• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 68
  • 28
  • 13
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 250
  • 106
  • 39
  • 30
  • 30
  • 26
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nonlinear design, modeling and simulation of magneto rheological suspension: a control system and systems engineering approach

Zambare, Hrishikesh B. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Suspension has been the most important subsystem of the vehicle viewed as a system. The ride comfort and vehicle handling performance are affected by the suspension design. Automotive technology has been continuously incorporating developments over the past few decades to provide the end users with a better comfort of driving. Multi-objective optimization of MR damper with objective function of maximizing damping force generated by MR damper with the geometrical parametric constraint function is achieved in this research using pattern search optimization technique. Research focuses on design, modeling, and simulation of active suspension using non-linear theory of the Magneto-Rheological (MR) damper with consideration of the hysteresis behavior for a quarter car model. The research is based on the assumption that each wheel experiences same disturbance excitation. Hysteresis is analyzed using Bingham, Dahl’s, and Bouc-Wen models. Research includes simulation of passive, Bingham, Dahl, and Bouc-wen models. Modeled systems are analyzed for the six road profiles, including road type C according to international standards ISO/TC108/SC2N67. Furthermore, the comparative study of the models for the highest comfort with less overshoot and settling time of vehicle sprung mass are executed. The Bouc-Wen model is 36.91 percent more comfortable than passive suspension in terms of damping force requirements and has a 26.16 percent less overshoot, and 88.31 percent less settling time. The simulation of the Bouc-Wen model yields a damping force requirement of 2003 N which is 97.63 percent in agreement with analytically calculated damping force generated by MR damper. PID controller implementation has improved the overshoot response of Bouc-Wen model in the range of 17.89 percent-81.96 percent for the different road profiles considered in this research without compromising on the settling time of system. PID controller implementation further improves the passenger comfort and vehicle ride handling capabilities. The interdisciplinary approach of systems engineering principles for the suspension design provides unique edge to this research. Classical systems engineering tools and MBSE approach are applied in the design of the MR damper. Requirement traceability successfully validates the optimized MR damper.
32

Processing of Generic Circuits by Conductive Adhesives: Geometrical and Rheological Considerations

Zhou, Jianguo 02 October 2007 (has links)
No description available.
33

Rheological scaling and bubble nucleation of a polymer-diluent solution in extrusion foaming

Shukla, Shunahshep R. 05 January 2007 (has links)
No description available.
34

Correlating Self-Consolidating Concrete mixture composition to its rheological properties

Odeh, Joud January 2018 (has links)
Self-Consolidating concrete (SCC), a highly flowable concrete, is gaining wide acceptance in the concrete industries due to a higher productivity, lower energy consumption, improved working environment and increase quality. SCC is susceptible to segregation and therefore a balance between flow-ability and stability is required. The absence of a comprehensive SCC mixture composition design guidelines merits investigating the effects of SCC mixture variables on the properties affecting its performance, namely flow and stability. An experimental and analytical study were carried out to study the influence of 5 design variables, namely water to binder ratio (w/b), percent addition of silica fume (SF), percent addition of Ground Granulated Blast Furnace Slag (GGBFS), bulk volume of coarse aggregates and binder content, on the workability and rheology of SCC. Workability measurements, specifically the slump flow, T50, L-Box and segregation column, and rheological properties, namely plastic viscosity, yield stress, and thixotropy were measured to evaluate SCC’s performance. A revised modified Bingham model was proposed to adequately account for the linear and non-linear responses of the concrete flow. It postulates that the flow is divided into a linear and non-linear part. The revised model is found to provide more consistent and precise estimate of the rheological properties. Using regression analyses, yield stress and plastic viscosity models that account for the statistically significant variables were derived from experimental test data. Yield stress is found to depend on the bulk volume fraction of the coarse aggregate, Silica Fume content, High Range Water Reducing Agent (HRWRA) and Viscosity Modifying Agent (VMA), and plastic viscosity on w/b, HRWRA and Average Paste Thickness (APT). / Thesis / Master of Applied Science (MASc)
35

