• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 11
  • 10
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 102
  • 81
  • 21
  • 13
  • 13
  • 12
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Developing Formaldehyde Free Flame Retardant for Cellulose

Hannan, MD.Abdul January 2011 (has links)
Two organophosphorus compounds, namely diethyloxymethyl-9-oxa-10- phosphaphenanthrene-10-oxide (DOPAC) and diethyl (2,2-diethoxyethyl) phosphonate (DPAC) were applied on cotton cellulose to impart non-carcinogenic and durable (in alkaline washing) flame retardant property to it. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4), were successfully used to settle acetal linkage between cellulose and flame retardant (FR) compound. Appreciable limiting oxygen index (LOI) values of 24% and 23.9% were achieved in case of the samples treated with FR compound DPAC along with the combined acidic catalyzing effect of NaH2PO4+H3PO4 and NaH2PO4+NH4H2PO4. A distinguishing outcome of total heat of combustion (THC) 3.27 KJ/g was revealed during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. In respect of thermal degradation, low temperature dehydration in conjugation with sufficient amount of char residue (30.5%) was obtained in case of DOPAC treated sample. Consistently, the temperature of peak heat release rate (TPHRR) (325°C) of DPAC treated sample supported the expected low temperature pyrolysis in condensed phase mechanism. Subsequent thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples. Furthermore, for both of the flame retardant compounds, effect of different catalysts, considering both individual and combined, effect of solvents, and overall the optimization of the process parameters were studied in detail. / Program: Magisterutbildning i textilteknologi
62

Regulador de crescimento Etil-Trinexapac em diferentes densidades de semeadura na cultura do arroz de terras altas /

Silva, Marcelo Romero Ramos da. January 2009 (has links)
Orientador: Ricardo Antonio Ferreira Rodrigues / Banca: Kuniko Iwamoto Haga / Banca: Orivaldo Arf / Banca: Rita de Cássia Félix Alvarez / Banca: Rogerio Soares de Freitas / Resumo: O arroz é uma das culturas que mais se destaca na produção mundial, responde ao uso de tecnologias, porém seu cultivo em terras altas apresenta problema de acamamento, dificultando ou impossibilitando a colheita mecânica. O objetivo do trabalho foi estudar o efeito do regulador de crescimento etil-trinexapac e diferentes densidades de semeadura do arroz de terras altas, cultivar BRS Primavera, nos municípios de Fernandópolis - SP e Selvíria - MS, visando reduzir a altura e diminuir o acamamento das plantas de arroz. O experimento foi conduzido no ano agrícola 2008/09, na Fazenda de Ensino e Pesquisa da Universidade Camilo Castelo Branco, Campus de Fernandópolis - SP, e na Fazenda de Ensino e Pesquisa da Faculdade de Engenharia, Campus Ilha Solteira - UNESP, localizada no município de Selvíria - MS. O delineamento experimental utilizado foi blocos ao acaso, disposto em esquema fatorial 5 x 2, com quatro repetições. Os tratamentos foram constituídos por cinco densidades de semeadura (100, 150, 200, 250 e 300 sementes viáveis por metro quadrado), com e sem aplicação de regulador de crescimento. O aumento da densidade de semeadura interferiu negativamente na produtividade de grãos de arroz apenas para a primeira semeadura em Selvíria - MS. A aplicação do etil-trinexapac resultou em plantas com menor altura e acamamento e, reduziu a produtividade de grãos da cultura do arroz para as duas localidades. Apesar da aplicação de etil-trinexapac reduzir a produtividade de grãos, seu uso em cultivares com tendência ao acamamento é interessante por possibilitar a colheita mecanizada, o que não é possível em áreas com plantas acamadas. O etil-trinexapac constitui uma ferramenta importante no manejo da cultura do arroz de terras altas, mas que ainda influencia nos componentes vegetativos e na produtividade e, não interfere no rendimento industrial do cultivar BRS Primavera / Abstract: Rice crop is highlighted around the world production, its responds to technology. However its cultivation in uplands presents problems of lodging, making it difficult or almost impossible the mechanical harvest. The goal of this research was to study the effect of growth regulators ethyl-trinexapac on sowing densities on upland rice, growing BRS Primavera, in Fernandópolis - SP and Selvíria - MS, aiming to reduce plant height and to prevent possible lodging of the rice plants. The experiment started in the agricultural year of 2008/2009, on the Experimental Farm of Camilo Castelo Branco University, Campus of Fernandópolis, SP, and on the Experimental Farm of Engineering College, Campus of Iha Solteira (UNESP), located in the municipal district of Selvíria, MS. The experimental design used was randomized blocks with treatments in factorial arrangement 5 x 2. There were four repetitions. The treatments were made of five combination of sowing densities (100, 150, 200, 250 and 300 seeds per square meter), with and without the use of growth regulator ethyltrinexapac. Increased seeding rate had a negative influence on grain yield of rice only for the first sowing in Selvíria, MS. The application of ethyl-trinexapac resulted in plants with reduced height and lodging and reduced grain yield of rice for both locations. Despite the application of ethyl-trinexapac reduce grain yield, its use in cultivars prone to lodging is interesting because they allow mechanized harvesting, which is not possible in areas with lodged plants. Ethyl-trinexapac is an important tool in the management of upland rice culture, but it still influences the vegetative components and productivity, and it does not interfere with the performance of industrial BRS Primavera / Doutor
63

