microscopy (SEM) and optical microscopy were done. For the optical characterization, wide spectra were obtained, with spectroscopy from ultraviolet to near infrared (UV-Vis-Nir). Either the films obtained in the alcoholic solution as well as via SGDC, where characterized as Sn'O IND. 2' of tetragonal structure of rutile type, and the films obtained through alcoholic process present electrical conductivity higher than the films obtained via SGDC. Results on aluminum thin films indicate that independent on the amount of deposited aluminum and thermal annealing atmosphere, the oxidation of aluminum to alumina ('Al IND. 2''O IND. 3) takes place, but the dominant alumina structure depends on the thermal annealing atmosphere. Besides, its utilization as insulating layer at the gate of a metal-oxide semicondutor device is achievable, because the source-drain current is significantly higher than the source-gate current.
75

Avaliação da técnica de evaporação resistiva para a deposição de filmes finos de GaAs e compostos de GaAs com óxidos e cloretos de Er ou Yb

Corrêa, Patrícia [UNESP] 19 August 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:30Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-08-19Bitstream added on 2014-06-13T20:30:16Z : No. of bitstreams: 1 correa_p_me_bauru.pdf: 1146240 bytes, checksum: a8f40673e6edfa69035f9c03a71c97da (MD5) / Neste trabalho é feita a deposição de filmes finos pela técnica de Evaporação Resistiva a partir de pós de Arseneto de Gálio (GaAs) e compostos de GaAs com Óxidos e Cloretos de Érbio (Er) ou Itérbio (Yb). Trata-se de um método relativamente simples de deposição, no qual os compostos são evaporados conjuntamente. O objetivo é observar a eficiência desse método para a produção desses filmes finos, a partir de compostos que possuam diferentes características, tais como consideráveis diferenças de temperaturas de evaporação. Depositamos filmes em diferentes condições e estequiometrias e analisamos as propriedades estruturais pela técnica de difração de raios-X. A composição qualitativa das amostras foi obtida por energia dispersiva de raios-X. As propriedades ópticas foram analisadas através de medidas de transmitância óptica dentro da faixa do visível ao infravermelho médio. Realizamos também a caracterização elétrica através de medidas de resistência em função da temperatura em filmes de GaAs e composto de GaAs com 'ErCl IND 3'. Apresentamos no apêndice uma proposta de investigação das propriedades de transporte elétrico de uma dessas amostras, envolvendo um modelo para cálculo da condutividade. De imediato, a contribuição deste trabalho é para a compreensão dos fenômenos físicos que acontecem durante o processo de crescimento, e a investigação parâmetros de deposição que viabilizem o emprego da técnica para os diferentes materiais evaporados. / In this work, thin film deposition is carried out, using the resistive evaporation technique, from powders of gallium arsenide (GaAs) and erbium (Er) or ytterbium (Yb) oxides and chlorides. It is a relatively simple deposition technique, where the compounds are simultaneously evaporated. The goal is to observe the efficiency of this growth method for the production of thin films, from compounds with distinct characteristics, such as high difference between evaporation temperatures. Films have been deposited under different conditions and stoichiometry, and their structural properties were analyzed by X-ray diffraction technique. Sample composition was obtained by X-ray dispersive energy. Optical properties were analyzed through optical transmittance from visible to medium infrared. Electrical characterization was also carried out, using measurements of resistance as function of temperature for GaAs and GaAs with 'ErCl IND 3' compounds. An appendix is also presented, containing a proposal of electrical transport investigation, involving conductivity calculation. The contribution of this work is towards the understanding of physical phenomena that takes place during the growth process, and the investigation of deposition parameters with make reliable the utilization of this technique for the different evaporated materials.
76

Programmable Metallization Cell Devices for Flexible Electronics

January 2011 (has links)
abstract: Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by applying an appropriate voltage between the two broken ends. This work explores methods of fabricating interconnects and switches based on PMC technology on flexible substrates. The objective was the evaluation of the feasibility of using this technology in flexible electronics applications in which reliability is a primary concern. The re-healable property of the interconnect is characterized for the silver doped germanium selenide (Ag-Ge-Se) solid electrolyte system. This property was evaluated by measuring the resistances of the healed interconnect structures and comparing these to the resistances of the unbroken structures. The reliability of the interconnects in both unbroken and healed states is studied by investigating the resistances of the structures to DC voltages, AC voltages and different temperatures as a function of time. This work also explores replacing silver with copper for these interconnects to enhance their reliability. A model for PMC-based switches on flexible substrates is proposed and compared to the observed device behavior with the objective of developing a formal design methodology for these devices. The switches were subjected to voltage sweeps and their resistance was investigated as a function of sweep voltage. The resistance of the switches as a function of voltage pulse magnitude when placed in series with a resistance was also investigated. A model was then developed to explain the behavior of these devices. All observations were based on statistical measurements to account for random errors. The results of this work demonstrate that solid electrolyte based interconnects display self-healing capability, which depends on the applied healing voltage and the current limit. However, they fail at lower current densities than metal interconnects due to an ion-drift induced failure mechanism. The results on the PMC based switches demonstrate that a model comprising a Schottky diode in parallel with a variable resistor predicts the behavior of the device. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011
77

