• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 28
  • 25
  • 21
  • 18
  • 18
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Restrained Domination in Complementary Prisms

Desormeaux, Wyatt J., Haynes, Teresa W. 01 November 2011 (has links)
The complementary prism GḠ of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and Ḡ. A set S ⊆ V(G) is a restrained dominating set of G if for every v € V(G) \S, v is adjacent to a vertex in S and a vertex in V(G) \S. The restrained domination number of G is the minimum cardinality of a restrained dominating set of G. We study restrained domination of complementary prisms. In particular, we establish lower and upper bounds on the restrained domination number of GḠ, show that the restrained domination number can be attained for all values between these bounds, and characterize the graphs which attain the lower bound.
32

Domination Parameters of a Graph and Its Complement

Desormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 January 2018 (has links)
A dominating set in a graph G is a set S of vertices such that every vertex in V (G) \ S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.
33

Tierexperimentelle Untersuchung zur Wirkung von Modafinil im Restrained Stress-Modell der Ratte

Köhler, Christian 21 February 2013 (has links)
In der vorgelegten Studie wurde Modafinil hinsichtlich seiner möglichen antidepressiven und kognitionsverbessernden Wirkung in einem akuten prädiktiven tierexperimentellen Test mit Ratten, dem Forced Swim Test (FST), sowie in einem kognitiven Test zur gerichteten Aufmerksamkeit in der sozialen Diskriminierung (SND), sowie in einem Depressionsmodell der Ratte getestet. Bei der akuten Gabe von Modafinil zeigte sich im FST bei naiven Ratten eine vergleichbare Wirkung mit typischen Antidepressiva, die sich in einer verkürzten immobilen Zeit im Wasserbassin ausdrückte, während durch die akute Administration von Modafinil sich das Diskriminierungsverhalten gesunder Ratten nicht änderte. Zur Induktion depressionsartigen Verhaltens wurde ein 14-tägiges Restrained Stress-Protokoll verwendet. Der FST diente zum Nachweis der depressionsartigen Verhaltensmuster. Gestresste und ungestresste Tiere wurden akut und subchronisch mit Modafinil bzw. Placebo behandelt, um damit die Reversibilität depressionsähnlicher Verhaltensänderungen durch Modafinil zu untersuchen. Das Medikament verbesserte signifikant die depressionsartigen Verhaltensveränderungen und die Aufmerksamkeitsleistung im FST und SND. Mittels Mikrodialyse wurde gezeigt, dass Modafinil die Dopamin-Konzentration im kortikolimbischen System erhöht, so dass dies zu den beobachteten Effekten beitragen könnte. Die vorliegenden Ergebnisse lassen die Schlussfolgerung zu, dass Modafinil antidepressiv-ähnliche und kognitionsverbessernde Wirkungen besitzt und damit eine mögliche Alternative bei der adjuvanten Behandlung menschlicher Depression sein könnte. In weiteren Studien gilt es zu klären, in wie weit die hier gewonnenen Ergebnisse auf die klinische Situation übertragbar sind.
34

Determination of Shrinkage Crack Risks in Industrial Concrete Floors through Analyzing Material tests

Hamad, Maitham January 2012 (has links)
The industrial concrete floor is a very important part of an industrial building, distribution center, storage or shopping mall, and it must have high quality surfaces for operation. To achieve the high quality we must know the problems and how to treat them. The most important problems on the concrete floors are: (i) cracks which are caused by shrinkage and creep, (ii) curling resulting in a loss of contact between concrete slab and sub-base, and (iii) unevenness In this thesis, it is aimed to investigate the effect of optimizing the concrete mix with and without additional shrinkage reducing agents (SRA) to reduce the crack risk in industrial concrete floors. Four types of concrete recipes are used (A-D) which include a recipe with optimized mix design for minimum shrinkage, a reference recipe (standard mix), an optimized mix with SRA and a fourth recipe with the reference plus SRA. The testing program extended to 224 days of age and comprised e.g. free-shrinkage, restrained shrinkage, weight change, modulus of elasticity, compressive strength, splitting tensile strength and creep of concrete. At early ages, a 28 days, there are large differences in shrinkage-time relations for different mixes. Later than 28 days, the relations are closer. A comparison among shrinkage and creep test results of four recipes shows that recipes A and C have greater crack risk than recipes B and D. The recipe D has also the best result in restrained shrinkage test. These results are because of the aggrega-te graduation, type of cement and shrinkage reducing agents which all have a direct influence on the concrete properties. These tests were done by CBI (The Swedish Cement and Concrete Research Institute) during 2009.
35

