• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 68
  • 28
  • 13
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 250
  • 106
  • 39
  • 30
  • 30
  • 26
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rheological characterisation of low-rank coal ash at high temperatures.

Tonmukayakul, Narongsak January 2004 (has links)
Title page, summary and table of contents only. The complete thesis in print form is available from the University of Adelaide Library. / Ash deposition is a problem in power generation when coal with high ash and alkali contents are utilised. The problem is more severe in fluidised bed combustion where the ash deposition can causes agglomeration of the bed material, may lead to defluidisation of the unit. The successful operation of fluid bed combustion with coal high in ash and alkali content will depend on the ability to control ash deposition. The rheological properties of coal ash under furnace conditions are important in controlling the stickiness and mobility of the molten ash deposition. Therefore, a good knowledge of the rheological properties of coal will improve the understanding of the mechanisms associated with ash deposition, and may assist in controlling the deposition and agglomeration of fluid bed material. At present, a good deal of information about coal ash rheology under conditions similar to those found in fluidised bed combustion is not known, and greater understanding is required. This is primarily due to a lack of reliable instruments and measurement techniques. In this work, a new high temperature rheometer has been developed based on the principle concepts of visco metric flow. The developed rheometer allows fundamental rheological properties, such as shear stress and shear rate, to be obtained without relying on calibrations with materials of known properties. With this instrument the flow characteristics of the tested samples can be determined directly, without assuming a particular fluid model. The new rheometer has the capability to measure the rheological properties of materials at temperatures ranging from 500°C to 1300°C and under different processing conditions. Rheological characteristics and properties of a range of low rank Australian coal ashes have been carried out using the newly developed high temperature rheometer, equipped with a cone and plate measuring geometry. It has been found that coal ash samples exhibit thixotropic and visco plastic flow behaviours. SEM and XRD analyses have revealed that during high temperature rheological measurements the coal ash sample is basically a suspension of colloidal mineral solids in a molten eutectic liquid. The solid phase is mainly silica (SiO₂,), and the liquid phase is a mixture of alkali sulphates mainly CaS0₄, MgS0₄ and Na₂S0₄ compounds. The equilibrium visco metric data of coal ash samples is found to be satisfactorily described using the Herschel-Bulkley model. The equilibrium rheological properties are strongly affected by the concentration levels of CaS0₄, MgS0₄ and Na₂S0₄ . The operating temperature and chemical composition of the surrounding gas phase were also found to affect the rheological properties of the coal ash samples. In order to obtain a better understanding and to model the rheological properties of the coal ashes, a series of synthetic ash mixtures were examined. The synthetic mixtures contained the key chemical components that represent the solid and the liquid phases. The solid phase is represented by silica (SiO₂), while a mixture of CaS0₄, MgS0₄ and Na₂S0₄ compounds represented the liquid phase. In this work, the rheological characteristics of mixtures of synthetic ash were investigated using a factorial experimental design. Using the synthetic ash mixtures together with the statistical design experiment, the effect of key chemical compounds on the rheological properties could be systematically investigated. The rheological results showed that the synthetic mixtures exhibited thixotropic and viscoplastic behaviours. It was also found that mixtures predominantly high in CaS0₄and MgS0₄ had a high degree of thixotropy behaviour, while those mixtures predominantly high in Na₂S0₄ showed a lower degree of thixotropy behaviour. The statistical analysis also showed that Na₂S0₄ is the most significant chemical compound causes a high yield stress and high viscosity. In contrast, CaS0₄and MgS0₄ were found to decrease the value of the yield stress and the viscosity. The rheological behaviour of the synthetic ash mixtures can be used to describe rheological behaviour of the coal ash samples. Relationships between equilibrium flow properties and chemical compounds, and temperatures are developed using a linear regression method. The statistical analysis has shown that CaS0₄, MgS0₄ and Na₂S0₄ , and their interactions are all significant compounds that have effects on the yield stress and viscosity of the synthetic mixtures. It was also found that the yield stress and viscosity decreased with increasing concentration level of either CaS0₄or MgS0₄ . Yield stress and viscosity are increased with increases in the concentration of Na₂S0₄ . The statistical models can successfully predict rheological properties of ash with high concentrations of CaS0₄, MgS0₄ and Na₂S0₄ , but it fails to predict the rheological properties of ashes that also high concentrations of either Fe₂0₃ or Al₂0₃, or a combination of both. The relationship between ash rheology and fluidised bed agglomeration has been established. The yield stress of a coal ash may be used to describe the tendency of the molten ash to deposit on surface of the fluid bed particles. Yield stress also determines the tendency of stickiness of the molten ash deposit to adhere the fluid bed particles during fluidised bed combustion process. The viscosity of the molten ash describes the ability of the molten ash layer to adhere the fluid bed particles after a collision. High viscosity ash tend to hold the colliding particles together longer than a low viscosity ash. Shear thinning behaviour of the ash samples (decreasing viscosity with increasing shear rate) suggests that the operating conditions could be arranged so as to minimise the chance of agglomeration. For example, in order to avoid agglomeration a high viscosity coal ash would benefit from operating the fluidised bed combustion at a high velocity, this is because a high velocity means a higher shear rate and this causes a reduction in the viscosity of the molten ash. Thus, particles agglomerated by a low viscosity ash would be easily broken by the hydrodynamic forces present during the fluidised bed process. Finally, information about ash rheology has formed a basic knowledge for estimating tendency of fluid bed agglomeration when coal obtained from different source is being used. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1141958 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2004
12

