• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 16
  • 10
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 89
  • 22
  • 20
  • 15
  • 15
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Étude de l'implication de la prostaglandine E[indice inférieur]2 dans la signalisation cellulaire menant à la chimiotaxie des monocytes vers les ligands CCL19/CCL21 et l'impact de la maturation des monocytes en macrophages sur leur récepteur CCR7

Allaire, Marc-André January 2013 (has links)
Le Récepteur de chimiokine CCR7 joue un rôle important dans la migration des cellules immunitaires, permettant ainsi l'initiation de la réponse immunitaire. Des études ont démontré qu'une déficience dans l'expression de ce récepteur ou de ces ligand CCL19 et CCL21 a un impact considérable sur la mise en place de la réaction immunitaire suite a un stimulus. D'autre part la prostaglandine de série E 2 a été identifié comme un agent régulateur important sur l'expression et la fonctionnalité du récepteur CCR7 dans l'établissement de la réponse immunitaire, principalement au niveau des cellules dendritiques. L'élévation du niveau de prostaglandine E 2 , lors de certaine infection, induit une augmentation importante de la migration des cellules immunitaires, lors de l'activation du récepteur CCR7. Ces cellules vont alors migrer vers ses ligands qui sont produit principalement au niveau des ganglions lymphatique, permettant ainsi la présentation antigénique aux cellules du système immunitaire adaptatif. Récemment, des travaux ont permis de mettre en évidence l'expression du récepteur CCR7 chez les monocyte et du rôle important de la PGE 2 dans l'expression et la fonctionnalité du récepteur chez ces cellules. Les travaux réalisés dans le cadre de cette maîtrise avaient pour but, dans un premier temps, de déterminer les mécanismes moléculaires permettant la migration cellulaire des monocytes suite à l'activation du récepteur CCR7 par la présence de son ligand CCL19. Nous avons également vérifié l'implication de la PGE 2 dans ce processus. Partant des mécanismes connus chez les cellules dendritiques et des cellules T, nous avons établi que la participation des MAPK p38, ERK et JNK sont importantes dans ce processus. La présence de PGE2 permet une phosphorylation plus rapide de ses MAPK. Nous avons ensuite vérifié la participation de la voie RhoA/ROCK, importante dans le réarrangement du cytosquelette d'actine. L'activation du récepteur CCR7 par son ligand CCL 19 permet une activation de RhoA. Cette activation survient plus rapidement lorsque les cellules sont en présence de PGE 2. Lorsque ces voies métaboliques sont bloquées par des inhibiteurs pharmacologiques, la migration des monocytes est alors inhibée, démontrant l'importance de ses voies pour la migration des monocytes vers les ligands CCL191 Dans un second temps, nous avons étudié l'impact de la maturation des monocytes en macrophage sur le récepteur CCR7. Jusqu'à maintenant, il est connu que la PGE2 permet une augmentation de l'expression de CCR7 chez les monocytes et augmente la réponse chimiotactique des cellules vers les ligands de CCR7. De plus on sait que lors de la maturation des monocytes en cellules dendritique mature, une forte augmentation de l'expression du récepteur CCR7 est observé et que la présence de PGE 2 est essentielle pour assurer la fonctionnalité du récepteur. Toutefois, l'impact de la maturation des monocytes en macrophage sur le récepteur CCR7 est encore inconnu. Nous avons alors démontré que lors de la maturation des monocytes en macrophages, il y a une importante perte de l'expression du récepteur CCR7 et que la présence inflammatoire de la PGE 2 ne permet pas une augmentation de l'expression du récepteur et de la migration des cellules chers les ligands de CCR7. La migration des macrophages vers les ganglions lymphatique ne serait alors pas attribuée à la chimiotaxie de CCR7 vers ses ligands. Ces travaux ont permis de mettre en lumière les principaux acteurs moléculaires impliqué dans la migration des monocytes suite à l'activation du récepteur CCR7 et que la PGE2 permettrait aux monocytes de migrer préférentiellement vers ses ligands au lieu de transmigrer vers les tissus où ils se différencieraient en macrophage. Suite à la différenciation des monocytes en macrophages, nous avons également pu démontrer qu'ils n'ont plus la capacité d'exprimer le récepteur CCR7 et amorcer leur migration vers les ligands CCL19 et CCL21 exerçant ainsi leur fonction en tant que cellules résidente des tissus.[ symboles non conformes]
52