Using Self-affirmation to Counter Self-control Depletion

Emanuel, Amber Sky 26 June 2013 (has links)
No description available.
36

Minimizing Base Column Demands in Multi-Story Buckling Restrained Braced Frames Using Genetic Algorithms

Yeates, Christopher Hiroshi 01 December 2010 (has links) (PDF)
Most structural optimization procedures focus on minimizing the total volume of steel in an attempt to reduce overall costs. However, many other factors can have an effect on the overall cost of a structure. Base column demands in particular, can affect base plate sizes, anchorage, and foundation design. Researchers have found that present methods for estimating column demands are too conservative. Nonlinear time history analyzes were conducted on buckling-restrained braced frames of six heights. Optimized results were found considering three ductility constraints and two optimization objectives. The two optimization objectives were minimized total brace area and minimized base column demands. The results show that designs created by using a minimized column demand objective led to column demands that ranged from 2 to 6% lower than column demands in designs generated by a total brace area minimizing objective. The average brace areas of the designs produced by the total brace area minimizing objective were 25 to 80% less than the designs produced by the column demand minimizing objective. Results showed that large braces in the top stories did not have an effect on column demands in the ground level story. The results indicate that base column demands can be minimized by minimizing braces areas. However, braces areas cannot be minimized by minimizing base column demands.
37

Reducing Residual Drift in Buckling-Restrained Braced Frames by Using Gravity Columns as Part of a Dual System

Boston, Megan 19 April 2012 (has links) (PDF)
Severe earthquakes cause damage to buildings. One measure of damage is the residual drift. Large residual drifts suggest expensive repairs and could lead to complete loss of the building. As such, research has been conducted on how to reduce the residual drift. Recent research has focused on self-centering frames and dual systems, both of which increase the post-yield stiffness of the building during and after an earthquake. Self-centering systems have yet to be adopted into standard practice but dual systems are used regularly. Dual systems in steel buildings typically combine two types of traditional lateral force resisting systems such as bucking restrained braced frames (BRBFs) and moment resisting frames (MRFs). However, the cost of making the moment connections for the MRFs can make dual systems costly. An alternative to MRFs is to use gravity columns as the secondary system in a dual system. The gravity columns can be used to help resist the lateral loads and limit the residual drifts if the lateral stiffness of the gravity columns can be activated. By restraining the displacement of the gravity columns, the stiffness of the columns adds to the stiffness of the brace frame, thus engaging the lateral stiffness of the gravity columns. Three methods of engaging the stiffness of the gravity columns are investigated in this thesis; one, fixed ground connections, two, a heavy elastic brace in the top story, and three, a heavy elastic brace in the middle bay. Single and multiple degree of freedom models were analyzed to determine if gravity columns can be effective in reducing residual drift. In the single degree of freedom system (SDOF) models, the brace size was varied to get a range of periods. The column size was varied based on a predetermined range of post-yield stiffness to determine if the residual drift decreased with higher post-yield stiffness. Three and five story models were analyzed with a variety of brace and column sizes and with three different configurations to activate the gravity columns. Using gravity columns as part of a dual system decreases the residual drift in buildings. The results from the SDOF system show that the residual drift decreased with increased post-yield stiffness. The three and five story models showed similar results with less residual drift when larger columns were used. Further, the models with a heavy gravity column in the top story had the best results.
38