Semiactive Cab Suspension Control for Semitruck Applications

Marcu, Florin M. 29 April 2009 (has links)
Truck drivers are exposed to vibrations all day as a part of their work. In addition to repetitive motion injuries the constant vibrations add to the fatigue of the driver which in turn can have safety implications. The goal of this research is to lower the vibrations an occupant of a class 8 semitruck cab sleeper is exposed to by improving the ride quality. Unlike prior research in the area of ride comfort that target the chassis or seat suspension, this work focuses on the cab suspension. The current standard in cab suspensions is comprised of some type of spring and passive damper mechanism. Ride improvements can most easily be accomplished by replacing the stock passive dampers with some type of controllable damper; in this case Magneto-Rheological (MR) dampers. MR dampers can change damping characteristics in real time, while behaving like a passive damper in their OFF state. This means that in case of a failure to the power supply, the dampers still retain their functionality and can provide some level of damping. Additionally, MR dampers can be packaged such that they do not require any redesign of mounting bracketry on the cab or the frame, their use as a retrofitable device. The damper controller is based on the skyhook control policy pioneered by Karnopp et al. in the 1970s. A variation on skyhook control is chosen called no-jerk skyhook control. A controller called Hierarchical SemiActive Control (HSAC) is designed and implemented to allow the no-jerk skyhook controller to adapt to the road conditions. It also incorporates an endstop controller to better handle the limited rattle space of the cab suspension. The development and initial testing of the controller prototype is done in simulation using a model of the cab and its suspension. The model is derived from first principles using bond graph modeling. The controller is implemented in Simulink to ease the transition to hardware testing. The realtime prototype controller is tested on a class 8 semitruck in a lab environment using dSPACE and road input at the rear axles. The laboratory results are veried on the road in a series of road tests on a test truck. The road tests showed a need for HSAC controller. The HSAC is implemented on the test truck in a final prototype system. The test results with this system show signfiicant improvements over the stock passive suspension, especially when dealing with transient excitations. The overall research results presented show that significant ride improvements can be achieved from a semiactive cab suspension. / Ph. D.
36

Nonlinear Mr Model Inversion for Semi-Active Control Enhancement With Open-Loop Force Compensation

Reader, Daniel Martin 09 June 2009 (has links)
The increased prevalence of semi-active control systems is largely due to the emergence of cost effective commercially available controllable damper technology such as Magneto-Rheological (MR) devices. Unfortunately, MR dampers exhibit highly nonlinear behavior, thus presenting an often over-looked complexity to the control system designer. With regards to controlling dampers, the well-known Skyhook Damping control algorithm has enjoyed great success for both fully active and semi-active control problems. The Skyhook design strategy is to create a control force that emulates what a passive linear damper would create when connected to an inertial reference frame. Skyhook control is device independent since it generates a desired control force command output that must be produced by the control system. For simplicity, MR dampers are often assumed to have a linear relationship between the current input and the force output at a given relative velocity. Often this assumption is made implicitly and without knowledge of the underlying nonlinearity. This thesis shows that the overall performance of a semi-active Skyhook control system can be improved by explicitly inverting the nonlinear relationship between input current and output force. The proposed modification will work with any semi-active control algorithm, such as Skyhook, to insure that the controller performance is at least as good as the performance without the proposed modification. This technique is demonstrated through simulation on a quarter-vehicle system. Hysteretic damping effects are incorporated into the modification by application of simple open loop force compensation. Laboratory testing of the hysteretic inversion process was performed with the goal of emulating an ideal linear damper without hysteresis. These results are compared with the implicit assumption thus providing a basis for validating the benefits of the improved methodology. / Master of Science
37

Magneto-Rheological Dampers for Super-sport Motorcycle Applications

Gravatt, John Wilie 19 June 2003 (has links)
In recent years, a flurry of interest has been shown for a relatively old technology called magneto-rheological fluids, or MR fluids. Multiple types of devices have been designed to implement this versatile fluid, including linear dampers, clutches, work-piece fixtures, and polishing machines. The devices have been used in automobiles, washing machines, bicycles, prosthetic limbs, and even smart structures. This thesis focuses on another application of MR dampers, involving super-sport motorcycles. This paper introduces the topics of MR dampers and motorcycle suspensions, and why the two would be a good combination. A detailed history of MR fluids, MR dampers, and motorcycle suspension technologies is given next. After a broad outline of MR dampers and motorcycle suspensions, the method of designing and manufacturing MR dampers is discussed. The damper design for this research is presented in detail, along with the design procedure used to make it. Next, laboratory testing for it is covered, including the test equipment, test procedure, and the laboratory test results. Upon laboratory test completion, the field test setup and procedure are presented. The results of field tests with stock dampers and MR dampers with a variety of control systems is discussed. The MR dampers provided a more stable ride than that of the OEM dampers. By reducing suspension displacement, settling time, and suspension oscillations, the MR dampers were able to reduce suspension geometry instability. Lastly, concluding remarks are made on the research presented. Design flaws are discussed, as well as recommendations for future work in the same area. / Master of Science
38