Thromboxane receptor signaling and Rho GTPase activation on actin polymerization and contraction in hypoxic neonatal pulmonary arterial myocytes

Fediuk, Jena 01 January 2012 (has links)
INTRODUCTION: Persistent Pulmonary Hypertension of the Newborn (PPHN) is defined as the failure of normal circulatory relaxation in the lungs at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial (PA) myocytes. Actin polymerization (APM), regulated by Rho GTPases, stabilizes force generation. We studied basal and thromboxane (TP)-induced APM and contraction in normoxic and hypoxic PA myocytes and rings. We also examined the downstream signaling pathways regulating hypoxia and TP-induced APM, and the role that actin plays in TP receptor internalization. METHODS: Smooth muscle myocytes from 2nd to 6th generation PAs of newborn piglets were cultured and exposed to hypoxia (10% O2) or normoxia (21% O2) for 72 hrs, then challenged with 10-6M TP-agonist U46619. APM was quantified by laser-scanning cytometry and stress fiber isolation. Downstream signaling pathways of TP receptor were studied by immunoprecipitation, Rhotekin-RBD and PAK-PBD affinity precipitation, Western blot, immunofluoresence and ELISA. Isometric force to serial concentrations of U46619 was measured in resistant PAs from PPHN and 3-day control swine. RESULTS: Hypoxia induced 2-fold APM via alpha- and gamma-actin isoforms, which contributed to increase U46619-induced contraction. Hypoxia decreased TP association with G12/13 in favor of Gαq. Basal RhoA and Cdc42 activity increased in hypoxia, while Rac activity decreased. U46619-challenge did not further alter RhoA activity in hypoxic cells, but increased Cdc42 and Rac activity. Hypoxia increased phosphorylation of LIMK and PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia, but increased after U46619 exposure. Jasplakinolide significantly stabilized gamma filaments, increasing force generation; cytochalasin D depolymerized all actin isoforms, which attenuated contractile force. Both actin-modifying agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. CONCLUSIONS: PA myocytes exhibit marked RhoA- and Rac-dependent APM in hypoxia. The additional APM response to U46619 challenge is independent of RhoA, but requires Cdc42 signaling. Hypoxia induces APM in PA myocytes, particularly causing an increase in filamentous alpha- and gamma-actin that contributes to increased U46619-induced force generation, a characteristic of PPHN. Dynamic actin also facilitates internalization of the TP receptor. Determining the mechanism that controls TP-mediated APM maybe beneficial as a potential target for PPHN.
53

The role of the RhoGEF Trio in brain development

Ghogha, Atefeh. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Anatomy and Cell Biology. Title from title page of PDF (viewed 2008/05/14). Includes bibliographical references.
54

Estudo do efeito vasorelaxante de uma pirona obtida de Aniba panurensis em artéria mesentérica superior isolada de rato