Biochemical and rheological properties of waxy wheat flour dough

Arrieta-Martinez, Melania January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Yong-Cheng Shi / Jon Faubion / The rheological properties of two waxy and two normal wheat flours were investigated and the observed differences between them were explained by biochemical analysis. Protein analysis showed that waxy flour had lower polymeric to monomeric ratio (0.70 and 0.58 for waxy flour compared to 0.75 and 0.76 for normal flour) and higher gliadin content in waxy wheat dough (43.9 and 47.3 for waxy wheat dough compared to 41.0 and 41.7 for normal wheat dough). Waxy flour had high amounts of insoluble (IPP) and unextractable (UPP) polymeric protein despite the poor dough forming properties of the waxy flours, contrary to previous correlations made between IPP, UPP and dough strength. Gluten index determination showed a clear difference between waxy and normal flour; there was no gluten aggregation when the waxy samples were tested. The determination of gluten index done on a variety of water washed flour samples indicated that the water-extractable fraction may contain compounds that affect gluten aggregation. HPLC analysis coupled with arabinose/xylose ratio and viscosity determination of the water extractable portion of the flour indicated that water extractable arabinoxylans (WEAX) in waxy wheat flour were different in composition and conformation. Further research is needed to determine if they could be responsible for the lack of gluten aggregation in waxy flour.
13

Hypervelocity Impact Experimentation of a Novel Micrometeoroid/Orbital Debris Shielding Concept Imbibed with Rheologically Characterized Shear Thickening Fluids

Warren, Justin Marshall 14 December 2018 (has links)
Spacecraft are vulnerable to hypervelocity impacts (HVIs) from micrometeoroid/orbital debris (MMOD) while in space and must mitigate these using shielding. In this research aluminum honeycomb core sandwich panels filled with a shear thickening fluid (STF) were developed as a novel MMOD shielding concept. STFs display a marked rise in viscosity with increasing shear rate above a critical shear rate. The results of HVI experiments with impact velocities of ~4.8 km/s or ~6.8 km/s at 80oC or 21oC showed that incorporating a STF into shielding, as opposed to the STF’s liquid phase alone, can reduce damage to the core and the likelihood of back-side facesheet perforation in the event of HVI. STFs can be subjected to a significant temperature variation in many applications such as the HVI experiments in this research or when deployed on the surface of a spacecraft. The effect of temperature on the shear-thickening behavior was investigated using four low molecular weight polymeric glycols/fumed-silica suspensions. The dispersed phase volumeraction, its surface chemistry, and the chemical compositions of the suspending media were varied in a series of steady shear rheological characterizations over a range of temperatures. It was thought that hydroclustering mechanism initiated the onset of shear thickening, and this onset was shown to be more closely correlated to a critical shear rate rather than a critical shear stress. Evidence of the hydroclustering mechanism was sought using small angle neutron scattering (SANS) experiments. SANS steady state rheological characterization experiments were carried out on five low molecular weight polymeric glycols/fumed-silica STFs at the NIST Center for Neutron Research. The SANS experiments were conducted at shear rates below the critical shear rates, at the critical shear rates, and during shear thickening. In all the SANS experiments, the results showed an increase in scattering intensity with increasing shear rates indicating an evolution of the suspension microstructure consistent with the formation of hydroclusters.
14