Reaction to fire performance of wood and other building products

Tsantaridis, Lazaros January 2003 (has links)
<p>The theme of this thesis is the reaction to fire performanceof wood and other building products, andparticularly thematerial fire properties time to ignition, rate of heat releaseand smoke production. These properties have been measured by asmall-scale fire test method, the Cone Calorimeter, andpresented for different types of building products.</p><p>Uncertainty analysis, included instrument and assumptionuncertainty, has been performed for the case that both O2 andCO2 are measured for calculation of the rate of heat release inthe Cone Calorimeter. The partial derivatives for theuncertainty analysis are given. The relative uncertainty forthe rate of heat release measurements in the Cone Calorimeteris between ±5% to ±10% for rate of heat releasevalues larger than about 50 kW/m2.</p><p>The time to ignition in the Cone Calorimeter is compatiblewith the time to ignition in the ISO Ignitability test, whichis the main test method for measuring time to ignition. Thetime to ignition is an increasing linear function of density.The rate of heat release in the Cone Calorimeter is dependentof material thickness and of use of retainer frame. Thematerial thickness gives the heat release curve duration andshape. Thin materials have short burning time and two maximumvalues. Thick materials have long burning time and when thematerial is thicker than about 35 mm no second maximum appears.When the retainer frame is used the actual exposed surface isreduced from 0.01 m2 to 0.0088 m2, the rate of heat release isreduced and the burning time is increased. A comparison ofresults with and without use of the retainer frame gives thenequal results when the exposed area is set to 0.0088 m2 in thecase of using the retainer frame.</p><p>The time to flashover in the full-scale room corner test waspredicted on the basis of Cone Calorimeter data at 50 kW/m2 bya power law of ignition time, the total heat release calculatedover 300 s after ignition and the density of the product. Therelation gives a simple relation to evaluate if a productreaches flashover in the room corner test.</p><p>The smoke production has also been measured in the ConeCalorimeter. The white light and the laser smoke measurementsystems have shown similar results. There is a correlationbetween Cone Calorimeter and room corner test smoke productionwhen the products are divided into groups: those that reachflashover in the room corner test in less than 10 min and thosethat have more than 10 min to flashover. Temperature profilesin wood have been measured in the Cone Calorimeter by a simpletechnique. The effect of fire protective gypsum plasterboardson the charring of wood frame members has been determined andcompared with fullscale furnace wall tests. The protectiveeffects of twenty different boards have been presented. ConeCalorimeter and furnace tests show similar charring of wooduntil the boards fall down in furnace tests. After that, thecharring of wood is higher in the furnace, because the wood isexposed directly to the fire.</p><p><b>Keywords:</b>building products, charring of wood, ConeCalorimeter, fire retardant treated wood, fire tests,ignitability, mass loss, rate of heat release, reaction tofire, smoke production, wood products</p>
64

Occurrence and fate of emerging and legacy flame retardants : from indoor environments to remote areas