Dynamic Analysis of Semi-Active Control Techniques for Vehicle Applications

Goncalves, Fernando D. 14 August 2001 (has links)
This experimental study evaluates the dynamic response of five semi-active control policies as tested on a single suspension quarter-car system. Incorporating a magneto-rheological damper, the full-scale 2DOF quarter-car system was used to evaluate skyhook, groundhook, and hybrid control. Two alternative skyhook policies were also considered, namely displacement skyhook and relative displacement skyhook. As well as exploring the relative benefits of each of these controllers, the performance of each semi-active controller was compared to the performance of conventional passive damping. Each control policy is evaluated for its control performance under three different base excitations: chirp, step, and pure tone. Corresponding to the chirp input, transmissibilities and auto spectrums are considered for each control policy. Specifically, transmissibilities between the sprung mass displacement and the unsprung mass displacement are generated relative to the input displacement. Further, the ratio between the relative displacement across the damper and the input displacement is evaluated for each control technique. The chirp input also reveals the results of the auto spectrums of the sprung and unsprung mass accelerations. Both the step input and the pure tone input were used to generate time domain values of RMS and peak-to-peak displacements and accelerations. This study shows that semi-active control offers benefits beyond those of conventional passive damping. Further, traditional skyhook control is shown to outperform the less conventional alternative skyhook policies. / Master of Science
39

A Study on the Dynamic Characterization of a Tunable Magneto-Rheological Fluid-Elastic Mount in Squeeze Mode Vibration

Adjerid, Khaled 21 July 2011 (has links)
This research undertakes the task of static and dynamic characterization for a squeeze mode Magneto-Rheological (MR) Fluid-Elastic mount. MR fluid's variable viscosity rate is advantageously used to develop a mount capable of mitigating input vibrations of varying magnitudes and frequencies depending on electromagnetic flux. Various mechanical components are synthesized into a dynamic testing rig in order to extract vibrational characteristics of the mount and to compare it with existing mount technologies. This project focuses on a mount design that was proposed and improved upon by previous researchers at the Center for Vehicle Systems and Safety (CVeSS). Using a previously designed electromagnet and test rig, the MR mounts are characterized using a quasi-static test. From this test we extract the stiffness and damping characteristics of the MR mount. A set of upper and lower limit baseline mounts made with rubber and steel inserts are also tested simultaneously with the MR mount. Their isolation improvements are compared with conventional passive mounts. After acquiring the stiffness and damping characteristics of the mount, a model is used to simulate a response to input vibrations in the frequency domain. A dynamic test is run on both the baseline testers as well as the MR mount. Having the frequency-magnitude response allows us to determine a usable resonance range and magnitude of vibration mitigation. The results of this study indicate that the mounts tested here are an effective means of suppressing start-up vibrations within mechanical systems and show promise for further development and application. Future studies of these systems can include tests of MR metal-elastic mount designs for durability as well as parametric studies based on MR fluid type and other factors. / Master of Science
40

On the Development of a Real-Time Embedded Digital Controller for Heavy Truck Semiactive Suspensions

McLellan, Neil Scott 24 August 1998 (has links)
A digital controller was designed for a semiactive primary suspension for a class 8 highway truck. The controller used a skyhook policy (where the semiactive damper simulates a damper between the sprung mass and an inertial reference) to control magneto-rheological dampers placed on the truck 's primary suspension in response to measurements made by accelerometers placed on the axle and the truck frame. The completed system was then tested for both random noise (on highway driving) and impulse (speed bump) response. The test results showed that for the damping tuning and controller arrangements used in this study, semiactive dampers do not offer any significant benefits in reducing overall vibration levels at the truck frame or axles. The semiactive dampers, however, provided better control of the dynamic transients, such as roll and pitch induced by hitting speed bumps, as compared to passive dampers. Further assessment of the magneto-rheological damper's tuning and the skyhook control policy is needed to establish any definitive conclusions on the potential benefits of semiactive magneto-rheological suspensions for heavy trucks. / Master of Science

Page generated in 0.3915 seconds