• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 20
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 20
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Application of Quantitative and Qualitative Methods for Building a Case for Industrial Pollution Prevention: Case Study of a Dairy Processing Facility

Aikenhead, Graham Smith 11 January 2013 (has links)
This thesis investigates the use of a combined set of quantitative and qualitative tools to help address known barriers associated with adopting and sustaining pollution prevention (P2) in an industrial manufacturing setting. The research was conducted at an Ontario dairy processing facility in the form of a case study. P2 is an alternative approach to traditional pollution control or abatement techniques. P2 is a preferred method for pollution management, both environmentally and economically, as it focuses on the efficient use of resources to prevent pollution at the source. The tools used in this research included: wastewater treatability testing, hierarchical process mapping, employee interviews, and causal loop diagrams (CLDs). The application of these tools assisted the participating facility in better characterizing its existing environmental problems, uncovering concrete resource saving opportunities within its processes, and providing more adaptive visual approaches of documenting and conveying P2 concepts. / OMAFRA Agri-Food and Rural Link KTT Funding Program
22

Storage and aggregation for fast analytics systems

Amur, Hrishikesh 13 January 2014 (has links)
Computing in the last decade has been characterized by the rise of data- intensive scalable computing (DISC) systems. In particular, recent years have wit- nessed a rapid growth in the popularity of fast analytics systems. These systems exemplify a trend where queries that previously involved batch-processing (e.g., run- ning a MapReduce job) on a massive amount of data, are increasingly expected to be answered in near real-time with low latency. This dissertation addresses the problem that existing designs for various components used in the software stack for DISC sys- tems do not meet the requirements demanded by fast analytics applications. In this work, we focus specifically on two components: 1. Key-value storage: Recent work has focused primarily on supporting reads with high throughput and low latency. However, fast analytics applications require that new data entering the system (e.g., new web-pages crawled, currently trend- ing topics) be quickly made available to queries and analysis codes. This means that along with supporting reads efficiently, these systems must also support writes with high throughput, which current systems fail to do. In the first part of this work, we solve this problem by proposing a new key-value storage system – called the WriteBuffer (WB) Tree – that provides up to 30× higher write per- formance and similar read performance compared to current high-performance systems. 2. GroupBy-Aggregate: Fast analytics systems require support for fast, incre- mental aggregation of data for with low-latency access to results. Existing techniques are memory-inefficient and do not support incremental aggregation efficiently when aggregate data overflows to disk. In the second part of this dis- sertation, we propose a new data structure called the Compressed Buffer Tree (CBT) to implement memory-efficient in-memory aggregation. We also show how the WB Tree can be modified to support efficient disk-based aggregation.
23

From Food to Fuel: The Swedish Resource Efficiency Dilemma.

Lundgren, Monia January 2014 (has links)
The EU has embarked on a resource efficiency trajectory in order to solve resource scarcity and general sustainability issues. The conversion of food waste into fuel is considered resource efficient as it makes use of resources that would otherwise be discarded. On the other hand, the food sector affects the environment substantially as it is inherently resource intensive and excessive. The purpose of the study was to assess how resource efficient the food waste substrate (feedstock for energy production) is from a life-cycle perspective. The study also aimed to determine if associated Swedish incentives and current market signals promote resource efficiency in Sweden. The food waste substrate has a complex life-cycle and current analyses neglect crucial life-cycle impacts. This makes resource efficiency difficult to determine in absolute terms. The first resource efficiency principle, that promotes the use of fewer inputs, becomes questionable as the food waste substrate has twice as many input stages in comparison to the food crop substrate. The second principle, stating that the food waste substrate should contribute to a low-carbon economy, also falls short due to a calculation method that neglects crucial emission stages. Due to the absent life-cycle perspective, crucial environmental impacts associated with food production are neglected. This affects the achievement of the Swedish Generation Goal and environmental quality objectives. The study concludes that the food waste substrate should undergo a thorough life-cycle analysis. Furthermore, it should be compared to other biofuel options in order to determine degree of resource efficiency. Only then can an appropriate set of EU and national policy measures be instated to safeguard scarce resources and promote a sustainable agriculture and energy sector.
24

