• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

QUASI-TOROIDAL VARIETIES AND RATIONAL LOG STRUCTURES IN CHARACTERISTIC 0

Andres E Figuerola (6693590) 13 August 2019 (has links)
We study log varieties, over a field of characteristic zero, which are generically logarithmically smooth and fs in the Kummer normally log étale topology. As an application, we prove an analog of Abramovich-Temkin-Wlodarczyk’s log resolution of singularities of fs log schemes in the Kummer fs setting.<br>
2

Local monomialization of generalized real analytic functions

Martín Villaverde, Rafael 15 December 2011 (has links) (PDF)
Les fonctions analytiques généralisées sont définies par des séries convergentes de monômes à coeficients réels et exposants réels positifs. Nous étudions l'extension de la géométrie analytique réelle associée à ces algèbres de fonctions. Nous introduisons pour cela la notion de variété analytique réelle généralisée. Il s'agit de variétés topologiques à bord munies de la structure du faisceau des fonctions analytiques réelles généralisées. Notre résultat principal est un théorème de monomialisation locale de ces fonctions.
3

Equivariant Resolution of Points of Indeterminacy

Z. Reichstein, B. Youssin, zinovy@math.orst.edu 02 October 2000 (has links)
No description available.
4

Uniformização local: redução ao caso de valorizações de posto um / Local uniformization: reduction to the case of valuations of rank one

Moraes, Michael Willyans Borges de 16 August 2017 (has links)
Este trabalho trata da uniformização local, que é um passo do método de Zariski para provar resolução de singularidades em variedades algébricas. O método consiste numa abordagem por teoria de valorizações, e esta dissertação se baseia no artigo [NS], de Novacoski e Spivakovsky, que consiste em reduzir a prova da uniformização local para valorizações de qualquer posto, a provar apenas para os casos de posto um. / This work deals with local uniformization, which is a step in the method of Zariski to prove resolution of singularities for algebraic varieties. The method consists in an approach using valuation theory and this dissertation is based on the paper [NS], by Novacoski and Spivakovsky, which consists in reduce the proof of local uniformization for all cases to prove only the cases of rank one.
5

Resolution of singularities in foliated spaces / Résolution des singularités dans un espace feuilleté

Belotto Da Silva, André Ricardo 28 June 2013 (has links)
Considérons une variété régulière analytique M sur le corps réel ou complexe, un faisceau d'idéaux J défini sur M, un diviseur à croisement normaux simples E et une distribution singulière involutive Θ tangent à E.L'objectif principal de ce travail est d'obtenir une résolution des singularités du faisceau d'idéaux J qui préserve certaines ``bonnes" propriétés de la distribution singulière Θ. Plus précisément, la propriété de R-monomialité : l'existence d'intégrales premières monomiales. Ce problème est naturel dans le contexte où on doit étudier l'interaction d'une variété et d'un feuilletage et, donc, est aussi reliée au problème de la monomilisation des applications et de résolution ``quasi-lisse" des familles d'idéaux.- Le premier résultat donne une résolution globale si le faisceau d'idéaux J est invariant par la distribution singulière;- Le deuxième résultat donne une résolution globale si la distribution singulière Θ est de dimension 1 ;- Le troisième résultat donne une uniformisation locale si la distribution singulière Θ est de dimension 2.On présente aussi deux utilisations des résultats précédents. La première application concerne la résolution des singularités en famille analytique, soit pour une famille d'idéaux, soit pour une famille de champs de vecteurs. Pour la deuxième, on applique les résultats à un problème de système dynamique, motivé par une question de Mattei. / Let M be an analytic manifold over the real or complex field, J be a coherent and everywhere non-zero ideal sheaf over M, E be a reduced SNC divisor and Θ an involutive singular distribution everywhere tangent to E. The main objective of this work is to obtain a resolution of singularities for the ideal sheaf J that preserves some ``good" properties of the singular distribution Θ. More precisely, the R-monomial property : the existence of local monomial first integrals. This problem arises naturally when we study the ``interaction" between a variety and a foliation and, thus, is also related with the problem of monomialization of maps and of ``quasi-smooth" resolution of families of ideal sheaves.- The first result is a global resolution if the ideal sheaf J is invariant by the singular distribution Θ;- The second result is a global resolution if the the singular distribution Θ has leaf dimension 1;- The third result is a local uniformization if the the singular distribution Θ has leaf dimension 2;We also present two applications of the previous results. The first application concerns the resolution of singularities in families, either of ideal sheaves or vector fields. For the second application, we apply the results to a dynamical system problem motivated by a question of Mattei.
6

Smallest poles of Igusa's and topological zeta functions and solutions of polynomial congruences