Newton, Seth January 2015 (has links)
Persistent organic pollutants (POPs) are toxic chemicals that can be found in various matrices in all corners of the planet, including remote areas such as the Arctic.  Several POPs are known and monitored but given the abundance of new chemicals in commerce about which little is known, chemicals that may be new POPs are constantly being screened for. The use of flame retardants, particularly brominated flame retardants (BFRs), has been increasing for decades. PBDEs and HBCDDs are two types of BFRs that have historically been used in large volumes but recently faced legislative restrictions. However, in order to meet fire safety standards, these BFRs have been replaced by a variety of emerging flame retardants (EFRs) about which little is known especially concerning their toxicity, production volumes, and environmental behavior. The main purpose of this thesis was to investigate the occurrence and fate in indoor and outdoor environments of several EFRs and compare them with PBDEs, HBCDDs, and legacy POPs. Several indoor environments in the city of Stockholm, Sweden were sampled for dust, indoor air, and ventilation system air (Paper II).  Results from these samples revealed a number of EFRs that humans are exposed to and that are emitted from buildings through ventilation systems. These included DDC-CO, DBE-DBCH, PBT, HBB, EHTBB, and BEH-TEBP. PBDE levels seem to be declining compared to previous studies in Stockholm.  Outdoor air and soil were sampled across transects of Stockholm (Paper II) and Birmingham, United Kingdom (Paper III).  Results from these samples showed the presence of many of the same EFRs in the outdoor environment that were found in indoor environments.  Urban pulses in air were discovered for PBDEs in both cities and for some EFRs in Stockholm, indicating that the cities are sources of EFRs to the outdoor environment.  Atmospheric deposition samples were taken at two sites in northern Sweden (Paper I).  Three EFRs (DDC-CO, DBE-DBCH, and BTBPE) and two current-use pesticides (trifluralin and chlorothalonil) were identified, indicating these compounds’ potential for long range transport and global contamination.  Other legacy POPs such as HCH, PCBs, and PBDEs were measured in the deposition samples as well.  The bulk of deposition was comprised of HCH and PCBs with only minor contributions from PBDEs, chlordanes, and emerging compounds.  Finally, passive and active air sampling methods were compared for BFRs in offices in Beijing, China.  Some EFRs were identified in indoor air from China; however, BDE-209 was the most predominant compound found (Paper IV).  Air samples collected with passive samplers generally had measured FR concentrations within a factor of 2-3 of those collected with active samplers. The use of a GFF in the passive samplers resulted in concentrations of particle-bound contaminants such as BDE-209 that were more comparable to those in active samples. The positioning of the PUF in the passive samplers affected the sampling rates for gaseous compounds and particle retention on PUFs was shown to be a large source of uncertainty in passive sampling. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p><p> </p>
65

Statybinių medžiagų atsparumo ugniai padidinimo galimybių tyrimas / The research of opportunities to increase fire resistance of building materials

Demidova-Buizinienė, Irina 03 July 2009 (has links)
Baigiamajame magistro darbe nagrinėjamas priešgaisrinės išsipučiančios dangos porėto ir nedegių liekanų termiškai stabilaus sluoksnio sudarymo principai. Aprašomi užpildai bei kiti komponentai gerinantys dangos termoizoliacines savybes. Taip pat pateikta įvairių užpildų įtaką sudarant apsauginį dažų sluoksnį. Be to, darbe yra aprašyti minimalaus priešgaisrinės dangos sluoksnio, reikalingo plieno konstrukcijoms gaisro metu apsaugoti, skaičiavimai. Metodinėje-tiriamojoje darbo dalyje pateikta priešgaisrinės dangos bandymo atlikimo tvarka ir įranga, šilumos laidumo skaičiavimo metodika. Išnagrinėta koreliacinės-regresinės analizės vertinimo metodika. Praktinėje darbo dalyje analizuojamos priešgaisrinės dangos šilumos laidumo ir dangos termoizoliacinio sluoksnio padidėjimo priklausomybė nuo skirtingai didėjančių gaisro temperatūrų. Taip pat gautiems šilumos laidumo rezultatams atliekama koreliacinė-regresinė analizė. Darbą sudaro 5 dalys: įvadas, analitinė dalis, metodinė-tiriamoji dalis, išvados, literatūros sąrašas. / In the analytical part of this Thesis, the principals of fire resistance intumescent coatings foam and thermally stable char layer forming is presented. The fillers and other components for improving surface thermal properties are discussed. As well as a variety of fillers influence the protective coating analyses. In addition, the work is described the minimum fire protection coating layer of steel structures required for fire protection calculations. In the project part of this Thesis, the procedures and equipment, the heat conduction calculation is given. Moreover, the Thesis fire surface thermal conductivity and thermal insulation coating layer increases dependence on the different ways of rising temperatures in the fire analyses. It is also obtained the result of heat conduction by correlation-regression analysis. Structure: introduction, analytical part, the research part, conclusions and references.
66