Reducing fabric consumption : by improving marker efficiency

Widanalage, Varuna Lasantha Kumara, Kizilirmak, Serkan January 2020 (has links)
Resource degradation is a significant problem in the world, which is directly related to the textile and fashion industry. Efficient use of the material has been identified as an essential aspect to be addressed seriously. It is a critical topic that has attracted the attention of people and companies in recent years and has become a fundamental issue of sustainability. This research study was based on UN sustainable development goals number 12 and 8, which focuses on resource efficiency. The research is designed in considering fabric consumption, which has a significant impact on the textile and clothing industry to contribute to a brighter future and a more sustainable life. The purpose of this study is to reduce the fabric consumption through improving marker efficiency. The research focuses on investigating the behaviour of marker efficiency concerning usable fabric widths, markers with different sizes and marker with style combinations to reduce fabric consumption. The improvements of the existing markers lead to reduce fabric wastage during the cutting process while improving resource efficiency in consumption and production. In this study, the explanatory sequential design of mixed research method is employed with carrying out experiments to collect and analyze quantitative data, explained and elaborated with qualitative findings through expert interviews to get insights into the quantitative findings in a deductive approach. The marker efficiency significantly varies according to the combination of sizes and style and usable fabric width. The improvements of the marker efficiency, reduce the fabric consumption per garment and increase resource efficiency while preventing waste generation. A saving of 1% of a material which consumed millions of tons per year, significantly affect on reducing resource depletion and environmental pollution. This study is limited to five usable fabric widths, four size marker combinations and two style combinations. Moreover, it is focused on material efficiency, and cost efficiency is not considered. There are possibilities for clothing manufactures’ to improve resource efficiency by improving marker efficiency while planning the demand, considering multi-size and multi-style markers. They can concern usable fabric widths, which provide higher marker efficiencies during material purchasing.
25

Advanced Scheduling Techniques for Mixed-Criticality Systems

Mahdiani, Mitra 10 August 2022 (has links)
Typically, a real-time system consists of a controlling system (i.e., a computer) and a controlled system (i.e., the environment). Real-time systems are those systems where correctness depends on two aspects: i) the logical result of computation and, ii) the time in which results are produced. It is essential to guarantee meeting timing constraints for this kind of systems to operate correctly. Missing deadlines in many cases -- in so-called hard real-time systems -- is associated with economic loss or loss of human lives and must be avoided under all circumstances. On the other hand, there is a trend towards consolidating software functions onto fewer processors in different domains such as automotive systems and avionics with the aim of reducing costs and complexity. Hence, applications with different levels of criticality that used to run in isolation now start sharing processors. As a result, there is a need for techniques that allow designing such mixed-criticality (MC) systems -- i.e., real-time systems combining different levels of criticality -- and, at the same time, complying with certification requirements in the different domains. In this research, we study the problem of scheduling MC tasks under EDF (Earliest Deadline First) and propose new approaches to improve scheduling techniques. In particular, we consider that a mix of low-criticality (LO) and high-criticality (HI) tasks are scheduled on one processor. While LO tasks can be modeled by minimum inter-arrival time, deadline, and worst-case execution time (WCET), HI tasks are characterized by two WCET parameters: an optimistic and a conservative one. Basically, the system operates in two modes: LO and HI mode. In LO mode, HI tasks run for no longer than their optimistic execution budgets and are scheduled together with the LO tasks. The system switches to HI mode when one or more HI tasks run for more than their conservative execution budgets. In this case, LO tasks are immediately discarded so as to be able of accommodating the increase in HI execution demand. We propose an exact test for mixed-criticality EDF, which increases efficiency and reliability when compared with the existing approaches from the literature. On this basis, we further derive approximated tests with less complexity and, hence, a reduced running time that makes them more suitable for online checks.:Contents 1. Introduction 1 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Concepts, Models and Assumptions 7 2.1. Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Tasks Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2. Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1. Feasibility versus Schedulability . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2. Schedulability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3. Mixed-Criticality Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Basic Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5. The Earliest Deadline First Algorithm . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1. EDF-VD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2. Mixed-Criticality EDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.3. Demand Bound Function . . . . . . . . . . . . . . . . . . . . . . . . . 16 3. Related Work 17 3.1. Uniprocessor Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1. Uniprocessor Scheduling Based on EDF . . . . . . . . . . . . . . . . . 18 3.2. Multiprocessor Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1. Multiprocessor Scheduling Based on EDF . . . . . . . . . . . . . . . . 20 4. Introducing Utilization Caps 23 4.1. Introducing Utilization Caps . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1. Fixed utilization caps . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2. Optimized utilization caps . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2. Findings of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5. Bounding Execution Demand under Mixed-Criticality EDF 29 5.1. Bounding Execution Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2. Analytical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2.1. The GREEDY Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2.2. The ECDF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3. Finding Valid xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4. Findings of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6. Approximating Execution Demand Bounds 41 6.1. Applying Approximation Techniques . . . . . . . . . . . . . . . . . . . . . . . 41 6.2. Devi’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2.1. Per-task deadline scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2.2. Uniform deadline scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.3. Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3. Findings of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7. Evaluation and Results 49 7.1. Mixed-Criticality EDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2. Obtaining Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2.1. The Case Di = Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2.2. The Case Di ≤ Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.3. Weighted schedulability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.4. Algorithms in this Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.4.1. The EDF-VD and DEDF-VD Algorithms . . . . . . . . . . . . . . . . 51 7.4.2. The GREEDY algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.4.3. The ECDF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.5. Evaluation of Utilization Caps . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.5.1. 10 tasks per task set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.5.2. 20 tasks per task set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.5.3. 50 tasks per task set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.5.4. Comparison of runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.6. Evaluation of Execution Demand Bounds . . . . . . . . . . . . . . . . . . . . 61 7.6.1. Comparison for sets of 10 tasks . . . . . . . . . . . . . . . . . . . . . . 61 7.6.2. Comparison for sets of 20 tasks . . . . . . . . . . . . . . . . . . . . . . 64 7.7. Evaluation of Approximation Techniques . . . . . . . . . . . . . . . . . . . . . 67 7.7.1. Schedulability curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.7.2. Weighted schedulability . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.7.3. Comparison of runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8. Conclusion and Future Work 77 8.1. Outlook/Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Bibliography 83 A. Introduction 91 A.1. Multiple Levels of Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 A.1.1. Ordered mode switches . . . . . . . . . . . . . . . . . . . . . . . . . . 91 A.1.2. Unordered mode switches . . . . . . . . . . . . . . . . . . . . . . . . . 93 B. Evaluation and Results 95 B.1. Uniform Distribution for Task Periods . . . . . . . . . . . . . . . . . . . . . . 95
26