The rheological properties of aluminum borate whisker filled resins

Kambara, Hajime January 1994 (has links)
No description available.
15

MICRO-RHEOLOGICAL ASSESSMENT OF NEUTROPHIL MECHANICAL PROPERTIES FOLLOWING ADHESION IN A MODEL CAPILLARY

Pai, Anand S. 06 October 2006 (has links)
No description available.
16

Effect of Control Techniques on the Performance of Semiactive Dampers

Masi, John William 10 January 2002 (has links)
A computer simulation is used to examine the effects that various control methods have on the performance of semiactive dampers in controlling the dynamics of a single suspension (quarter car) model. The level of dynamic control of this model has a direct bearing on the ride comfort and vehicle handling, when the single suspension is interpreted as a partial model of a vehicle. The dynamic results obtained when using two alternative semiactive control methods are compared to the results obtained when using the more conventional control methods of passive damping, Skyhook control, and Hybrid control. The conventional control methods results confirm that the semiactive damper possesses a number of benefits when compared to passive damping. In addition, the alternative control methods, which are Displacement Skyhook and Displacement Hybrid, do not show benefits that are superior to passive damping or the conventional semiactive control methods. In support of the conclusions of this report, sufficient detail of the mathematical and numerical model is provided in the event that one should wish to recreate the results presented here. Next, the simulation results of each of the five control methods are presented individually. Several of the responses used in the results chapters are the transmissibility plots for the sprung and unsprung body displacement, the frequency spectrum of acceleration, and the frequency spectrum of the rattle space. In addition, the system response to a step input is calculated and, lastly, time traces are calculated, one at a time, for system excitations at the sprung and unsprung mass natural frequencies. The key dynamic measures studied are settling times, displacements, accelerations, and jerks. The responses just listed are then used in a comparison study between each of the presented control methods. / Master of Science
17

Statics, Dynamics, and Rheological properties of Micellar solutions by Computer Simulation

Huang, Chien-Cheng 13 September 2007 (has links)
Statics, dynamics, rheology and scission-recombination kinetics of self-assembling linear micelles are investigated at equlibrium state and under shear flow by computer simulations using a newly proposed mesoscopic model. We model the micelles as linear sequences of Brownian beads whose space-time evolution is governed by Langevin dynamics. A Monte Carlo algorithm controls the opening of a bond or the chain-end fusion. A kinetic parameter omega modelling the effect of a potential barrier along a kinetic path, is introduced in our model. For equilibrium state we focus on the analysis of short and long time behaviors of the scission and recombination mechanisms. Our results show that at time scales larger than the life time of the average chain length, the kinetics is in agreement with the mean-field kinetics model of Cates. By studying macroscopic relaxation phenomena such as the average micelle length evolution after a T-jump, the monomer diffusion, and the zero shear relaxation function, we confirm that the effective kinetic constants found are indeed the relevant parameters when macroscopic relaxation is coupled to the kinetics of micelles. For the non-equilibrium situation, we study the coupled effects of the shear flow and the scission-recombination kinetics, on the structural and rheological properties of this micellar system. Our study is performed in semi-dilute and dynamically unentangled regime conditions. The explored parameter omega range is chosen in order for the life time of the average size chain to remain shorter than its intrinsic (Rouse) longest relaxation time. Central to our analysis is the concept of dynamical unit of size Lambda, the chain fragment for which the life time tau_Lambda and the Rouse time are equal. Shear thinning, chain gyration tensor anisotropy, chain orientation and bond stretching are found to depend upon the reduced shear rate Beta_Lambda=gamma dot*tau_Lambda while the average micelle size is found to decrease with increasing shear rate, independently of the height of the barrier of the scission-recombination process.
18

Biomechanická reflexe scaffoldu na mechanické zatěžování / Biomechanical response of scaffold on mechanical loading

Anděrová, Jana January 2014 (has links)
The purpose of this work is to identify the parameters of scaffold's mechanical properties by observing/monitoring their response to defined external mechanical strain. The first part of the work is summarizing the knowledge about the required properties of scaffolds, their production and the factors influencing production. The practical part of the work concerns itself with measurement, analysis and evaluation of data based on proprietary methodology. Based on the results at this stage of the research, we can confirm, that scaffolds have viscoelastic, or viscoplastic character and its response depends on the magnitude of deformation, state of hydration, ratio of solutions and period of networking. Keywords: scaffod, tensile test, rheologic model
19

Avaliação do comportamento reológico e das propriedades sensoriais de molhos comerciais para salada tratados por irradiação / Evaluation of rheological behavior and sensory properties of ready to eat salad dressings submitted to irradiation