Influence of flame retardant additives on the processing characteristics and physical properties of ABS

Seddon, Richard January 2000 (has links)
Antimony trioxide (Sb203) and halogenated additives are used together in flameretarded formulations due to their synergistic retardant properties. A study has been made to determine the effects of adding different grades of Sb203 (dSD particle sizes 0.11 um, 0.52um and 1.31 um) into ABS polymer either alone or with commercial brominated materials (BTBPE, TBBA, DBDPO) and an experimental bromine grade (sDBDPO). The Sb20 3 was added at 4wt% loadings and the bromines at 20wt% loadings. The results consider the influence of the additives on processing, mechanical, morphological and flame retardant properties. All compounds were produced using a twin-screw co-rotating extruder and then an injection moulder was used to mould notched impact (falling weight testing), flexural, LOI and UL-94 flame test bars. Samples of all the compounded formulations were titrated to determine Sb20 3 and Br contents. Fracture surface, morphology, size and dispersion analysis was carried out using both SEM and TEM equipment. Osmium tetroxide (OS04) staining was used to determine relative locations of filler particles and polybutadiene phase. Additions of the different antimony trioxide grades showed that the 0.52um and 1.31 um grades lowered impact energy absorption (-25 to -30%) when added at 4wt% loading. The use of a sub-micron size grade (0.1 um) did not significantly lower impact properties (-3%) and had similarly small effects on the flexural modulus and flexural strength. Additions of the brominated materials had much greater effects causing large reductions in impact properties (-20 to :70%). The presence of the bromines generally increased flexural modulus and lowered flexural strength with the exception of TB BA, which increased both modulus and strength. Compounds containing both 1.31 um Sb203 and bromines suffered a further reduction in impact energies, with the bromine properties dominating. Using the 0.1 um Sb20 3 grade again improved impact and flexural properties compared to the 1.31 um grade. The 0.1 um grade resulted in improvements in fire resistance as measured by the UL-94 properties when used with all bromine grades.
67

Conception et synthèse d’une matrice polymère thermoplastique pour l’obtention de matériaux composites recyclables, résistants au feu et utilisables dans l’industrie / Design and synthesis of a thermoplastic polymer matrix to obtain recyclable composite materials, fire resistant and that could be used in industry

Bier, Frédéric 20 February 2018 (has links)
De nouvelles matrices thermoplastiques à base de poly(méthacrylate de méthyle) (PMMA) pouvant entrer dans la composition de matériaux composites ont été synthétisées et caractérisées du point de vue de leur température de transition vitreuse (par calorimétrie différentielle à balayage) et de leur dégradation thermique (par analyse thermogravimétrique et par microcalorimétrie). La stratégie suivie était d’incorporer dans les chaînes de PMMA des unités de répétition comportant un groupement latéral phosphoré retardateur de flamme via une copolymérisation radicalaire du MMA avec un monomère phosphoré. Un ensemble de monomères phosphorés retardateurs de flamme ont été synthétisés à partir de l’oxyde de 9,10-dihydro-9-oxa-10-phosphaphenanthrène-10 (DOPO) en faisant varier la nature de la fonction polymérisable (styrénique, acrylique, méthacrylique), la nature de l’atome lié au phosphore (oxygène, carbone, azote) et la longueur du bras espaceur. Nous avons montré qu’en adaptant la structure et la quantité des unités de répétition phosphorées, la température de transition vitreuse du matériau était maintenue proche de celle du PMMA alors que la dégradation thermique des matériaux était déplacée vers de plus hautes températures. Comparativement les mélanges physiques de PMMA et de DOPO avec une même teneur en élément phosphore présentent une température de transition vitreuse significativement plus basse / Novel poly(methyl methacrylate) (PMMA) thermoplastic matrices which can be used in the elaboration of composite materials have been synthesized and characterized from the point of view of their glass transition temperature (by differential scanning calorimetry) and their thermal degradation (by thermogravimetric analysis and by pyrolysis combustion flow calorimetry). The strategy followed was to incorporate in the PMMA chains repeat units comprising a flame retardant phosphorous side group via a radical copolymerization of MMA with a phosphorus-containing monomer. A set of phosphorus-containing flame retardant monomers has been synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 oxide (DOPO) by varying the nature of the polymerizable function (styrenic, acrylic, methacrylic), the nature of the atom bound to the phophore (oxygen, carbon, nitrogen) and the length of the spacer arm. We have shown that by adapting the structure and the quantity of the phosphorus repeating units, the glass transition temperature of the material was kept close to that of the PMMA while the thermal degradation of the materials was shifted to higher temperatures. Comparatively, physical blends of PMMA and DOPO with equivalent phosphorus contents exhibited significantly lower glass transition temperatures
68