Resurseffektivisering med hjälp av nyckeltal : En studie om effektivisering med hjälp av nyckeltal för anbudsprocessen med erfarenhetsåterkoppling från tidigare färdigställda projekt / Resource optimization using key ratios

Enkulla, Daniel, Karlsson, Marcus January 2019 (has links)
Att bedöma hur mycket resurser man ska lägga på ett uppdrag är inte alltid lätt. Det finns åtskilliga metoder att på ett kvalificerat sätt ställa upp ett anbud och en prognos på vad uppdraget kommer att kosta, en av dessa metoder är erfarenhetsåterkoppling. Med hjälp av erfarenhetsåterkoppling finns det möjlighet att lokalisera nyckeltal som är utslagsgivande för anbudsprocessen. Dessa nyckeltal är givande att känna till innan anbudet läggs fram för att veta om uppdraget är lönsamt i den nuvarande formen eller behöver justeras. För entreprenörer finns det hjälpmedel som till exempel ÅF:s lilla prisbok, men för konsulter så saknas till viss del hjälpmedel. En del konsulter jobbar med individuell erfarenhetsåterkoppling men det krävs ofta några år i branschen för att skapa sig den erfarenhet som behövs. Dessutom har företagets övriga medarbetare sällan möjlighet att ta del av denna information på ett smidigt sätt. Syftet med examensarbetet var därför att sammanställa en erfarenhetsbank av tidigare färdigställda uppdrag och utveckla nyckeltal som kan användas till framtida anbudsförfrågningar. De frågeställningar som tagits fram för detta examensarbete var: · Vilka nyckeltal är relevanta för kommande anbud? · Finns det korrelation och samband mellan dessa nyckeltal samt hur påverkas nyckeltalen av parametrarna? · Vilken typ av uppdrag ger störst marginal, utifrån projekteringsfas, objekttyp, teknisk komplexitet och huruvida det var en om- eller nybyggnad? Examensarbetet behandlar erfarenhetsåterkoppling från ett konsultperspektiv inom projekteringsskedet i byggprocessen. De resultat som framtagits har gjorts med hjälp av Tyréns interna ekonomisystem och en enkätundersökning där uppdragsansvariga fick svara på frågor om sina uppdrag. Undersökningen resulterade i ett antal samband som visar på hur parametrar som objekttyp, teknisk komplexitet och bruttoarea påverkar uppdragets totala tid, marginal, mm. Dessutom utvecklades ett anbudsvektyg som kan användas som en indikation för kommande anbud. De slutsatser som kunnat göras i examensarbetet är bland annat att parametern tekniska komplexitet har en stor inverkan på tre av fyra nyckeltal marginal, total tid och TPR. För ekonomisk marginal hade varken objekttyper eller projekteringsfas lika stor inverkan på det den slutliga marginalen. Det visade sig även att om- och nybyggnation hade stor inverkan på de fyra nyckeltalen TPR, marginal, total tid och TPm2. / Determining how much time and resources ought to be committed on a certain project is not an easy task. There are several of different methods that can be used achieve a solid approximation for a tender, and one of these is by using experience feedback. It is possible, through the use of experience feedback, to construct key ratios based on previously completed project. These key ratios could then be of significant help in upcoming tender process. For estimating the construction cost, builders can use tools such as ÅF:s lilla prisbok. But these types of tools are not as common practice for the consultants planning the construction. This leads us to the purpose of this thesis, which is to collect and set up a database of previously completed projects and from this database develop key ratios that can be used in upcoming tenders. The questions posed by this report was: · Which key ratios are most relevant for upcoming tenders? · Are there any correlations and connections between these key ratios and how are these key ratios affected by the parameters? · Which type of project generates the greatest financial margin, based on design phase, the type of object that was designed, technical complexity and whether the project is a new construction or a reconstruction. This thesis looks at experience feedback from the perspective of a consultant firm working with the planning of buildings and infrastructure. All the results were collected through the use of Tyréns internal economy system as well as a survey were project leaders had to answer questions about the project that they had been in charge of. This investigation resulted in a number of correlations and connections that showed how certain parameters such as technical complexity affected the project total time, profit and so on. A tender approximation tool was created based on data gathered from previously finished projects. Finally, the conclusions that were drawn in this report was, among other things, that the level of technical complexity has a significant effect on three of the four key ratios analysed in this report. These three key ratios were financial margin, total time and time per design plan. The financial margin was not affected by neither the type of object that were designed nor the phase of the design process. The report also concludes that all four key ratios were considerably affected by whether the project is a new construction or a reconstruction.
27

Environmental Impact of Concrete Structures - with Focus on Durability and Resource Efficiency

Al-Ayish, Nadia January 2017 (has links)
Concrete is essential for the construction industry with characteristic properties that make it irreplaceable in some aspects. However, due to the large volumes consumed and the energy intense cement clinker production it also has a notable climate impact. In order to reach the international and national sustainability goals it is therefore important to reduce the climate impact of concrete structures. There are many ways to influence the environmental impact of concrete and a detailed analysis is one of the actions that could push the industry and the society towards a sustainable development. The purpose of this research is to evaluate the environmental impact of concrete structures and the built environment and to highlight the possibilities to reduce that impact with choice of concrete mix and innovative design solutions. A life cycle assessment (LCA) was carried out to analyze the environmental impact of two thin façade solutions with innovative materials and to evaluate influences of different greenhouse gas reducing measures on concrete bridges. The influence of supplementary cementitious materials (SCM) in terms of climate impact and durability was also analyzed. The results indicate that SCMs have a twofold effect on the climate impact of reinforced concrete structures. Not only do they reduce the greenhouse gases through cement clinker replacement but also by an improvement of durability regarding chloride ingress. Currently, this is not considered in the regulations, which makes it difficult to foresee in LCA at early design stages. The results also show great possibilities to reduce the climate impact through different measures and design alternatives and the need for further development of products and solutions. / <p>QC 20171002</p>
28

Exploring the implementation of Circular Economy in the construction industry : A look at the Swedish construction sector