Segers, Dirk 30 April 2004 (has links) (PDF)
Igusa's p-adic zeta function is associated to a polynomial f in several variables over the integers and to a prime p. It is a meromorphic function which encodes for every i the number of solutions M_i of f=0 modulo p^i. The intensive study of Igusa's p-adic zeta function by using an embedded resolution of f led to the introduction of the topological zeta function. This geometric invariant of the zero locus of a polynomial f in several variables over the complex numbers was introduced in the early nineties by Denef and Loeser. It is a rational function which they obtained as a limit of Igusa's p-adic zeta functions and which is defined by using an embedded resolution.<br />I have studied the smallest poles of the topological zeta function and the smallest real parts of the poles of Igusa's p-adic zeta function. For n=2 and n=3, I obtained results by using an embedded resolution of singularities. I discovered that the smallest real part of a pole of Igusa's p-adic zeta function is related with the divisibility of the M_i by powers of p. I obtained a general theorem on the divisibility of the M_i by powers of p, which I used to obtain the optimal lower bound for the real part of a pole of Igusa's p-adic zeta function in arbitrary dimension n. I obtained this lower bound also for the topological zeta function by taking the limit.
7

Resolution of Singularities of Pairs Preserving Semi-simple Normal Crossings

Vera Pacheco, Franklin 26 March 2012 (has links)
Let X denote a reduced algebraic variety and D a Weil divisor on X. The pair (X,D) is said to be semi-simple normal crossings (semi-snc) at a in X if X is simple normal crossings at a (i.e., a simple normal crossings hypersurface, with respect to a local embedding in a smooth ambient variety), and D is induced by the restriction to X of a hypersurface that is simple normal crossings with respect to X. For a pair (X,D), over a field of characteristic zero, we construct a composition of blowings-up f:X'-->X such that the transformed pair (X',D') is everywhere semi-simple normal crossings, and f is an isomorphism over the semi-simple normal crossings locus of (X,D). The result answers a question of Kolla'r.
8

Resolution of Singularities of Pairs Preserving Semi-simple Normal Crossings

Vera Pacheco, Franklin 26 March 2012 (has links)
Let X denote a reduced algebraic variety and D a Weil divisor on X. The pair (X,D) is said to be semi-simple normal crossings (semi-snc) at a in X if X is simple normal crossings at a (i.e., a simple normal crossings hypersurface, with respect to a local embedding in a smooth ambient variety), and D is induced by the restriction to X of a hypersurface that is simple normal crossings with respect to X. For a pair (X,D), over a field of characteristic zero, we construct a composition of blowings-up f:X'-->X such that the transformed pair (X',D') is everywhere semi-simple normal crossings, and f is an isomorphism over the semi-simple normal crossings locus of (X,D). The result answers a question of Kolla'r.
9

Resolution of singularities in foliated spaces

Belotto Da Silva, André Ricardo 28 June 2013 (has links) (PDF)
Let M be an analytic manifold over the real or complex field, J be a coherent and everywhere non-zero ideal sheaf over M, E be a reduced SNC divisor and Θ an involutive singular distribution everywhere tangent to E. The main objective of this work is to obtain a resolution of singularities for the ideal sheaf J that preserves some ''good" properties of the singular distribution Θ. More precisely, the R-monomial property : the existence of local monomial first integrals. This problem arises naturally when we study the ''interaction" between a variety and a foliation and, thus, is also related with the problem of monomialization of maps and of ''quasi-smooth" resolution of families of ideal sheaves.- The first result is a global resolution if the ideal sheaf J is invariant by the singular distribution Θ;- The second result is a global resolution if the the singular distribution Θ has leaf dimension 1;- The third result is a local uniformization if the the singular distribution Θ has leaf dimension 2;We also present two applications of the previous results. The first application concerns the resolution of singularities in families, either of ideal sheaves or vector fields. For the second application, we apply the results to a dynamical system problem motivated by a question of Mattei.
10

Uniformização local: redução ao caso de valorizações de posto um / Local uniformization: reduction to the case of valuations of rank one

Michael Willyans Borges de Moraes 16 August 2017 (has links)
Este trabalho trata da uniformização local, que é um passo do método de Zariski para provar resolução de singularidades em variedades algébricas. O método consiste numa abordagem por teoria de valorizações, e esta dissertação se baseia no artigo [NS], de Novacoski e Spivakovsky, que consiste em reduzir a prova da uniformização local para valorizações de qualquer posto, a provar apenas para os casos de posto um. / This work deals with local uniformization, which is a step in the method of Zariski to prove resolution of singularities for algebraic varieties. The method consists in an approach using valuation theory and this dissertation is based on the paper [NS], by Novacoski and Spivakovsky, which consists in reduce the proof of local uniformization for all cases to prove only the cases of rank one.

Page generated in 0.1469 seconds