Gallo, Juliana Maria Altavista Sagretti 27 February 2013 (has links)
Neste trabalho avaliou-se o comportamento reológico dos 11 molhos comerciais para salada, tratados pelo processo de irradiação por raios gama, nas doses: 3 kGy e 5 kGy. Essa avaliação foi realizada por meio de reogramas traçados por medidas de viscosidade e tensão de cisalhamento por taxa de cisalhamento. Parâmetros matemáticos, obtidos destas medidas, também contribuiram para a conclusão do comportamento apresentado e do melhor modelo matemático aplicável a cada molho. As medidas foram realizadas em um viscosímetro de Brookfield modelo LVDV III. O banho térmico Neslab foi empregado para manter a tempertura ambiente durante toda a análise. Realizou-se o protocolo de estudo em duas fases. Na fase 1, a avaliação ocorreu logo após as amostras terem sido irradiadas, as quais se encontravam próximas a suas datas de fabricação. Na fase 2 as amostras foram reavalidas após um período de armazenamento, próximo a data de expiração de suas validades. Paralelamente realizou-se medida de pH para avaliar sua estabilidade diante dos tratamentos e análises sensoriais, de dois dos onze molhos estudados, a fim de verificar a aceitação desses diante da irradiação. O comportamento pseudoplástico foi confirmado para todos os molhos através do modelo matemático, da lei da potência, que melhor se aplica a este, nas duas fases das análises. A irradiação, nas doses absorvidas estudadas, não influênciou nesse comportamento. Os resultados da análise sensorial indicaram boa aceitação dos molhos irradiados, pelos provadores. / This study evaluated the rheological behavior of 11 salad dressings ready to eat, processed by gamma irradiation, at doses: 3 kGy and 5 kGy. This assessment was made by rheograms traced by measurements of viscosity and shear stress by shear rate. Mathematical parameters obtained from these measures also contributed to the conclusion of the behavior exhibited and for choosing the best mathematical model applicable to them. The measurements were performed on a Brookfield viscometer Model LVDV - III. The Neslab thermal bath was used to maintain ambient temperature during the whole analysis. This study protocol was done in two stages. In step 1, the evaluation was performed soon after the samples have been irradiated when these were close to their dates of manufacture. In phase 2 the samples were reassessed after a period of storage, near the expiration date of their validity. Simultaneously pH measurement was performed to evaluate their stability in the face of treatment and sensory analyzes of two salad dressings were studied, in order to verify the acceptance of these when submitted to irradiation. The shear-thinning behavior was confirmed for all dressings through the mathematical model, the power law, that best model apply to this, in both phases. The irradiation at the absorbed doses studied did not influence this behavior. The results of sensory evaluation indicated good acceptance of irradiated sauces for the tasters.
20

Influência do coeficiente de atrito entre os agregados e da viscosidade da matriz no comportamento reológico suspensões concentradas heterogêneas. / Influence of aggregate\'s friction coefficient and matrix viscosity in the rheological behavior of heterogeneous concentrated suspensions.

Mendes, Thiago Melanda 05 May 2008 (has links)
O comportamento reológico de suspensões concentradas heterogêneas como concretos e argamassas possui influência direta na energia requerida e na produtividade durante o processamento e aplicação destes materiais, além de ser um fator determinante na obtenção de um produto final qualidade. De um modo geral pode-se dizer que a fluidez destas suspensões está diretamente relacionada à facilidade de movimentação das partículas, logo pode-se inferir que a redução dos fenômenos atrito é um fator determinante para o bom desempenho destas suspensões durante o fluxo. Deste modo, este trabalho buscou por meio de modelos ideais de esferas e silicone líquido avaliar a influência do coeficiente de atrito dos agregados e da viscosidade da matriz no comportamento reológico de suspensões concentradas. O coeficiente de atrito de agregados esféricos com diferentes granulometrias foi determinado experimentalmente através do ensaio de cisalhamento direto, também conhecido como shear box, e o comportamento reológico de suspensões compostas por estes agregados e silicones líquidos de diferentes viscosidades foram avaliadas por meio do ensaio de squeeze flow. Os resultados revelam que a distribuição granulométrica possui um influência no coeficiente de atrito dos agregados e que esta propriedades está relacionada a área e ao tipo de contato entre as partículas. Entretanto, para o tipo de fluxo e para as velocidades as suspensões, não houve uma relação direta entre o coeficiente dos agregados e a viscosidade da suspensão. Além disto, apesar de alterar o comportamento reológico das suspensões a viscosidade da matriz não apresentou uma relação direta com viscosidade da suspensão, o que em partes ser explicados pela provável ocorrência de um fluxo não homogêneo das suspensões nas condições aqui estudadas. / The rheological behavior of concentrated suspensions like concrete and mortars plays an important hole during their processing and application, and also has a great influence on the final product quality. The flowability of these suspensions is directly related to the ease of particle motion in the system, therefore reduction of friction phenomena contributes for a good flow behavior. The aim of this work was to determine the influences of aggregates friction coefficient and the liquid viscosity of the fluid matrix on the rheological behavior of concentrated suspensions. The friction coefficient of glass spheres with different particle size distributions were determined by shear box tests, while the rheological behavior of concentrated suspensions composed by these glass spheres and silicone oils was evaluated by squeeze flow tests. Results revealed that the particle size distribution influences the coefficient of friction, and this property is determined by the type and the area of contact between the particles. However, for the kind of flow and the speed used in the experiments, there was no relation between friction coefficient and the suspension viscosity. Additionally, matrix viscosity has an impact on the rheological behavior of the system, but no clear relation was identified, which may be caused by the occurrence of heterogeneous flow under the applied experimental conditions.

Page generated in 0.0741 seconds