Estruturas aeronáuticas de interior em compósito natural: fabricação, análise estrutural e de inflamabilidade / Aeronautical interior structures in natural composite: manufacturing, structural and flammability analyses

Rômulo Vinícius Vera 06 July 2012 (has links)
O trabalho visou realizar um estudo sobre o comportamento mecânico e de inflamabilidade de estruturas aeronáuticas de interior fabricadas a partir de compósitos reforçados por fibras naturais, especificamente compósitos de resina fenólica com fibras de algodão e de sisal, verificando assim, a possibilidade de substituir compósitos sintéticos. Num primeiro momento, análises experimentais foram executadas para determinar as propriedades mecânicas dos materiais. Em seguida, análises computacionais foram realizadas, empregando as propriedades referentes aos compósitos sintéticos e reforçados por fibras naturais, utilizando critérios de falha e tendo como referência o desempenho do compósito sintético para uma dada estrutura aeronáutica de interior. Além disso, foram efetuadas análises do seu comportamento quanto à inflamabilidade. A incorporação de retardantes de chama foi necessária para que os compósitos reforçados por fibras naturais atendessem aos requisitos de certificação aeronáutica. Após o processo de aditivação, observou-se um aumento do módulo de elasticidade à flexão (55% para o compósito de algodão, 16% para o compósito de sisal) e a diminuição da tensão de ruptura à flexão dos compósitos reforçados por fibras naturais analisados (45% para o compósito de algodão, 55% para o compósito de sisal). No entanto, com o aumento da espessura da estrutura aeronáutica adotada (5,2% para o compósito de algodão, 10,7% para o compósito de sisal), conclui-se que a substituição do compósito sintético pelo natural seria viável. Isto acarretaria em um aumento de massa em 6,2%, caso a estrutura fosse fabricada em compósito reforçado por fibra de sisal. Finalmente, constatou-se que a fração mássica de aditivo utilizada tem grande potencial de otimização e, que a eficiência dos compósitos reforçados por fibras naturais ainda pode ser melhorada. / This dissertation has aimed to study the mechanical behavior and the flammability of aeronautical interior structures manufactured from composites reinforced by natural fibers, specifically phenolic resin and cotton and sisal fibers composites, verifying the possibility of synthetic composites replacement. Firstly, experimental analyses were performed to determine the mechanical properties of the materials. Then, computational analyses were carried out, using properties of synthetic composites and composites reinforced by natural fibers. Also, failure criteria were applied, considering the synthetic composite performance of an interior aeronautical structure as reference. Furthermore, the behavior regarding flammability was analyzed. The addition of flame retardants was necessary for the composites reinforced by natural fibers in order to attend the aeronautical certification requirements. After the addition of flame retardants, an increase in the flexural modulus of elasticity (55% for the cotton composite, 16% for the sisal composite) and a decrease in the flexural stress at break (45% for the cotton composite, 55% for the sisal composite) were observed. However, with an increase of the thickness of the aeronautical structure (5.2% for the cotton composite, 10.7% for the sisal composite), it was concluded that the replacement would be feasible, which would lead to a increase of the mass equal 6.2% for the sisal fiber composite. Finally, it was evidenced that the used flame retardant mass fraction has a great potential for optimization and that the natural composites efficiency can be improved.
69