Emerging 3D technologies for efficient implementation of FPGAs / Implémentation de FPGA en utilisant des technologies 3D émergentes

Turkyilmaz, Ogun 28 November 2014 (has links)
La complexité croissante des systèmes numériques amène les architectures reconfigurable telles que les Field Programmable Gate Arrays (FPGA) à être très fortement demandés en raison de leur facilité de (re)programmabilité et de leurs faibles coûts non récurrents (NRE). La re-configurabilité est réalisée grâce à de nombreux point mémoires de configuration. Cette re-configurabilité se traduit par une extrême flexibilité des applications implémentées et dans le même temps par une perte en surface, en performances et en puissance par rapport à des circuits intégrés spécifiques (ASIC) pour la même fonctionnalité. Dans cette thèse, nous proposons la conception de FPGA avec différentes technologies 3D pour une meilleure efficacité. Nous intégrons les blocs à base de mémoire résistives pour réduire la longueur des fils de routage et pour élargir l'employabilité des FPGAs pour des applications non-volatiles de faible consommation. Parmi les nombreuses technologies existantes, nous nous concentrons sur les mémoires à base d'oxyde résistif (OxRRAM) et les mémoires à pont conducteur (CBRAM) en évaluant les propriétés uniques de ces technologies. Comme autre solution, nous avons conçu un nouveau FPGA avec une intégration monolithique 3D (3DMI) en utilisant des interconnexions haute densité. A partir de deux couches avec l'approche logique-sur-mémoire, nous examinons divers schémas de partitionnement avec l'augmentation du nombre de couches actives intégrées pour réduire la complexité de routage et augmenter la densité de la logique. Sur la base des résultats obtenus, nous démontrons que plusieurs niveaux 3DMI est une alternative solide pour l'avenir de mise à l'échelle de la technologie. / The ever increasing complexity of digital systems leads the reconfigurable architectures such as Field Programmable Gate Arrays (FPGA) to become highly demanded because of their in-field (re)programmability and low nonrecurring engineering (NRE) costs. Reconfigurability is achieved with high number of point configuration memories which results in extreme application flexibility and, at the same time, significant overheads in area, performance, and power compared to Application Specific Integrated Circuits (ASIC) for the same functionality. In this thesis, we propose to design FPGAs with several 3D technologies for efficient FPGA circuits. First, we integrate resistive memory based blocks to reduce the routing wirelength and widen FPGA employability for low-power applications with non-volatile property. Among many technologies, we focus on Oxide Resistive Memory (OxRRAM) and Conductive Bridge Resistive Memory (CBRAM) devices by assessing unique properties of these technologies in circuit design. As another solution, we design a new FPGA with 3D monolithic integration (3DMI) by utilizing high-density interconnects. Starting from two layers with logic-on-memory approach, we examine various partitioning schemes with increased number of integrated active layers to reduce the routing complexity and increase logic density. Based on the obtained results, we demonstrate that multi-tier 3DMI is a strong alternative for future scaling.
78

Conductive Polymer nanoComposite Quantum Resistive strain Sensors for structural composites damage monitoring. / Senseurs Résistifs Quantiques nanoComposites Polymères Conducteurs pour le suivi de sante des composites

Nag Chowdhury, Suvam 07 November 2014 (has links)
Un nouveau type de Senseur de déformation Résistif Quantique (QRS) à base de nanotubes de carbone (CNT) a été développé pour le suivi de santé de structures composites (SHM). Les senseurs ont été fabriqués directement par pulvérisation en couche par couche (sLBL) sur la surface de fibres de verre ou de carbone d'une formulation de nanoComposites Polymères Conducteurs (CPC). La réponse des transducteurs CPC a été étudiée sous diverses sollicitations mécaniques en mode statique et dynamique. Différentes stratégies de suivi de santé des composites à l'aide de senseurs piézo-résistifs ont été comparées en termes d'efficacité de suivi des sollicitations mécaniques dans les domaines élastique et plastique et des endommagements. Les résultats montrent que les réponses des senseurs conservent toutes les caractéristiques statiques et dynamiques d'entrée fournissant ainsi des informations utiles pour le SHM. Cela permet d'envisager leur déploiement dans des pièces composites de grandes dimensions, pour évaluer les déformations et les concentrations de contraintes locales et ainsi faciliter la simulation et la modélisation dans ces zones critiques. La réponse électrique des QRS a aussi été utilisée pour évaluer l'accumulation d'endommagement dans les composites en association avec la microscopie et l'émission acoustique (AE) afin de détecter l'initiation de fissures et leur propagation dans des composites stratifiés. Sur la base des résultats obtenus dans cette étude, les QRS étudiés peuvent être considérées comme des capteurs en temps réel peu intrusifs qui semblent être tout à fait appropriés pour effectuer des mesures dvnamioues dans des aoolications d'inoénierie structurelle. / A new type of carbon nanotubes based Quantum Resistive Strain sensor (QRS sensor) for structural health monitoring (SHM) has been developed directly on glass fibers' surface via spray layer by layer (slbl) technique. The response of similar transducers was investigated under varying static and dynamic sollicitations. Different strategies of piezo-resistive sensing in GFRP are compared in terms of efficiency to follow mechanical solicitations and damages in both elastic and plastic demains. The results demonstrate that the sensors' output retains ail static and dynamic features of the input thus providing useful information for SHM and further can be extended for composite parts with large dimensions, to probe local stress/strain concentrations and facilitate the simulation of these critical areas. The electrical responses of QRS combined with those of the acoustic emission (AE) technique and microscopy have allowed investigating damage initiation and propagation in laminated composites. Based on the results obtained in this study, the investigated QRS can be considered as real time in situ non strongly invasive sensors which appear to be suitable for performing dynamic measurements in structural engineering applications.
79