Reducing Drifts in Buckling Restrained Braced FramesThrough Elastic Stories

Craft, Jennifer Lorraine 01 March 2015 (has links) (PDF)
It is possible to reduce residual and maximum drifts in buildings by adding “elastic stories” that engage gravity columns in seismic response. An elastic story is a story wherein the buckling restrained brace frame (BRBF) size is increased to prevent yielding when an earthquake occurs. Buildings ranging from 4–16 stories were designed with various elastic story brace sizes and locations to determine the optimal combination to best reduce drifts. Gravity column stiffnesses were also varied in elastic story buildings to determine the effects on drifts. Computer models were used to analyze these buildings under a suite of earthquakes. Adding elastic stories reduce residual drifts 34% to 65% in 4- to 16-story BRBF buildings. General recommendations are made to achieve optimal reductions in drifts. For buildings with six or more stories, drifts were generally reduced most when an elastic story was added to every 4th story starting at level 1 (the bottom story). The most effective size for the braces in the elastic story appears to be three times the original brace size. For buildings with less than six stories, adding a three times elastic story to the bottom level was observed to reduce drifts the most. Further research is also recommended to confirm the optimal location and size of elastic stories for buildings with differing number of stories. Increasing gravity column stiffnesses in buildings with elastic stories helps to further reduce drifts, however it may not be economical. Residual drifts were observed to decrease significantly more than maximum drifts when elastic stories were added to buildings. Maximum drifts generally decreased at some levels, but also increased at others when elastic stories were used.
39

Performance Based Analysis of a Steel Braced Frame Building with Buckling Restrained Braces

Burkholder, Margaux Claire 01 April 2012 (has links) (PDF)
This paper provides an assessment of the seismic performance of a code-designed buckling restrained braced frame building using the performance-based analysis procedures prescribed in ASCE 41-06. The building was designed based on the standards of the ASCE 7-05 for a typical office building located in San Francisco, CA. Nonlinear modeling parameters and acceptance criteria for buckling restrained brace components were developed to match ASCE 41-06 design standards for structural steel components, since buckling restrained braces are not currently included in ASCE 41-06. The building was evaluated using linear static, linear dynamic, nonlinear static and nonlinear dynamic analysis procedures. This study showed that the linear procedures produced more conservative results, with the building performing within the intended Life Safety limit, while the nonlinear procedures predicted that the building performed closer to the Immediate Occupancy limit for the 2/3 maximum considered earthquake hazard. These results apply to the full maximum considered earthquake hazard as well, under which the building performed within the Collapse Prevention limit in the linear analysis results and within the Life Safety limit in the nonlinear analysis results. The results of this paper will provide data for the engineering profession on the behavior of buckling restrained braced frames as well as performance based engineering as it continues to evolve.
40

ASCE 7–05 Design Rule for Relative Strength in a Tall Buckling-Restrained Braced Frame Dual System

Aukeman, Lisa J 01 March 2011 (has links) (PDF)
In mid- to high-rise structures, dual systems (DS) enable a structural designer to satisfy the stringent drift limitations of current codes without compromising ductility. Currently, ASCE 7-05 permits a variety of structural systems to be used in combination as a dual system yet the design requirements are limited to the following statement: Moment frames must be capable of resisting 25% of the seismic forces while the moment frames and braced frames or shear walls must be capable of resisting the entire seismic forces in proportion to their relative rigidities. This thesis assesses the significance of the 25% design requirement for the secondary moment frames (SMF) in dual systems with consideration of current structural engineering practice. Three 20-story buckling-restrained braced frame (BRBF) dual system structures were designed with varying relative strengths between the braced and special moment frame systems. The SMF system wa designed for 15%, 25%, and 40% of seismic demands and the BRBF system design has been adjusted accordingly based on its relative stiffness with respect to the moment frame. These structures were examined with nonlinear static and nonlinear dynamic procedures with guidance from ASCE 41-06. The drift, displacement and ductility demands, and the base shear distribution results of this study show similar responses of the three prototype structures. These results indicate a secondary moment frame designed to less than 25% of seismic demands may be adequate for consideration as a dual system regardless of the 25% rule.

Page generated in 0.1084 seconds