ASSIS, Thais Josy Castro Freire de January 2007 (has links)
Made available in DSpace on 2014-06-12T15:55:34Z (GMT). No. of bitstreams: 2 arquivo6307_1.pdf: 824660 bytes, checksum: 1953df07244da37349b76a1e19dc4b06 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2007 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / A 6 [(E) estiril] piran 2 - ona (pirona-198) é uma estiril-pirona natural isolada a partir do extrato clorofórmico dos frutos de Aniba panurensis, espécie constituinte da família Lauraceae. Com a ausência de estudos sobre os efeitos da 6 [(E) estiril] piran 2 - ona (pirona-198) no sistema vascular, objetivou-se então investigar os efeitos desta pirona sobre anéis de artéria mesentérica superior isolada de rato Wistar. Em anéis pré-contraídos com fenilefrina (FEN), pirona-198 foi capaz de induzir vasorelaxamento dependente de concentração (CE50 = 1,1 ± 0,69 x 10-5 M) e esse efeito não foi alterado após a remoção do endotélio funcional (CE50 = 1,57 ± 0,35 x 10-5M). Este efeito vasorelaxante induzido pela pirona-198 não foi significativamente alterado em soluções contendo KCl 20 mM. Em anéis précontraídos com KCl 80 mM, pirona-198 induziu um efeito relaxante significante (p < 0,001; CE50 = 1,2 ± 0,15 x 10-4 M (endotélio intacto); CE50 = 2,0 ± 0,38 x 10-4 M (endotélio removido)), que foi menos potente do que em anéis pré-contraídos com FEN. Os efeitos da pirona sobre o influxo de cálcio foi avaliado, em que concentrações de pirona-198 (10-7 10-4 M) não foram capazes de inibir a curva concentração resposta para o CaCl2, entretanto, na maior concentração (10-3 M), ela foi capaz de diminuir significativamente a resposta máxima (p<0,001). Em uma solução despolarizante livre de cálcio, pirona-198 (10-8 - 10-3 M) antagonizou as contrações transientes induzidas por FEN (10 &#956;M; p<0,001). Pirona-198 (10-4 -10-3 M) antagonizou as contrações transientes induzidas por 20 mM de cafeína (p<0,001). As contrações induzidas por ortovanadato de sódio (10-5 - 3 x 10-3 M) foram significativamente inibidas por altas concentrações de pirona-198 (10-4 e 10-3 M). Esses resultados sugerem que a pirona-198 exerce um efeito relaxante independente do endotélio funcional que parece ser decorrente da possível interação com a via de sinalização estimulada a partir da ativação de receptores acoplados a proteína G (GPCRs), que envolve a mobilização de cálcio pelos receptores sensíveis a IP3 e interação com a via da RhoA Rho cinase. Outro mecanismo de ação sugerido para a atividade vasorelaxante da pirona-198 que se adiciona aos anteriores, é o bloqueio do influxo transmembranar de cálcio através de canais de cálcio dependentes de voltagem, adicionado a inibição da mobilização de cálcio intracelular mediada pelos receptores de rianodina
55

S1P-Mediated Endothelial Barrier Enhancement: Role of Rho Family GTPases and Local Lamellipodia