Characterization of a refractory cement and sensor development for temperature measurements in molten steel

Sandin, Pierre January 2018 (has links)
In steel manufacturing, temperature control is a critical parameter,as it is extremely important for the steel quality. In general,disposable sensors are regularly immersed in the melt for temperaturemeasurements. There are commercially available sensors for continuoustemperature measurements. In this study, a refractory cement is used for encapsulation andcarrier of a resistive temperature detector, for continuoustemperature measurements in molten steel. This cement is normallyused for manufacturing of steel melt crucibles. The work in thisstudy is mostly experimental and consist of characterization of thecement and development of the sensor. The characterization includesthe mechanical properties, the thermal shock resistance, the steelmelt resistance and obtainable surface roughness, for differentpowder fractions, water-to-cement ratio, firings and mixing method.Process developments were also done for the manufacturing of thesensor element and its carrier system. The end goal for continuous temperature measurement in molten steelfor more than 60 minutes was not reached. However, functional sensorswere developed where temperatures up to 1000 °C were measured duringcalibrations, and the cement was well characterized. This work has been carried out within the Strategic innovationprogram "Smartare Elektroniksystem", a joint investment of Vinnova,Formas and Energimyndigheten.
80

DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND EMERGING RESISTIVE DEVICES

Mozaffari Mojaveri, Seyed Nima 01 May 2018 (has links)
The memristor is an emerging nano-device. Low power operation, high density, scalability, non-volatility, and compatibility with CMOS Technology have made it a promising technology for memory, Boolean implementation, computing, and logic systems. This dissertation focuses on testing and design of such applications. In particular, we investigate on testing of memristor-based memories, design of memristive implementation of Boolean functions, and reliability and design of neuromorphic computing such as neural network. In addition, we show how to modify threshold logic gates to implement more functions. Although memristor is a promising emerging technology but is prone to defects due to uncertainties in nanoscale fabrication. Fast March tests are proposed in Chapter 2 that benefit from fast write operations. The test application time is reduced significantly while simultaneously reducing the average test energy per cell. Experimental evaluation in 45 nm technology show a speed-up of approximately 70% with a decrease in energy by approximately 40%. DfT schemes are proposed to implement the new test methods. In Chapter 3, an Integer Linear Programming based framework to identify current-mode threshold logic functions is presented. It is shown that threshold logic functions can be implemented in CMOS-based current mode logic with reduced transistor count when the input weights are not restricted to be integers. Experimental results show that many more functions can be implemented with predetermined hardware overhead, and the hardware requirement of a large percentage of existing threshold functions is reduced when comparing to the traditional CMOS-based threshold logic implementation. In Chapter 4, a new method to implement threshold logic functions using memristors is presented. This method benefits from the high range of memristor’s resistivity which is used to define different weight values, and reduces significantly the transistor count. The proposed approach implements many more functions as threshold logic gates when comparing to existing implementations. Experimental results in 45 nm technology show that the proposed memristive approach implements threshold logic gates with less area and power consumption. Finally, Chapter 5 focuses on current-based designs for neural networks. CMOS aging impacts the total synaptic current and this impacts the accuracy. Chapter 5 introduces an enhanced memristive crossbar array (MCA) based analog neural network architecture to improve reliability due to the aging effect. A built-in current-based calibration circuit is introduced to restore the total synaptic current. The calibration circuit is a current sensor that receives the ideal reference current for non-aged column and restores the reduced sensed current at each column to the ideal value. Experimental results show that the proposed approach restores the currents with less than 1% precision, and the area overhead is negligible.

Page generated in 0.0577 seconds