Development and Investigation of High-Performance Fire Retardant Polypropylene Nanocomposites via High Energy Electrons

Xiao, Dan 23 October 2017 (has links) (PDF)
Polypropylene (PP) has excellent mechanical and chemical properties. Thus, it is used in a wide range of applications. However, like for most polymers, the high flammability of PP limits its application in various fields requiring specific flame-retardant standards. Some of halogenated flame retardants are restricted by European Community directives ROHs, WEEE and REACH. Now metallic hydroxides flame retardants are widely used in industry, but the high loading (about 60 wt %) seriously destroys the mechanical properties of polymeric materials. To improve the performance of flame retardant polymers, an environment-friendly electron beam (EB) technology has been successfully used in modifying flame retardant and polymer matrix. In this work, high efficient functional intumescent flame retardants and functional surfactant are designed and prepared for EB technology. In-depth studies the thermal stability, fire behavior and mechanical properties of these flame retardant PP composites have been studied. The possible graft-linking and cross-linking mechanisms of such EB modified composites can be well established. Specially, it is shown that the novel surfactant has better thermal stability in comparison to traditionally used modifiers. Another part of this work deals with the exploration of novel allylamine polyphosphate (AAPP) as flame retardant crosslinker for PP by electron beam (EB) treatment. Multifunctional AAPP showed unique efficient intumescent flame retardant properties. The limiting oxygen index (LOI) value and the effective melt drop resistance in UL-94 test of multifunctional flame retardant PP composites is greatly enhanced. In the cone calorimeter test, a reduction of peak heat release rate, total heat release and smoke production is achieved. Moreover, EB treatment increased the thermal stability of these designed flame retardant PP composites. Furthermore, AAPP provided an excellent quality of char residue in the combustion stage due to P−N−C and P−O−C structure. In addition, synergistic mechanism of AAPP with montmorillonite (MMT) was explored. Finally, different EB parameters have been used to modify fire retardant polymer nanocomposites. The effects of EB treatment on thermal stability, fire behavior and mechanical properties of fire retardant PP nanocomposites have been discussed. The heat release, the production of toxic gases and the mass loss of EB modified fire retardant PP nanocomposites are delayed in accordance to the result of cone calorimeter test. Based on these results high performance fire retardant polymer nanocomposites can be developed for industrial applications such as insulated material of wire, cable, etc.
70

Biofoams and Biocomposites based on Wheat Gluten Proteins

Wu, Qiong January 2017 (has links)
Novel uses of wheat gluten (WG) proteins, obtained e.g. as a coproduct from bio-ethanol production, are presented in this thesis. A flame-retardant foam was prepared via in-situ polymerization of hydrolyzed tetraethyl orthosilicate (TEOS) in a denatured WG matrix (Paper I). The TEOS formed a well-dispersed silica phase in the walls of the foam. With silica contents ≥ 6.7 wt%, the foams showed excellent fire resistance. An aspect of the bio-based foams was their high sensitivity to fungi and bacterial growth. This was addressed in Paper II using a natural antimicrobial agent Lanasol. In the same paper, a swelling of 32 times its initial weight in water was observed for the pristine WG foam and both capillary effects and cell wall absorption contributed to the high uptake. In Paper III, conductive and flexible foams were obtained using carbon-based nanofillers and plasticizer. It was found that the electrical resistance of the carbon nanotubes and carbon black filled foams were strain-independent, which makes them suitable for applications in electromagnetic shielding (EMI) and electrostatic discharge protection (ESD). Paper IV describes a ‘water-welding’ method where larger pieces of WG foams were made by wetting the sides of the smaller cubes before being assembled together. The flexural strength of welded foams was ca. 7 times higher than that of the same size WG foam prepared in one piece. The technique provides a strategy for using freeze-dried WG foams in applications where larger foams are required. Despite the versatile functionalities of the WG-based materials, the mechanical properties are often limited due to the brittleness of the dry solid WG. WG/flax composites were developed for improved mechanical properties of WG (Paper V). The results revealed that WG, reinforced with 19 wt% flax fibres, had a strength that was ca. 8 times higher than that of the pure WG matrix. Furthermore, the crack-resistance was also significantly improved in the presence of the flax. / <p>QC 20170524</p>

Page generated in 0.0481 seconds