Zhang, Xun E. 06 July 2017 (has links)
The endothelial cells lining the inner surface of the tissue capillaries and post-capillary venules form a semi-permeable barrier between the blood circulation and interstitial compartments. The semi-permeable barrier in these vessels is the major site of blood-tissue exchange. A compromised endothelial barrier contributes to the pathological process such as edema, acute respiratory distress syndrome (ARDS) and tumor metastasis. Sphingosine-1-phosphate (S1P), an endogenous, bioactive lipid present in all cells, is a potential therapeutic agent that can restore compromised endothelial barrier function. On the other hand, S1P also has pleotropic effects and can either increase or decrease arterial tone and tissue perfusion under different conditions. The detailed mechanisms underlining S1P’s endothelial barrier protective effect are still largely unknown, but are suggested to depend on cell spreading termed “lamellipodia”. Therefore, to fully take advantage of the beneficial properties of S1P, it is important to first understand how S1P-induced lamellipodia protrusions correlate with its effect on endothelial barrier function. It is also important to know the underlining mechanisms that S1P enhances endothelial barrier function, including intracellular signaling and receptor signaling. To study local lamellipodia activities, we acquired time-lapse images of live endothelial cells expressing GFP-actin, and subsequently analyzed different lamellipodia parameters. Experiments were performed under baseline conditions, and during endothelial barrier disruption or enhancement. The compounds used in these experiments included thrombin and S1P. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function for in vitro studies. Changes of local lamellipodia dynamics and endothelial barrier function within the same time frame were studied. For mechanistic studies, we combined biochemical, immunological and pharmacological approaches. Rho family small GTPase activities were measured with an ELISA pull-down assay. Fluorescence Resonance Energy Transfer (FRET) was also used to study the localization of RhoA activation. Pharmacological compounds targeting intracellular signaling messengers were used to test the involvement of Rac1, RhoA, MLC-2 in endothelial local lamellipodia activity and S1P-mediated endothelial barrier enhancement. Receptor agonists and antagonists were used to study the involvement of S1P receptor signaling. Finally, for cell behavior and cytoskeleton studies, we utilized immunofluorescence labeling that enables direct visualization of changes in cytoskeleton, cell-cell junction and focal adhesions. We found that S1P increases both local lamellipodia protrusions and TER. The rapid increase in local lamellipodia protrusion frequencies also corresponded to the rapid increase in TER seen within the same time frame. Under the microscope, local lamellipodia protrusions from adjacent cells overlapped with each other and extended beyond junctional cell-cell contacts. Strikingly, S1P-induced lamellipodia protrusions carry VE-cadherin molecules to the cell-cell contact, established junctional adhesions. Combined with our previous published studies on thrombin induced lamellipodia activity changes, we think lamellipodia protrusions are a major component that regulates endothelial barrier function. Combined, our imaging studies revealed the mechanisms on how lamellipodia regulates endothelial barrier function: 1) lamellipodia overlap and increase the apical to basal diffusion distance, which in turn decreases permeability and upregulates endothelial barrier function. 2) Local lamellipodia protrusions contain VE-cadherin, which is delivered the to the cell-cell contact by the lamellipodia to increase junctional stability. S1P is effective for rescuing thrombin-induced endothelial barrier dysfunction. The known barrier disruptor thrombin, decreased local lamellipodia protrusions, disrupted VE-cadherin integrity, and caused a drop in TER. S1P increased local lamellipodia protrusions after thrombin challenge, and resulted in faster recovery towards baseline TER compared with vehicle controls. Interestingly, we also found that both thrombin and S1P increased MLC-2 phosphorylation at Thr18/Ser19. We subsequently accessed Rho family GTPase activity after thrombin and S1P. As expected, thrombin rapidly increased GTP-bound RhoA levels, and decreased GTP-bound Rac1 levels. Unexpectedly, S1P not only increased GTP-bound Rac1, but also increased GTP-bound RhoA to a more prominently levels (4-fold). Since Rac1 has been implicated in promoting lamellipodia protrusions, we tested the role of Rac1 on the local lamellipodia activities first. We found that Wild-Type (WT) Rac1 group had the highest local lamellipodia protrusion frequencies, protrusion distances, withdraw time and highest percentage of protrusions that lasted more than 5 min. WT Rac1 overexpression had greatest protrusion frequencies and lowest monolayer permeability to FITC-albumin compared to GFP and DN-Rac1 overexpression monolayers. These results suggest that Rac1 is important for baseline endothelial barrier function. This is also confirmed by the finding that pharmacological inhibition of Rac1 significantly decreased baseline TER. Although Rac1 is important for baseline endothelial barrier function, we noticed that it is dispensable in S1P-mediated endothelial barrier enhancement. Rac1 inhibitors, DN-Rac1 overexpression, and Rac1 siRNA knockdown all failed to abolish the S1P-mediated increase in TER. This is partially explained by the findings that S1P-induced Rac1 activation is short-lived and less pronounced in contrast to RhoA activation. We subsequently tested the role of RhoA in S1P-mediated endothelial barrier enhancement, based on our findings that both S1P and thrombin significantly activated RhoA and induced MLC-2 phosphorylation. Significant RhoA activation was found to be mainly at cell periphery and lamellipodia protrusions in HUVEC on FRET, after S1P was given. In addition, RhoA inhibitors significantly decreased the amplitude of S1P-induced MLC-2 phosphorylation, vinculin redistribution and barrier enhancement. The data suggest that the mechanisms involved in S1P-mediated endothelial barrier enhancement depend on RhoA activation and subsequent cytoskeletal rearrangement. We next investigated which receptor is responsible for the endothelial barrier enhancement of S1P. However, antagonism of S1P1, S1P2 or S1P3 alone with W146, JTE-013 or TY-52156 respectively all failed to attenuate S1P-mediated increase in TER. While agonism of S1P1 with CYM-5442 hydrochloride alone produced significant increase in TER, neither S1P2 nor S1P3 activation (CYM 5520 & CYM 5541) produced any change on TER. Interestingly, S1P1 antagonist failed to block the effect of S1P1 agonist on TER. This could be due to that the S1P1 agonist may not be very selective at concentrations tested. We also identified that S1P4 and S1P5 are present on endothelial cells. Further studies would be necessary to elucidate the roles of newly identified S1P4 or S1P5 alone on endothelial barrier function. It is also worth investigating in the future if multiple S1P receptors are involved in its endothelial barrier enhancing effect. In conclusion, we found that lamellipodia protrusions contribute to the endothelial barrier enhancement of S1P. While Rac1 is important for the maintenance of endothelial barrier function, it is dispensable in S1P-mediated endothelial barrier enhancement. On the other hand, RhoA activation appears to be, at least in part, responsible for the endothelial barrier enhancement of S1P. It is currently still unclear if S1P’s endothelial barrier enhancing effect is through one single receptor activation or activation of multiple receptors. Future studies are needed to elucidate the receptor signaling that contributes to S1P-mediated endothelial barrier enhancement.
56