Gerceker, Ege, Pável, Zsombor January 2022 (has links)
Circular Economy (CE) is a sustainable systematic approach to industrial processes which aimsto replace our linear ‘take, make, waste’ economic model with one where resources are kept in productive useas long as possible,and waste is minimized. As the construction industry is one of the most polluting andleast resource efficient sector, it could greatly benefit from CE. In this qualitative study, to contribute toward the CE in the construction research areawe examined five prominent Swedish construction firms and their ongoing transition to become circular.The research is based on existing literature followed by the analysis of corporate documents and interviews.As our key findings, we identified thatthe adoption of the concept is still in the early stages but has gained pace in the last few years, and it is mainly motivated by societal and regulatory drivers. We found that the sector currently focuses on better resource and waste management, but we also identified unique challenges to conquer. We conclude that tomake CE work in the Swedish construction industry allthe stakeholders in the sector have to work together.
29

Storskalig svensk textilåtervinning : Aktuella problem och rekommendationer för framtiden

Zhang, Rui Liang, Rask, Lukas January 2017 (has links)
Textilindustrin står inför nya utmaningar till följd av den ökande globala textilkonsumtionenoch den ökande avfallsmängden. På grund av bomullens resursintensiva och miljöfarligaproduktion ökar förväntningarna att kunna möta framtidens textilefterfrågan med mindreresursintensiva och mer miljövänliga alternativ. Idag saknar vi en storskalig svensktextilåtervinning och det ökade textilavfallet kan samtidigt hanteras med hjälp av cirkulärekonomi. Genom en uppskalning av en kemisk återvinningsprocess utan stora materialförlusterkan hållbarare alternativ till bomull erhållas samtidigt som textilavfallet hanteras på ett effektivtsätt. Återvinningsprocessen omvandlar bomull till dissolvingmassa (en typ av textilmassa) förviskosproduktion. Därför undersöker vi i detta projekt vilka problem som finns och anger vårarekommendationer för att kunna realisera en sådan textilåtervinning för svenska textilflöden påen större skala, sett ur ett resurseffektivitets- och miljöperspektiv.Vi har genomfört ett kvalitativt projekt med stor vikt på litteratur. Kompletterande intervjuerhar genomförts för att identifiera och kartlägga olika steg i återvinningscykeln. Dessutom hartextilindustrins utveckling analyserats. Utifrån analysen har slutsatser dragits om hur framtidenssituation kan bli för cellulosabaserade textilier. Insamling, sortering, mekanisk och kemiskåtervinning har identifierats som huvudkomponenter och vår slutsats är att dessa behöverutvecklas gemensamt för en fungerande, resurseffektiv och miljövänlig textilåtervinning. Dettagörs för att undvika olika flaskhalsar i återvinningscykeln. Därmed kan en cirkulär ekonomiuppnås. Utifrån analysen konstateras att textilindustrin ändrar karaktär och blir allt merkemibaserad, likt ett bioraffinaderi, där man tar tillvara på alla restprodukter. / The textile industry is facing new challenges as a result of increasing global textile consumptionand the increasing volume of waste. Due to the resource-intensive and environmentallyhazardous production of cotton, expectations are increasing to meet future demand for textileproducts with less resource-intensive and more environmentally friendly alternatives. Todaywe lack a large-scale Swedish textile recycling and the increased amount of textile waste canbe handled by means of circular economy. By scaling up a chemical recycling process withoutmajor material losses more sustainable alternatives to cotton can be obtained while managingthe waste efficiently. The recycling process converts cotton into dissolving pulp (a type oftextile pulp) for viscose production. Thus, we will during this project investigate the problemsthat exist and give our recommendations to implement such a textile recycling for Swedishtextile flows on a larger scale, viewed from a resource efficiency and environmentalperspective.We have made a qualitative study with emphasis on literature studies. Additional interviewshave been conducted to identify and map out various steps in the recycling process. In addition,the development of the textile industry has been analyzed. Based on this analysis, conclusionshave been drawn about how the future situation may be for cellulose-based textiles. Collection,sorting, mechanical and chemical recycling have been identified as main components in therecycling process and our conclusion is that they need to be developed simultaneously for aresource efficient and environmentally friendly textile recycling. The purpose is to avoiddifferent bottlenecks in the recycling process. A circular economy could therefore be achieved.Based on our analysis, a conclusion can be drawn that the textile industry is changing itscharacter and is becoming more chemically intensive, similar to a biorefinery, where allresidues are used.
30

Systematic Methodology for Improving the Resource Efficiency in Manufacturing Industries

Thangamani, Dillip January 2015 (has links)
No description available.

Page generated in 0.0655 seconds