Identification of Mechanisms Regulating Endothelial Cell Capillary Morphogenesis

Howe, Grant Alexander January 2013 (has links)
In order to effectively treat disorders whose pathology is marked by neovascularization, a better understanding of the pathways that mediate the processes involved in angiogenesis is needed. To this end we have identified two important pathways that regulate endothelial cell capillary morphogenesis, a key process in angiogenesis. We have identified the small GTPase RhoB as being induced by vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs). Depletion of RhoB inhibited endothelial cell VEGF - mediated migration, sprouting, and cord formation. Cells depleted of RhoB showed a marked increase in RhoA activation in response to VEGF. Defects in cord formation in RhoB - depleted cells could be partially restored through treatment with the Rho inhibitor C3 transferase or ROCK I/II inhibitors, indicating increased RhoA activity and enhanced downstream signaling from RhoA contribute to the phenotype of decreased cord formation observed in cells depleted of RhoB. Interestingly, we did not observe a significant change in RhoC activity in RhoB - depleted cells suggesting differential regulation of RhoA and RhoC by RhoB in HUVECs. We have also identified microRNA - 30b (miR - 30b) as being negatively regulated by VEGF and as being a negative regulator of HUVEC capillary morphogenesis. Overexpression of miR - 30b significantly reduced HUVEC cord formation in vitro, while inhibition of miR - 30b enhanced cord formation. Neither overexpression nor inhibition of miR - 30b affected migration or viability of endothelial cells. Interestingly, miR - 30b regulated the expression of TGFβ2 but not TGFβ1, with overexpression of miR - 30b inducing expression of TGFβ2 mRNA and protein, and inducing phosphorylaton of Smad2 , suggesting TGFβ2 produced in response to miR - 30b overexpression functions in an iii autocrine manner to stimulate HUVECs . MiR - 30b effects on TGFβ2 expression were found to be regulated to an extent by ATF2, as miR - 30b overexpressing cells exhibited increased levels of phosphorylated ATF2 , with depletion of ATF2 via siRNA resulting in inhibition of miR - 30b - induced TGFβ2 expression. Treatment of HUVECs with TGFβ2 inhibited cord formation, while TGFβ1 had no effect, indicating a major difference in how endothelial cells respond to these two related growth factors. Inhibition of TGFβ2 with a neutralizing antibody restored cord formation in miR - 30b overexpressing cells to levels similar to control cells, thus identifying TGFβ2 expression as contributing to the inhibitory effects of miR - 30b overexpression on capillary morphogenesis. Thus, we have identified two signaling pathways regulated by VEGF in HUVECs that further our understanding of the process of angiogenesis and may provide novel targets for therapeutic intervention into diseases involving angiogenesis.
57

Genetic Analysis Of Rhoa Signaling During Epithelial Morphogenesis In Drosophila

Leppert, Amanda Fitch 01 January 2004 (has links)
Epithelial morphogenesis is contingent upon cell shape changes. Cell shape changes are the driving force for the metamorphosis of the adult Drosophila leg from the leg imaginal disc precursor. Genetic analysis has identified several Drosophila genes involved in regulating cell shape changes during leg disc morphogenesis. These include members of the RhoA signaling pathway and the product of the Stubble-stubbloid (Sb-sbd) locus, a transmembrane serine protease. Mutations in the Sb-sbd gene interact genetically with the members of the RhoA signaling pathway, however the nature of the relationship between Sb-sbd serine protease activity and RhoA signaling is not understood. To identify additional components of the RhoA signaling pathway that may help us to understand the role of the Sb-sbd protease in RhoA signaling the Drosophila genome was systematically scanned for genes that interact with Sb-sbd and RhoA mutations using deletions/deficiencies of specified regions of each chromosome. A total of 201 deficiencies uncovering approximately 84.9-91% of the euchromatic genome and spanning the X, second, and third chromosoms were tested. Of the 201 deficiencies tested, five putative interacting genetic regions and one gene within these deficiencies were identified. The candidate gene Eip78C encodes a nuclear steroid hormone receptor previously identified as having an important role in metamorphosis.
58

Structure-function Analysis Of The Drosophila Stubble Type Ii Transmembrane Serine Protease

Morgan, Rachel 01 January 2008 (has links)
Hormonally-triggered regulatory hierarchies play a major role in organismal development. Disruption of a single member of such a hierarchy can lead to irregular development and disease. Therefore, knowledge of the members involved and the mechanisms controlling signaling through such pathways is of great importance in understanding how resulting developmental defects occur. Type II transmembrane serine proteases (TTSPs) make up a family of cell surface-associated proteases that play important roles in the development and homeostasis of a number of mammalian tissues. Aberrant expression of TTSPs is linked to several human disorders, including deafness, heart and respiratory disease and cancer. However, the mechanism by which these proteases function remains unknown. The ecdysone-responsive Stubble TTSP of Drosophila serves as a good model in which to study the functional mechanism of the TTSP family. The Stubble protease interacts with the intracellular Rho1 (RhoA) pathway to control epithelial development in imaginal discs. The Rho1 signaling pathway regulates cellular behavior via control of gene expression and actin cytoskeletal dynamics. However, the mechanism by which the Stubble protease interacts with the Rho1 pathway to control epithelial development, in particular leg imaginal disc morphogenesis, has yet to be elucidated. The Stubble protein consists of several conserved domains. One approach to a better understanding of the mechanism of action of Stubble in regulating Rho1 signaling is to define which of the conserved domains within the protease are required for proper function. Sequence analysis of twelve recessive Stubble mutant alleles has revealed that the proteolytic domain is essential for proper function. Alleles containing mutations which disrupt regions of the protease domain necessary for protease activation or substrate binding, as well as those with deletions or truncations that remove some portion of the proteolytic domain, result in defective epithelial development in vivo. In contrast, mutations in other regions of the Stubble protein, including the disulfide-knotted and cytoplasmic domains, were not observed. Another important step for defining the connection between Stubble and Rho1 signaling is to identify a Stubble target that acts as an upstream regulator of the Rho1 pathway. We performed a genetic screen in which 97 of the 147 Drosophila non-olfactory and non-gustatory G-protein-coupled receptors (GPCRs), a family of proteins that has been shown to be protease-activated and to activate Rho1 signaling, were tested for interactions with a mutant allele of Stubble. We found 4 genomic regions uncovering a total of 7 GPCRs that interact genetically when in heterozygous combination with a Stubble mutant. Further analysis of these genes is necessary to determine if any of these GPCRs is targeted by Stubble during activation of the Rho1 pathway.
59

Effects of RhoA/ROCK Signaling Inhibition on Human Mesenchymal Stem Cell-Based Chondrogenic Development

Wang, Kuo-Chen 04 June 2018 (has links)
No description available.
60

Type 2 diabetes impairs venous, but not arterial smooth muscle cell function: possible role of differential RhoA activity

Riches-Suman, Kirsten, Warburton, P., O'Regan, D.J., Turner, N.A., Porter, K.E. 02 March 2014 (has links)
Yes / Background/purpose Coronary heart disease is the leading cause of morbidity in patients with type 2 diabetes mellitus (T2DM), frequently resulting in a requirement for coronary revascularization using the internal mammary artery (IMA) or saphenous vein (SV). Patency rates of SV grafts are inferior to IMA and further impaired by T2DM whilst IMA patencies appear similar in both populations. Smooth muscle cells (SMC) play a pivotal role in graft integration; we therefore examined the phenotype and proliferative function of IMA- and SV-SMC isolated from non-diabetic (ND) patients or those diagnosed with T2DM. Methods/materials SMC were cultured from fragments of SV or IMA. Morphology was analyzed under light microscopy (spread cell area measurements) and confocal microscopy (F-actin staining). Proliferation was analyzed by cell counting. Levels of RhoA mRNA, protein and activity were measured by real-time RT-PCR, western blotting and G-LISA respectively. Results IMA-SMC from T2DM and ND patients were indistinguishable in both morphology and function. By comparison, SV-SMC from T2DM patients exhibited significantly larger spread cell areas (1.5-fold increase, P < 0.05), truncated F-actin fibers and reduced proliferation (33% reduction, P < 0.05). Furthermore, lower expression and activity of RhoA were observed in SV-SMC of T2DM patients (37% reduction in expression, P < 0.05 and 43% reduction in activity, P < 0.01). Conclusions IMA-SMC appear impervious to phenotypic modulation by T2DM. In contrast, SV-SMC from T2DM patients exhibit phenotypic and functional changes accompanied by reduced RhoA activity. These aberrancies may be epigenetic in nature, compromising SMC plasticity and SV graft adaptation in T2DM patients.

Page generated in 0.0568 seconds